

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 1

Received: 30 October, 2024, Revised: 23 November, 2024, Accepted: 23 November, 2024, Online: 19 December, 2024

DOI: https://doi.org/10.55708/js0312001

Exploring Challenges in Software Testing: A Structuration
Theory Perspective
Tefo Gordon Sekgweleo * 1 , Phathutshedzo Makovhololo 2
1 Eskom, Department, Research, Testing & Development, Johannesburg, 2095, South Africa
2 Cape Peninsula University of Technology, Informatics, University, Cape Town, 8000, South Africa
E-mails: Ts330ci@gmail.com / phathuts@gmail.com
*Corresponding author: Dr Tefo Gordon Sekgweleo, Lower Germiston Rd, Rosherville, Johannesburg, 2095, 082 533 3484 & Ts330ci@gmail.com

ABSTRACT: Developing software is a huge job, which is why digital product teams rely on the software
development life cycle (SDLC). SDLC is a critical framework for digital product teams, and software testing
is its most vital component. Testing evaluates software components to identify properties of interest, detect
defects, and ensure alignment with requirements. If not optimized, testing can be costly, and its omission or
inadequate execution can lead to software failures, compromising business operations and reputation. This
study explores the challenges of software testing, adopting an interpretivist approach with semi-structured
data collection and analysis guided by Structuration theory's duality of structure. The key findings are: (1)
Software testing is crucial for delivering quality products and services, ensuring that software meets client
requirements and is free from defects. (2) Effective communication and collaboration among agents,
including software testers, developers, and project managers, are vital for successful software testing
outcomes. (3) Power dynamics and decision-making processes significantly impact software testing
outcomes, with project managers' decisions often dominating software testers' work. (4) Adhering to
organizational processes and standards is essential for ensuring quality software delivery, preventing
software testing from being bypassed or done hastily. (5) Legitimization of software testing practices is
necessary for instilling social attachment and control among software testers, recognizing the importance of
their role in delivering quality software. These findings highlight the significance of software testing in
ensuring software quality and business continuity, emphasizing the need for effective communication,
collaboration, and organizational processes to support software testers in their critical role.

KEYWORDS: Structuration Theory, Software testing, Software development, Software implementation, Software
Development Life Cycle (SDLC), Information Systems

1. Introduction

In recent years, software testing has gained prominence
in the software development industry [1]. Organisations
of all sizes rely on software to deliver services and
enhance productivity [2]. SDLC is a widely used
methodology that outlines the stages of software
development, from initiation to implementation [3].
Within SDLC, software testing is a critical phase that
ensures software reliability and adds value to
organisations [4]. A significant portion of software
development budgets is allocated to testing [2]. Software
testing encompasses various technical and non-technical
sections, including specification, design, implementation,
maintenance, and management issues [2]. Testing verifies

that software meets organizational objectives and
identifies errors or failures [5].

However, challenges like time constraints and
regression testing hinder effective software testing [6].
This qualitative study employs structuration theory to
analyze data and identify factors affecting software
testing in organisations. The dynamics between social
structures and human agency play an important role in
shaping the adoption, use, and impact of information
systems within organisations [7] [8]. Structuration Theory
(ST), developed by Anthony Giddens, offers a valuable
lens for examining these dynamics [7]. Despite its
potential, ST has been underutilized in IS research [9], [10].
This study aims to address this gap by applying ST to
explore the interplay between social structures and

P5#yIS

http://www.jenrs.com/
https://doi.org/10.55708/js0312001
mailto:Ts330ci@gmail.com
mailto:Ts330ci@gmail.com
https://orcid.org/0000-0002-5216-6892

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 2

human agency in the context of IS implementation [11].
Specifically, this research seeks to understand how social
structures influence human agency and vice versa [12],
and how this interplay affects IS outcomes [13]. By
examining these dynamics, this study contributes to a
deeper understanding of the complex factors that shape
IS success and failure [14]. The paper is organized into
five sections: literature review, research methodology,
data analysis, findings, and conclusion.

2. Literature Review

This section covers existing literature in the following
key areas of the study: (i) software development, (ii)
Software testing, (iii) Software implementation, and (iv)
Structuration theory.

2.1. The role of Software Testing

Software testing plays an essential role in ensuring the
quality, consistency, and security of software products [4].
As software becomes increasingly pervasive in society,
the significance of software testing cannot be overstated
[15]. According to [16], software testing is a critical
process that detects defects and ensures software meets
user requirements. Effective software testing strategies
enable organisations to identify and mitigate potential
risks, reducing the likelihood of software failures and
minimising their impact [17].

Any product that is created must be tested before it can
be released to the general public for use or consumption.
Same applies to any software that is developed by
organisations to carry out their day-to-day duties.
Software testing is the approach that guarantees that
quality products are distributed to consumers, which in
turn uplifts customer satisfaction and trust. The aim of
software testing is to identify defects and issues in the
software development process so that they can be fixed
prior to its release. According to [18], it is vital to test
software as it helps to verify its quality and reliability
particularly in modern software development processes,
where very sophisticated software is continuously
released faster and quicker.

Even though software testing is important, its
activities are usually ignored even by big organisations
when executing significant software projects as they are
often regarded unlikeable, time wasting as well as tedious
when compared to more innovative and fulfilling
activities such as software design or coding [19]. In [18],
the authors defines software testing as “the process of
evaluating software to ensure that it meets its originally
specified requirements and revealing faults and defects

that may affect the code”. It verifies that the software
meets the functional, performance, design as well as the
implementation requirements identified in the functional
requirement specification.

The primary intent of software testing is to guarantee
that software functions as expected, meets user
requirements, and is reliable, maintainable, and secure
[20]. Software testing involves various activities,
including test planning, test case development, test
execution, and test reporting [21]. These activities
guarantees that software is thoroughly vetted and meet
the required standards before deployment [22].

Moreover, software testing is the fundamental
component of the software development lifecycle,
complementing activities such as system analysis, design,
coding, and implementation [23]. Integrating software
testing into the software development process,
organisations can identify and report defects early,
minimizing the overall cost and time needed for software
development [24].

In conclusion, software testing is the important part
of software development, guaranteeing that software
meets the user requirements, are reliable, maintainable,
and secure. By adopting effective software testing
strategies, organisations can mitigate potential risks,
reduce software failures, and release quality software
products that meet the growing needs of society [25].
Lately, organisations, are focusing on software quality,
and they are identifying broad requirements, such as
more software functions, quicker response speed, as well
as reliable and safe operation [26]. Software testing can be
conducted in two main forms, either manually or
automated. According to [27], manual testing can be time
consuming, resource intensive and make testers not to
discover some defects hence there are automation tools in
place to enable both automation and performance
engineers to record and rerun the test cases which could
be tested manually by a software tester. Automated
testing reduces the cost and time for testing software, it
increases testing coverage by executing more test cases
faster and eliminates human errors (humans gets tired
when doing repetitive tasks and make errors) increased
software reliability, user satisfaction and reduces the
amount manual work that needs to be conducted by
software testers. According to [27], tools for automating
software testing enable software testers to consistently
perform testing in less time and can frequently reuse them
to retest the software. Automated testing decreases the
volume of manual work, increases high coverage by
executing additional test cases and reducing human

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 3

errors remarkably when humans are tired after several
repeats [28]. In [29] further alluded that software testing
is not performed only to detect defects but to assist
software developers to notice the mistakes they made,
provide tips on how to resolve those mistakes and also to
ensure that the software performs as specified in the
requirement specification.

2.2. System Development Life Cycle

Software development is a systematic process used to
create software products that meet specific requirements
and enable agents in a social system to achieve particular
goals [25]. Organisations adopt software development
strategies to manage software activities effectively and
ensure alignment with business objectives [30].
According to [24] software development strategy refers to
the approach organisations employ to develop the
software. Software development encompasses various
activities, including system analysis, design, coding, and
testing [31]. Organisations consider the development of
software as crucial for achieving business objectives and
goals [25]. In [16], the author emphasizes the vital role of
software in social systems, highlighting the need for
extensive research, to understand, enhance, and support
in software development.

2.3. Software Testing

Software testing is a crucial method that ensures
software functions as expected, without defects or issues
[4]. According to [16], software testing evaluates software
quality and identifies areas for improvement. The
primary goal of testing software is to discover defects and
guarantee it meets user requirements [17]. However, it is
essential to take into cognizance both functional and non-
functional requirements during testing. Failure to do so
may negative impact the quality of software [21]. For
instance, the Gauteng online registration system failed to
handle user load, despite functional testing [15]. Software
testing tools enable testers to conduct both functional and
non-functional testing, including performance testing,
which determines software behavior under various
conditions [20]. Automation tools enhance testing
efficiency, reliability, and repeatability, reducing human
error [20]. The ultimate goal of software testing is to
deliver high-quality software, ensuring business
confidence in the tested product [25]. Following testing,
software implementation ensues, aiming to deploy the
software for use.

The importance of software testing in the software
development process cannot be overstated [4]. Software
testing is crucial for ensuring the delivery of high-quality

software products that meet user requirements and are
reliable [17]. According to [16], software testing plays a
vital role in identifying and fixing defects, errors, and
bugs in the software, thereby reducing the likelihood of
software failures and minimizing their impact.

Moreover, software testing helps save time and money
by detecting defects early in the development process [24].
This is supported by [24], who argues that testing is an
essential component of the software development
lifecycle, complementing activities such as system
analysis, design, coding, and implementation.
Furthermore, software testing improves user experience
by ensuring that the software meets user requirements
[25]. It also enhances security by identifying security
vulnerabilities and ensuring that the software is secure
and protected against threats [15].

There are two main common types of software testing
namely, black box and white box. The main of intent of
black box testing is to test the behaviour of the software
whereas white box testing focuses on testing the internal
operation of the software. Black box testing also referred
to as functional testing is a process whereby the software
is tested without the knowledge of the internal workings
of the software [32]. It is a method that enables the test
engineer to design the test cases based on the information
from the specification and does not allow the test engineer
access to source code of the software [33] With black box,
the test engineer is not required to have programming
knowledge.

On the other hand, white box testing also referred to
glass box testing/structural testing is a method that
enables the test engineer/tester to design the test cases
based on the information derived from source code [34].
The tester is required to have programming background
with this type of testing as they are granted access to the
source code. Grey box testing is a third method whereby
the tester has limited knowledge about the internal
workings of the software and has the knowledge of
fundamental aspects of the software [35].

In addition, software testing supports continuous
improvement by providing feedback for refinement and
enhancement of the software [20]. This is critical for
building trust with customers, stakeholders, and users,
enhancing the organization's reputation [22]. In
conclusion, software testing is essential for delivering
high-quality software products that meet user
requirements, are reliable, and provide a positive user
experience [21]. By prioritizing software testing,

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 4

organisations can reduce risks, save time and money, and
build trust with their customers.

2.4. Software Implementation

All software follows a particular lifecycle prior to its
completion, from development to deployment,
irrespective of the methodology employed (agile or
traditional methodology), depending on the requirement
[3]. Software implementation refers to the process of
making software available for operation [1]. The term
implementation is used interchangeably, but in the
context of this study, it means making software
operational. In the SDLC, implementation refers to
applying system requirements, or actual coding [33].
Others describe it as constructing or building software
[21], or making it available for use after development [7].
Software implementation occurs after quality assurance
accompanied by various tests, including user acceptance
testing [22]. Quality assurance is a challenging factor
during implementation [1]. Top management approval is
also crucial for successful implementation, as they must
approve software before it is implemented or changed [7].

Software implementation poses several challenges
that can hinder its success. One of the primary challenges
is ensuring quality assurance, as inadequate testing can
lead to software failures and errors [1]. Additionally,
resistance to change from end-users can also pose a
significant challenge, as they may be reluctant to adopt
new software and processes [7]. Furthermore, the
implementation of software needs substantial resources,
including time, money, and personnel, which can be a
challenge for organisations with limited budgets [33].
Moreover, integrating new software with existing
systems and infrastructure can also be a complex
challenge [23]. In [33], finally, top management approval
and support are crucial for successful implementation,
and lack of commitment from leadership can lead to
implementation failure [22].

In conclusion, software testing and implementation
are critical components of the SDLC. Effective software
testing ensures that software meets user requirements, is
reliable, and provides a positive user experience.
However, software implementation poses several
challenges, including quality assurance, resistance to
change, resource constraints, integration with existing
systems, and top management approval. To overcome
these challenges, organisations must prioritize software
testing and implementation, adopt effective software
development methodologies, and ensure stakeholder
commitment. By doing so, organisations can deliver high-

quality software products that meet user needs and drive
business success.

2.5. Structuration Theory

The selection of an appropriate theory to underpin a
study is critically important because it assists in
determining the outcomes of the study [11]. Structuration
theory (ST) was developed by [8], it is a sociology theory
but has also gained popularity in the information system
(IS) field where it has been borrowed to analyse data [36].
The theory takes a stance that social action cannot be
explained in detail through structure or agency alone, but
it appreciates the actors operating within the context of
rules shaped by social structures but act in a biddable
manner that these structures reinforced. In [37], the
authors defines ST “as the reproduction of social
structures through human actions. Social structures and
human actions are viewed as two aspects of the same
whole, instead of seeing human actions happening
outside of the constraints of social structure”. According
to [38], ST puts an emphasis on agency and structure,
their duality within a social system which implies that the
agent/agency entails technical such as technology and
non-technical such as human entities. The structure is the
rules and resource in structuration. In [39], the authors
further states that ST focuses on how events and social
systems are produced and reproduced over a period of
time and space. In [40], the researchers alluded that
human agency as well as social structure cannot be
treated as separate ideas but are two ways of regarding
social action and is termed as duality of structure.
Structure is the recurrent patterned arrangements which
influence or limit the choices and opportunities available.
Whilst agency is the capacity of individuals to act
independently and to make their own free choices [36]. ST
is divided into structure, modality and interaction
whereby the modality provides interaction between
structure and interaction [37].

Figure 1: Dimensions of the duality of structure [26]

 Both the social structures as well as the human
actions are treated as two aspects of the same whole
within the duality of structure [8]. In [40] and [41], the

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 5

authors emphasizes Giddens' claim that social
phenomena emantes from both social structure and
agency, not just one or the other. Figure 1 illustrates the
dimensions of the duality of structure [8]. In IS research,
various theories are used, including social theories [11]. IS
researchers have borrowed b social theories, such as
Actor-Network Theory (ANT), Activity Theory (AT), and
Structuration Theory (ST) to underpin their studies [8].

This underscores the importance of software testing
in ensuring that developed software meets requirements
and is reliable, maintainable, and secure [4]. The SDLC
comprises a sequence of connected methods from
planning to system testing, ensures consistency and
produces well-developed software [20]. As software
becomes increasingly prevalent in society, the call for
reliable, maintainable, and secure software requirements
continues to grow [15].

3. Research Methodology

Qualitative approach was adopted for this study to
gain an in-depth understanding of software testing in
organisations from the participants' perspective [42].
Qualitative methods, as noted by [43], are subjective in
nature, focusing on beliefs and encounters rather than
statistical figures. A case study was used, which is usually
employed in qualitative research [44]. This design allows
for an in-depth examination of a phenomenon within its
real-life setting [44]. The case study organization, Setlamo
Technologies (a pseudonym), is a public sector
organization operating in South Africa, with a dedicated
software testing team. Semi-structured interviews were
used to collect data, offering flexibility and allowing for
clarifications during the interviews [45]. Therefore, this
approach allows for in-depth examination without
deviating from the research's core focus [46]. Fourteen
participants were interviewed until saturation was
reached [47].

The data was transcribed and analyzed using
Structuration theory as a lens, focusing on the duality of
structure [8]. The vertical approach was adopted, and an
interpretivist approach was employed to analyze the
findings [47]. The interpretive paradigm was used to
subjectively interpret the findings [11].

This study adopted a qualitative case study approach,
utilizing semi-structured interviews, to explore software
testing practices in-depth [44]. This methodology is best
suited for examining complex phenomena, such as
software testing, in real-life settings [42]. Semi-structured
interviews provide flexibility to explore topics in-depth,
allowing participants to share experiences and opinions

in their own words [45]. The case study method enables a
comprehensive understanding of the organization,
including social structures, human agency, and
technology interactions [8]. This approach allows for a
detailed examination of software testing practices,
processes, and contextual factors, making it the most
appropriate methodology for this study [48]. Moreover,
identifying influential factors and potential adopters, as
well as understanding their decision-making processes, is
crucial for a thorough understanding of the subject [49].

4. Data Analysis

For the purpose of data analysis, participants and
organisations were labeled. Fourteen employees from
Setlamo Technologies participated in the research. The
referencing standard is exemplified as ST01, 7:17-20,
indicating organization ST, participant 01, page number
7, and line numbers 17 to 20.

i. Setlamo Technologies: Participants ST01 to ST14

At Setlamo Technologies, agents and structures were
involved in software testing. These agents and structures
were from the IT department. The agents comprised both
technical and non-technical individuals. The structure
entailed the rules and resources utilized in software
testing. All participants shared similar interest for
realizing organisational objectives through software
testing and utilization.

4.1. Structuration Theory

According to [33], Structuration Theory (ST)
encompasses agents (agency) and structures. Agents can
be technical or non-technical, while structures consist of
rules and resources involved in software testing activities
within the organisation. The researchers identified agents
followed by structures.

4.2. Agents (Agency)

Agency refers to an organisation comprising technical
and non-technical agents, where some apply
knowledge/conscious (human) and others lack
knowledge capability [50]. Agency can also be associated
to individuals or group of abilities within a particular
environment. In the case of this study individuals are
those who are involved in the SDLC such as software
developers, software testers and others. They have
particular skills to enable them to perform their duties.
Therefore, these individuals can collaborate and apply
their various skills to deliver a working solution within
the organization (environment). An agent can be
understood as anything with the potential to make a

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 6

difference in a social structure [51]. The research
identified technical agents, including software testing
tools such as Rational Quality Manager and Meter, as well
as SAP, Oracle, and the environment comprising
development, testing, and production. Additionally,
technical agents included the Integrated Financial
Management System (IFMS) and International Software
Testing Qualifications Board (ISTQB) training.

Non-technical agents included software test analysts,
project managers, business analysts, functional support
personnel, software developers, and individuals involved
in software development methodology, either Agile or
traditional. Furthermore, non-technical agents comprised
individuals responsible for software testing standards,
implementation policies, and the change management
committee. Documentation, including functional
requirements, test cases, and test results, as well as the test
lab, were also identified as non-technical agents.

4.3. Structure

The structure refers to the protocol followed to
accomplish the tasks assigned to individuals within the
team. Every individual has to take responsibility to
delivering their tasks on scheduled time. Continuous
reporting is necessary especial when an individual is
struggling to perform what is assigned to them. These
enables others to chip in and assist so that the project can
be delivered on a promised time. Agents utilize structures
to create and recreate social activities [34]. In the context
of Structuration Theory, structure refers to rules and
resources. Rules comprise regulations and policies
guiding software testing activities, including the change
management process and implementation policy.
Resources encompass material and non-material objects
used to carry out actions In this research, resources
included software test analysts, project managers,
business analysts, functional support personnel, software
developers, software development methodology,
software testing standards, implementation policies,
change management committee, documentation
(functional requirement, test cases, test results, test plan),
and test lab [52].

4.4. Duality of Structure

4.4.1. Signification

Organisations develop or enhance existing software to
render services, sell products, and conduct day-to-day
activities. This software must be rigorously tested prior to
implementation to eliminate defects. Failure to do so may
result in losing existing clients and failing to attract

potential clients. One participant emphasized that
"Testers uncover and eliminate things that we designers and
analysts have overlooked when we were planning" (ST_06,
17:647-648). Software testing ensures business continuity
and quality, as highlighted by a functional support
personnel: "We want to deliver a quality and functional
software that meets the user requirements" (ST_11, 27:1041).
Interpretive Scheme (Stock of Knowledge)

It was vital for other employees within the
organization to understand the significance of software
testing. However, employees from other departments
perceived software testing as a waste of time and a delay
in implementation. This lack of understanding developed
a negative perception towards software testing. One
participant noted that "People who are not involved in
software testing think that software testing is not important"
(ST_01, 06:215). Consequently, only the software testing
team comprehended the value of software testing, as
stated by a software tester: "Maybe do some roadshow and
explain to them what exactly testing entails in order for them to
get a broader picture of what testing is" (ST_03, 08:312-313).

Even a software developer expressed uncertainty
about the role of software testing: "I do have an idea but I
don't really know what they do...let's say after unit testing I
know that we hand over the software to them...they already have
some test cases, test scripts or whatever...mostly they will be
verifying characters and send the results to me" (ST_13,
29:1142-1144). This lack of understanding created
animosity between non-technical agents (project team
members).

4.4.2. Communication

Effective communication was crucial among project
team members to deliver quality software. Both
functional and non-functional requirements were
communicated through the functional requirements
specifications. Verbal communication among team
members and updates to the functional requirement
specification ensured clarity. A software tester
emphasized that "Others felt that by verifying software we
are judging that they did not do their work properly...especially
when a tester logs a defect against the developer...they will
argue with you and even fight with you verbally" (ST_03, 08-
09:316-319).

Software testers relied on the functional requirement
specifications to verify the validity of the developed
software. The developed software needed to correspond
with the specified documents to deliver quality software.
Therefore, within this organization, requirements were
communicated through documentation, such as business

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 7

requirements, functional specifications, and technical
requirement specifications: "All the user requirements are
documented, and the user requirement specification is signed off
prior to development" (ST_05, 12:472-473).

4.4.3. Power

Solid decisions needed to be made regarding software
development, testing, and implementation. The change
management committee held the power to decide
whether software development was necessary. They
relied on testing results from the software testing team to
decide whether software was ready for implementation.
A functional support personnel stated that "We have a
change management department where they actually decide
whether the change is needed or not" (ST_07, 18:674-675).

Other employees within the organization exercised
their power to influence project prioritization. This power
was influenced by the position (facility) individuals
occupied within the organization, such as the CIO. When
the CIO committed to a project, it dominated other
projects and received high priority. A test analyst noted
that "The CIO committed to that project, and they drilled down
to the testing team, and the project was really regarded as
important, and it had to undergo testing" (ST_08, 21:797-799).

4.4.4. Facility

The change management committee exercised power
over the agency (software development team) based on
the facility (authority) granted to them by the
organization. They made decisions about what needed to
be developed, tested, and implemented. Consequently,
they relied on software testing results to decide whether
software was implemented or not: "We have a change
management department where they actually decide whether
the change is needed or not" (ST_07, 18:674-675).

On the other hand, project managers had the tendency
to decide on behalf of the software testing team. As a
result, project managers dominated other teams, such as
the software testing team, by imposing timelines without
consulting the team. A software tester noted that
"Unrealistic schedules from the project team...because if the
project is not scheduled properly, it puts testing under
pressure...for example, testing could be allocated three months
for conducting all the testing, which makes it difficult for the
testing team to meet timelines" (ST_08, 20:781-783).

4.4.5. Sanction

The organisation had processes in place that needed to
be followed to implement software. However, instances
occurred where these processes were bypassed by some

employees, becoming a norm for many projects.
Consequently, many software failures occurred in
production. A participant stated that "Processes are not
followed at all, and management is doing nothing about the
situation" (ST_05, 14:545).

According to the organisation's regulations, software
should be developed, tested, and then implemented. This
regulation should be the norm for the agency (software
development team). However, the change management
committee needed testing results to decide whether to
implement software.

4.4.6. Norm

Adhering to standards, procedures, and policies
became a norm for employees within the organization.
However, instances occurred where project managers
prepared project schedules and made estimations
without consulting the testing team. Also, project
managers promised to deliver software to business within
a particular duration that was not agreed upon with the
software testing team. As a result, the software testing
team was pressed to complete testing within a short
period, leading to working overtime and even coming in
on weekends to finish their work. Such working
conditions negatively impacted software quality, as a
tired software tester was more likely to make mistakes.

The relationship between software testers and
software developers was strained due to logged defects.
Software developers felt that software testers were not
recognizing their hard work. Some software was
implemented without being tested and was tested in
production because scheduled timelines were not met.
The test manager asserted that "Quality will be impacted,
and as a result, you are likely to produce production issues when
you deploy any application or system that didn't follow a proper
process" (ST_14, 34:1317-1318).

As a result, it became a norm not to follow proper
processes when testing software within the organization.
Therefore, it was management's responsibility to enforce
standards, procedures, and policies. The software testing
team complained to their test manager, who alerted
management about processes not being followed by other
members of the software development team. However,
nothing seemed to be changing. Thus, one software test
analyst angrily stated that "Processes are not followed at all,
and management is doing nothing about the situation" (ST_05,
14:545).

It was vital for employees to follow organizational
processes to deliver quality software. Consequently,

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 8

Setlamo Technologies' clients would be satisfied with
what was delivered to them. One participant stressed that
"It is important to make sure that processes are followed because,
in that case, testing will not be bypassed" (ST_04, 11:427-428).

4.4.7. Legitimation

Irrespective of either right or wrong, a norm is
legitimized. Thus, it is important to do things properly
within the organization. If nothing is done about it, then
the organization would fail to achieve its goals, and the
client would be unhappy with the quality of software
delivered. Therefore, some agents in the organization
legitimize software testing practices by accepting it as the
norm. These agents understood that once software is
developed, it needs to be tested to ensure it meets client
requirements. A software tester noted that "Testing is a
crucial part of the software development life cycle...you cannot
just develop and implement without testing" (ST_02, 07:263-
264). This legitimation of software testing practices is
essential for the organization to deliver quality software
to its clients. However, some agents within the
organization did not legitimize software testing practices,
leading to software testing being bypassed or not being
done properly.

4.4.8. Domination

The power dynamics within the organization led to
domination by some agents over others. Project managers
dominated software testers by imposing timelines
without consulting them. This domination led to software
testing being done hastily, resulting in poor quality
software being delivered to clients. A software tester
stated that "Project managers promise to deliver software to
the business within a particular duration that was not agreed
upon with the testing team" (ST_08, 20:781-783).

4.4.9. Signification

Software testing signified quality software delivery to
clients. It ensured that software met client requirements
and was free from defects [28]. A software tester
emphasized that "Testing ensures that the software meets the
requirements...it ensures that the software is functional and
works as expected" (ST_06, 17:647-648). However, some
agents within the organization did not signify software
testing, leading to poor quality software being delivered
to clients.

4.5. Software Testing in the SDLC: A Structuration Theory
Perspective

At Setlamo Technologies, software testing is a critical
component of the Software Development Life Cycle

(SDLC). Our research identified agents (technical and
non-technical) and structures (rules and resources)
involved in software testing [29]. Technical agents
included testing tools and methodologies, while non-
technical agents comprised project managers, business
analysts, and software developers.

4.6. Current SDLC Market Trends

• Agile methodologies emphasize collaboration and
communication among agents.

• DevOps practices integrate testing into the
development process.

• Continuous Testing and Continuous
Integration/Continuous Deployment (CI/CD)
pipelines automate testing processes.

• Artificial Intelligence (AI) and Machine Learning (ML)
enhance testing efficiency and effectiveness.

Agile methods vary in their ways, but they share a
common aim which is to enable their teams swiftly
respond to change [53]. In [54] stated that when
modifications are expensive to adjust to later in the project,
the capability to respond quicker to modification
minimizes the project risks and their budgets [55]. In [56]
alluded that while agile methods are efficient, huge, and
complex software products often needs methodical
discipline with the obligatory process to guarantee
success. On the other hand, DevOps was introduced
around 2007 and 2008 after software development
communities realized the fatal dysfunction within the
software development landscape. There was a disconnect
between those who develop the software and those who
implement and maintain the software. According to [62]
often in the software deployment, employees who are
involved in the development of software are not
necessarily the ones who are involved in the
implementation, hence the disconnect is encountered.
DevOps approach assists in delivering value faster and
uninterruptedly, minimizing challenges because of
miscommunication between team members as well as
fast-tracking problem resolution [57]. In [58], alluded that
DevOps is an organisational shift which substitute
distributed siloed groups executing tasks separately with
cross-functional teams which work on continuous
operational feature deliveries. In simple terms DevOps is
a culture shift which provides collaboration amongst
development, quality assurance and operations. In [59]
the authors highlighted that while continuous integration
(CI) combines work-in-progress numerous times a day,
continuous deployment (CD) focuses on to possible
release values to consumers faster and capably by
employing automation as much as possible. Artificial

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 9

Intelligence (AI) and Machine Learning (ML) are not just
a buzzword in the digital era but the best way of doing
things. Gone are those times of doing things in a
traditional manner. AI makes provision for countless
improved results on a bigger scale and more complex
neural networks, packed with many layers deep learning
and much progress can be ascribed to bigger data sets and
large-scale learning/training on graphic processing unit
[60]. Computers are taught to emulate humans through
performing complex tasks which used to be historically
performed by humans such as reasoning, making decisions
or solving problems. Whilst ML which is a subset of AI
which is used to learn from large data sets. It enables
computers to learn from data without being explicitly
programmed [61]. DL on the other hand enables
computers to learn complex concepts through creating
them out of simpler ones [62]. It uses neural networks to
process data like humans.

Our research highlights the importance of software
testing in the SDLC, emphasizing the need for effective
communication, collaboration, and process adherence. As
the SDLC market continues to evolve, organisations must
prioritize software testing to deliver high-quality
products and services. By embracing current trends and
best practices, organisations can optimize their software
testing processes and stay competitive in the market.

5. Findings

Poor management and lack of process compliance
were significant factors contributing to poor quality
software at Setlamo Technologies. The organisation's
failure to enforce processes, policies, standards, and
procedures led to software testing being treated as an
afterthought, resulting in poor quality software. This lack
of emphasis on software testing also led to a culture of
neglect, where software testing was seen as a mere
formality rather than a critical aspect of software
development.

The software testing team faced unrealistic timelines,
and their concerns were ignored by management, leading
to frustration and high turnover rates. This highlights the
need for management to prioritize software testing and
provide adequate resources and support to the testing
team. Non-compliance to processes was a norm, with
some employees bypassing the change management
committee and implementing software without testing.
This lack of compliance led to poor quality software,
reputational damage, and loss of customers. It also
suggests a lack of accountability and a culture of siloed

work, where individuals prioritize their own goals over
the organization's overall objectives.

Furthermore, a lack of software testing knowledge
among employees contributed to the undervaluing of
software testing, leading to frustration among software
testers and a high turnover rate. This highlights the need
for training and education programs to ensure that all
employees understand the importance and benefits of
software testing. Furthermore, a lack of software testing
knowledge among employees contributed to the
undervaluing of software testing, leading to frustration
among software testers and a high turnover rate. This
highlights the need for training and education programs
to ensure that all employees understand the importance
and benefits of software testing.

The disconnect between project stakeholders,
including project managers, software developers, and
testers, also hindered effective software development and
testing. This suggests a need for improved
communication, collaboration, and integration among
stakeholders to ensure that software development and
testing are aligned with organizational goals.

To address these issues, management must enforce
processes, policies, standards, and procedures, and
ensure that all employees understand the value of
software testing. Additionally, stakeholders must work
collaboratively to deliver good quality software, and
management must address non-compliance and
knowledge gaps to prevent poor quality software. This
may involve implementing quality control measures,
providing training and education programs, and
fostering a culture of collaboration and accountability.

Figure 2: Factors affecting the quality of software at Setlamo Technologies

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 10

6. Summary

In summary, the study reveals significant challenges
in software testing practices at Setlamo Technologies,
including:

6.1. Poor Management and Lack of Adherence to Processes,
Policies, and Standards

Poor management and lack of adherence to
established processes, policies, and standards were
significant contributors to the software quality issues at
Mmuso Technologies. The absence of effective leadership
and clear goals led to a lack of direction and focus among
team members. Furthermore, the failure to enforce
processes, policies, and standards resulted in a culture of
non-compliance, where employees bypassed established
procedures, leading to inconsistent and poor-quality
software development.

6.2. Non-Compliance to Processes, Leading to Untested
Software Implementation

Non-compliance to processes led to untested software
implementation, which significantly impacted software
quality. The lack of adherence to established processes
resulted in software being implemented without proper
testing, leading to errors, bugs, and defects. This not only
affected the software's performance but also
compromised its reliability and security. The failure to
follow established testing processes led to a lack of
confidence in the software's quality, ultimately affecting
customer satisfaction.

6.3. Poor Quality Software, Resulting from Inadequate Testing
and Lack of Cooperation among Stakeholders

Poor quality software was a direct result of inadequate
testing and lack of cooperation among stakeholders.
Insufficient testing led to undetected errors, bugs, and
defects, while the lack of cooperation among stakeholders
hindered effective communication, collaboration, and
coordination. This resulted in software that failed to meet
customer requirements, was unreliable, and lacked
security. The absence of a collaborative environment led
to a lack of accountability, further exacerbating software
quality issues.

6.4. Lack of Software Testing Knowledge among Employees,
Leading to Frustration and Undervaluation of Testing

The lack of software testing knowledge among
employees led to frustration and undervaluation of
testing. Employees without proper training and
understanding of testing principles and methodologies
struggled to effectively test software, leading to

inadequate testing and poor software quality. The
undervaluation of testing resulted in a lack of resources,
support, and recognition for testing efforts, further
demotivating employees and perpetuating software
quality issues.

6.5. Disconnect Between Project Stakeholders, Causing Process
Non-Compliance and Poor Software Quality

The disconnect between project stakeholders led to
process non-compliance and poor software quality. Poor
communication, collaboration, and coordination among
stakeholders resulted in a lack of understanding of project
requirements, leading to non-compliance with
established processes. This, in turn, led to poor software
quality, as stakeholders worked in silos, prioritizing
individual goals over project objectives. The absence of a
unified approach led to a lack of accountability, further
exacerbating software quality issues. These challenges
lead to reputational damage, customer loss, and
decreased trust in the organization. To address these
issues, the organization must:

1. Enforce processes, policies, and standards.
2. Educate employees on software testing's value.
3. Foster cooperation and communication among

stakeholders.
4. Address knowledge gaps and provide training.
5. Encourage a culture of quality and testing.

By addressing these challenges, Setlamo Technologies can
improve software quality, increase customer satisfaction,
and maintain a competitive edge in the industry.

6.6. Key Findings:

Software testing is crucial for delivering quality
products and services, ensuring that software meets client
requirements and is free from defects.

1. Effective communication and collaboration among
agents, including software testers, developers, and
project managers, are vital for successful software
testing outcomes.

2. Power dynamics and decision-making processes
significantly impact software testing outcomes, with
project managers' decisions often dominating
software testers' work.

3. Adhering to organizational processes and standards is
essential for ensuring quality software delivery,
preventing software testing from being bypassed or
done hastily.

4. Legitimization of software testing practices is
necessary for instilling a sense of belonging and

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 11

control among software testers, recognizing the
importance of their role in delivering quality software.

7. Recommendations

1. Establish clear communication channels and
collaboration frameworks to facilitate effective
interaction among agents involved in software testing.

2. Empower software testers by involving them in
decision-making processes and providing autonomy
in their work to ensure quality software delivery.

3. Develop and enforce organizational processes and
standards that prioritize software testing, preventing
domination by project managers' decisions.

4. Provide training and resources to software testers to
enhance their skills and knowledge, legitimizing their
role in delivering quality software.

5. Conduct regular assessments and evaluations to
identify areas for improvement in software testing
practices, ensuring continuous quality improvement.

8. Conclusion

In conclusion, this study highlights the critical role of
software testing in delivering quality products and
services, emphasizing the need for effective
communication, collaboration, and empowerment of
software testers. The findings underscore the impact of
power dynamics and decision-making processes on
software testing outcomes, stressing the importance of
adhering to organizational processes and standards. By
implementing the recommended measures, organisations
can legitimize software testing practices, foster a sense of
belonging and control among software testers, and
ultimately ensure the delivery of high-quality software
that meets client requirements. Moreover, this study
demonstrates that addressing the challenges in software
testing practices can have far-reaching benefits, including:

• Enhanced software development life cycle
• Improved customer satisfaction
• Increased trust and reputation
• Better decision-making processes
• Empowered software testers
• Competitive edge in the industry

By prioritizing software testing and addressing the
identified challenges, organisations can unlock these
benefits and deliver high-quality software products and
services that meet the evolving needs of their clients.
Ultimately, this study contributes to the growing body of
knowledge on software testing practices, emphasizing the
need for a collaborative, empowered, and process-driven
approach to software testing.

Acknowledgement

We extend our heartfelt appreciation to ESKOM South
Africa, Department of Research, for their generous
sponsorship, which has enabled us to publish this paper.
We are deeply grateful for their recognition of the
significance of research and its contribution to the existing
body of knowledge. Their support and understanding are
truly valued, and we express our sincere thanks.

References

[1] T. Bryant, Software Development: A Practitioner's Approach,
Routledge, 2017.

[2] R. Tuteja and S. K. Dubey, Software Testing: Concepts and
Operations, PHI Learning, 2012.

[3] J. P. Kotter, "Leading Change," Harvard Business Review Press,
2012.

[4] G. J. Myers, "The Art of Software Testing," John Wiley & Sons,
2011.

[5] M. Oluigbo, L. Erasmus, and R. Snyman, "An Exploratory
Study of Software Testing Practices in South Africa," South
African Computer Journal,, vol. 29, no. 1, 1-15, 2017.

[6] J. Cameron and P. Green, Software Testing: A Guide to the
TMap Approach, Pearson Education,, 2015.

[7] A. Giddens, Central Problems in Social Theory: Action,
Structure, and Contradiction in Social Analysis, University of
California Press, 1979.

[8] W. J. Orlikowski, "The Duality of Technology: Rethinking the
Concept of Technology in Organizations", Organization
Science," vol. 3, 398-427, 1992.

[9] C. Jones, "Software Project Management Practices: Failure to
Apply Project Management Principles," 2011.

[10] M. Pozzebon, "The Influence of a Quality Management System
on the Software Development Process," Journal of Systems and
Software, 2004.

[11] H. K. Klein, M. D. Myers, "A Set of Principles for Conducting
and Evaluating Interpretive Field Studies in Information
Systems," MIS Quarterly, 2011.

[12] W. H. Sewell, "A Theory of Structure: Duality, Agency, and
Transformation," American Journal of Sociology, vol. 98, no. 1, pp.
1-29 , 1992.

[13] W. J. Orlikowski, "Using Technology and Constituting
Structures: A Practice Lens for Studying Technology in
Organizations. Organization Science”," Organization Science,
vol. 11, 404-428, 2000.

[14] G. Walsham, "Interpreting Information Systems in
Organizations," John Wiley & Sons, 1993.

[15] I. I. IEEE29119-1:2018, "Software and Systems Engineering —
Software Testing — Part 1: Concepts and Definitions,"
International Organization for Standardization, 2018.

[16] E. Dustin., "Automated Software Testing: A Guide for Software
Project Managers," Charles River Media, 2017.

[17] C. Kaner, Lessons Learned in Software Testing: A Context-
Driven Approach, John Wiley & Sons, 2013.

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 12

[18] T. Fulcini et al., "A review on tools, mechanics, benefits, and
challenges of gamified software testing," ACM Computing
Surveys, vol. 55, no. 14s, 1-37, 2023.

[19] D. Deak et al., "The Impact of Agile Methods on Software
Project Management," International Journal of Information
Technology Project Management, 2016.

[20] IEEE, "IEEE Standard for Software and System Test
Documentation (IEEE Std 829-2019)," IEEE Computer Society,
2019.

[21] P. E. Black, "Managing Software Projects. In Encyclopedia of
Software Engineering," CRC Press , 359-373, 2008.

[22] ITIL, ITIL Foundation: ITIL 4 Edition, AXELOS, 2019.

[23] I. Sommerville, Software Engineering, Pearson, 2016.

[24] R. S. Pressman, "Software Engineering: A Practitioner's
Approach," McGraw-Hill, vol. 2, 41-42., 2010.

[25] K. Laudon, J. P. Laudon, Management Information Systems:
Managing the Digital Firm, Pearson, 2015.

[26] Y. Zhao et al., "Software Quality Requirements in the Context
of Digital Transformation," International Journal of Software
Engineering and Knowledge Engineering, 2021.

[27] T. Sekgweleo, T. Iyamu, "Software testing: some influencing
factors in a South African organisation," Journal of Contemporary
Management, vol. 17, no. 1, 86-107, 2020.

[28] O. Ibitomi et al., "Automation of Software Testing: A Systematic
Review," Journal of Software Engineering and Applications, vol. 17,
no. 1, 1-22, 2021.

[29] T. Sekgweleo, "Disjoint between development and deployment
of software," (Masters dissertation, Tshwane University of
Technology, 2011).

[30] G. Bansal, "Software Development Strategy, In Encyclopedia of
Software Engineering," Taylor & Francis, 1-10, 2008.

[31] G. Ghosh, "Software Development: Principles, Methodologies,
Tools, and Techniques," CRC Press, 2017.

[32] T. G. Sekgweleo, "A decision support system framework for
testing and evaluating software in organisations," (Doctoral
dissertation, Cape Peninsula University of Technology, 2018).

[33] K. Avison, G. Fitzgerald, Information Systems Development:
Methodologies, Techniques and Tools, Pearson, 2015.

[34] S. Nidhra, J. Dondeti, P. Katikar and S. Tekkali, "Implementing
the concept of refactoring in software development," In 2012
CSI Sixth International Conference on Software Engineering
(CONSEG), 1-8, 2012.

[35] M.E. Khan, F. Khan, "A comparative study of white box, black
box and grey box testing techniques," International Journal of
Advanced Computer Science and Applications, vol. 3, no. 6, 1-141,
2012.

[36] T. Sekgweleo et al., "Structuration Theory: A Review of the
Literature," Journal of Sociology and Social Anthropology, vol. 8,
no. 2, 147-164, 2017.

[37] T.G. Sekgweleo, M. Makovhololo, "Structuration Theory: A
Framework for Understanding Software Testing," Journal of
Software Engineering and Applications,, vol. 16, no. 1, 1-15, 2023.

[38] T. Iyamu, D. Roode, "The use of structuration theory and actor
network theory for analysis: Case study of a financial
institution in South Africa," Social influences on information and
communication technology innovations, IGI Global, 1-19, 2012.

[39] L. Ma, Knowing and teaching elementary mathematics:
Teachers' understanding of fundamental mathematics in China
and the United States, Routledge, 2010.

[40] B. P. Lamsal, "Production, health aspects and potential food
uses of dairy prebiotic galactooligosaccharides," Journal of the
Science of Food and Agriculture , vol. 9, no. 10, 2020-2028, 2012.

[41] W. H. Sewell. Jr, "A theory of structure: Duality, agency, and
transformation," American journal of sociology, vol. 98, no. 1, 1-29,
1992.

[42] J. W. Creswell, "Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches," Sage Publications, 2014.

[43] M. Q. Patton, "Qualitative Research and Evaluation Methods,"
Sage Publications, 2002.

[44] L. Rademaker, "Qualitative Research from Start to Finish: A
Book Review," Qualitative Research, vol. 16, no. 5, 1425-1428,
2011.

[45] S. Kvale, "Interviews: Learning the craft of qualitative research
interviewing," Sage, 2009.

[46] P. Nemutanzhela, T. Iyamu, "A framework for enhancing the
information systems innovation: using competitive
intelligence," Electronic Journal of Information Systems Evaluation,
vol. 14, no. 2, 242-253, 2011.

[47] J. Low, "A pragmatic definition of the concept of theoretical
saturation," Sociological focus, vol. 52, no. 2, pp. 131-139, 2019.

[48] G. Walsham, "Decentralization of IS in developing countries:
power to the people?," Journal of Information Technology, vol. 8,
no. 2, 74-81, 1993.

[49] P. Makovholo et al., "Diffusion of innovation theory for
information technology decision making in organisational
strategy," Journal of Contemporary Management, vol. 14, no. 1,
461-481, 2017.

[50] Y. Sarason et al.,, "Entrepreneurship as the nexus of individual
and opportunity: A structuration view," Journal of business
venturing, vol. 21, no. 3, 286-305., 2006.

[51] M. Peillon, "The Constitution of Society, Outline of the Theory
of Structuration," Oxford University Press, vol. 1, no. 3, 261-263,
1985.

[52] N. Barqawi, "Software service innovation: an action research
into release cycle management," 2014.

[53] M. Coram, S. Bohner, "The impact of agile methods on software
project management," In 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems
(ECBS'05), 363-370, 2005.

[54] F. Paetsch et al., "Requirements engineering and agile software
development," 2003.

[55] K. Beck, eXtreme Programming Explained, Addison-Wesley,
2000.

[56] T. Sekgweleo, T. Iyamu, "Empirically Examined the Disjoint in
Software Deployment: A Case of Telecommunication,"
International Journal of Actor-Network Theory and Technological
Innovation, vol. 4, no. 3, 36-50, 2012.

[57] M. Virmani, "Understanding DevOps & bridging the gap from
continuous integration to continuous delivery," 2015.

[58] M. Standar, "Continuous architecture in a large distributed
agile organization: A case study at Ericsson," IEEE Explore, vol.
33, no. 3, 1-104, 2017.

http://www.jenrs.com/

 T. G. Sekgweleo et al., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 13

[59] R. T. Yarlagadda, "Understanding DevOps & bridging the gap
from continuous integration to continuous delivery,"
International Journal of Emerging Technologies and Innovative
Research, 2349-5162, 2018.

[60] R. Feldt et al., "Ways of applying artificial intelligence in
software engineering," 2018.

[61] B. Mahesh, "Machine learning algorithms-a review,"
International Journal of Science and Research (IJSR, vol. 9, no. 1,
381-386, 2020.

[62] M. R. Minar, J. Naher, "Recent advances in deep learning: An
overview," arXiv preprint arXiv:1807.08169, 1-31, 2018.

Copyright: This article is an open access article
distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-SA) license
(https://creativecommons.org/licenses/by-sa/4.0/).

Tefo Gordon Sekgweleo has done
his master’s degree from Tshwane
University of Technology in 2012. He
completed his PhD degree from Cape
Peninsula University of Technology
in 2018. He started his career as a
software developer, he moved to

software testing as a software automation engineer. He
became a software testing manager, I have 36
publications, and currently working as a research
manager for digitalization.

Phathutshedzo Makovhololo is a
distinguished IT professional and
scholar with 18 years of experience in
leadership and senior management
roles. Holding a PhD in Informatics, she
possesses expertise in IT governance,
policy management, business analysis,

and project management. With a strong ability to bridge
the gap between technology and business strategy, Dr.
Makovhololo has a proven track record of effective
leadership, lecturing, and research. Her notable strengths
include visionary leadership, excellent communication,
and strategic thinking, complemented by a strong
research and analytical skillset.

http://www.jenrs.com/
https://creativecommons.org/licenses/by-sa/4.0/

	1. Introduction
	2. Literature Review
	2.1. The role of Software Testing
	2.2. System Development Life Cycle
	2.3. Software Testing
	2.4. Software Implementation
	2.5. Structuration Theory

	3. Research Methodology
	4. Data Analysis
	4.1. Structuration Theory
	4.2. Agents (Agency)
	4.3. Structure
	4.4. Duality of Structure
	4.4.1. Signification
	4.4.2. Communication
	4.4.3. Power
	4.4.4. Facility
	4.4.5. Sanction
	4.4.6. Norm
	4.4.7. Legitimation
	4.4.8. Domination
	4.4.9. Signification

	4.5. Software Testing in the SDLC: A Structuration Theory Perspective
	4.6. Current SDLC Market Trends

	5. Findings
	6. Summary
	6.1. Poor Management and Lack of Adherence to Processes, Policies, and Standards
	6.2. Non-Compliance to Processes, Leading to Untested Software Implementation
	6.3. Poor Quality Software, Resulting from Inadequate Testing and Lack of Cooperation among Stakeholders
	6.4. Lack of Software Testing Knowledge among Employees, Leading to Frustration and Undervaluation of Testing
	6.5. Disconnect Between Project Stakeholders, Causing Process Non-Compliance and Poor Software Quality
	6.6. Key Findings:

	7. Recommendations
	8. Conclusion
	Acknowledgement

