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ABSTRACT: In this paper, we developed our own software that can analyze piano performance by
using short-time Fourier transform, non-negative matrix decomposition, and root mean square.
Additionally, we provided results that reflected the characteristics and signal analysis of various
performers for the reliability of the developed software. The software was coded through Python, and
it actively utilized Fourier transform to enable precise determination of the information needed to
perform a performer's music, such as touch power, speed, and pedals. In conclusion, it shows the
possibility that musical flow and waveform analysis can be visually interpreted in a variety of ways.
Based on this, we were able to derive an additional approach suitable for designing the system to
seamlessly connect hearing and vision.
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1. Introduction based analysis, technology that recognizes sound patterns,
separates speech and instruments, and analyzes emotions
is also being utilized. Real-time sound analysis is possible
through mobile devices and cloud computing, and 3D
analysis considering spatial sound information is also
possible thanks to 3D sound analysis. Extending this to
other applications is expected to lead to infinite pioneering
in a variety of fields, including healthcare (hearing
testing), security (acoustic-based authentication), and
environmental monitoring (noise measurement). But there

Sound wave analysis is essential for understanding
music because it contains very complex structures and
patterns in terms of science and technology, not just
sensory feelings. Sound wave analysis allows a deep
understanding of the components of music, which can be
used for music creation, learning, and research [1-3]. In
fact, acoustic analysis tools have long evolved to enable
humans to better understand and utilize sound. These
tools used to be more than just an auditory evaluation, but
now they have evolved into advanced systems that utilize

precise digital signal processing technology [4]. First, there is a technical limitation of poor analysis
accuracy in complex environments. It is difficult to extract

or analyze specific sounds in noisy or resonant

are also obvious limitations.

As mentioned above, in the early days of the
development of acoustic analysis tools, subjective
evaluation using human hearing was dominated.
Oscillograph or analog spectrum analyzer allowed most
mechanical devices to visually analyze the waveform or
frequency of sound waves [5-7]. However, with the
advent of the digital age, we began to analyze sound data Another limitation is the lack of practicality. While
using computers and software. Fast Fourier Transform  therearemany tools optimized for a particular domain, no
(FFT) has become a key technique for frequency domain general-purpose system has been built to handle all the

analysis, and improved precision has enabled accurate ~ acoustic data.

temporal and frequency characteristics of sounds [8,9]. Finally, the biggest limitation is the gap between the
With the recent development of machine learning and Al- measurement of analytical tools and the actual hearing of

environments. In addition, it is difficult to process various
sound sources, making it difficult to accurately separate
sound sources with various characteristics such as musical
instruments, human voices, and natural sounds [10].
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humans. The difficulty of quantifying subjective sound
quality assessments makes it difficult to fully quantify or
replace a person's subjective listening experience, and
techniques for exquisitely analyzing human cognitive
responses (emotions, concentration, etc.) to sound are still
in its infancy [11].

2. Ease of Use Necessity needs for analytical tools
2.1. Understanding the Basic Components of Music

Music consists of physical elements such as amplitude,
frequency, and temporal structure (thythm). Sound wave
analysis allows for quantitative measurement and
understanding of these elements.

Frequency analysis makes it easier to check the pitch of
a note and to understand the composition of chords and
melodies. Time analysis can identify rhythm patterns and
beat structures, and spectrum analysis can identify the
unique tone (sound color) of an instrument [12].

2.2. Instruments and Timbre Analysis

Each instrument has its own sound (pitched tone),
which comes from the ratio of its fundamental frequency
to its background tone. Sound analysis visualizes these
acoustic characteristics and helps to understand the
differences between instruments.

For example, even at the same pitch as the violin and
piano, the difference in tone is due to a combination of
frequency components [13].

2.3. Understanding the Emotional Elements of Music

Music is used as a tool for expressing emotions, and
certain frequencies, rhythms, and combinations induce
emotional responses.

For example, slow rhythms and low frequencies are
mainly used to induce sadness, and fast rhythms and high
used to induce joy.
Sound wave analysis can study these relationships to

frequencies are

determine the correlation between emotions and music
[14].

2.4. A structural analysis of music

The structure of music is not just an arrangement of
sounds, but includes complex patterns such as melody,
chord, rhythm, and texture. Sound wave analysis allows
us to visualize the structural elements of music.
For example, harmonic analysis can help musician
understand how chords and chords progression, and by
analyzing the melody, musician can check the pitch and
rhythm pattern. Additionally, if multiple melodies are
played they can understand the
interaction of each melody [15].

simultaneously,

2.5. Support for music production and mixing

Sound wave analysis is essential for solving technical
problems in the music production process.

Musicians adjust the sound volume by frequency band
to balance the instruments and remove unwanted sound
from recorded sound waves. Sound design also helps
analyze and improve sound effects [16].

2.6. Music learning and research

Sound wave analysis provides music learners and
researchers with tools to visually understand music
theory.

2.7. Improved listening experience

Sound wave analysis can visually identify sound
elements that are difficult to hear by the human ear (e.g.,
ultra-high) and improve the

ultra-low, listening

experience.

For example, we can find hidden detailed sounds in
music through spectrograms, and users can visually see
the acoustic complexity of music.

The level of analysis and tools required may vary
depending on the purpose of analyzing music, but for
whatever reason sonic analysis is a powerful tool to
explore the scientific and artistic nature of music beyond
just listening [17].

3. Prior studies

3.1. A way of expressing sound

There are many ways in which sound is expressed, but
it is mainly explained by physical principles such as
vibration, waves, and frequency. Sound is a pressure wave
that is transmitted through air (or other medium) as an
object Let's look at it.
Sound is usually produced by an object vibrating. For
example, when a piano keyboard is pressed, the strings
vibrate, and the vibrations are transmitted into the air to
be recognized as sound. This vibration is caused by an
object moving and compressing or expanding air particles.
And this sound is transmitted through a medium (air,
water, metal, etc.). The particles of the medium vibrate,
compress and expand to each other, and sound waves are

vibrates. take a closer

transmitted. At this time, the important concepts are
pressure waves and repetitive vibrations.

Compression is a phenomenon in which the particles
of the medium get close to each other, and re-action is a
phenomenon in which the particles of the medium get
away, and the sound propagates by repeating these two
processes, through which we hear the sound. These
sounds can be distinguished by many characteristics.
Mainly, the following factors play an important role in
defining sounds.
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1) Frequency: The frequency represents the number of
vibrations of the sound. At this time, the frequency is
measured in Hertz (Hz). For example, 440 vibrations
per second are 440 Hz. The higher the frequency, the
higher the pitch, and the lower the pitch, the lower the
pitch. Human ears can usually hear sounds ranging
from 20 Hz to 20,000 Hz.

2) Amplitude: The amplitude represents the volume of
the sound, the larger the amplitude, the louder the
sound, and the smaller the amplitude, the smaller the
sound. Amplitude is an important determinant of the
"strength" of sound waves. A larger amplitude makes
the sound louder, and a smaller amplitude makes it
sound weaker.

3) Wavelength: The wavelength is the distance that a
vibration in a cycle occupies in space. The longer the
wavelength, the lower the frequency, and the shorter
the frequency, the higher the frequency.

4) Timbre (Timbre): Timbre is a unique characteristic of
sound, formed by combining various elements in
addition to frequency and amplitude. For example,
the reason why the piano and violin make different
sounds even if they play the same note is that each
instrument has different tones. As in this study, in
order to analyze sound with software, sound must be
digitally expressed, and when expressing sound
digitally, the sound is converted into binary number
and stored. Digital sound samples analog signals at
regular intervals, converts the sample values into
numbers, and stores them, which are used to store and
reproduce sounds on computers. In summary, sound
is essentially a physical vibration and a wave that
propagates through a medium. There are two main
ways of expressing this, analog and digital, and each
method produces a variety of sounds by combining
the frequency, amplitude, wavelength, and tone of
sound [18-20].

3.2. Traditional method of sound analysis

Frequency analysis is a method of identifying the
characteristics of a sound by decomposing the frequency
components of the sound. It mainly uses Fourier
Transform techniques. Fourier transform is a
mathematical method of decomposing a complex
waveform into several simple frequency components (sine
waves). This transform allows us to know the different

frequencies that sound contains.

These Fourier Series and Fourier Transform allow us to
analyze sound waves in the frequency domain.

Secondly, spectral analysis is a visual representation of
the frequency components obtained through Fourier
transform. This analysis visually shows the frequency and
intensity of sound.

A spectrogram is a graph that shows the change in
frequency components over time, and can visually analyze
how sound changes over time.

In addition, time analysis is a method of analyzing sound
waveforms over time. This method can track changes in
the amplitude of sound over time.

Analyzing the waveform analysis at this time allows
users to determine the sound volume, temporal change,
and occurrence of specific events.

The waveform is a linear representation of the
temporal variation of an analog signal or digital signal,
and amplitude and periodicity can be observed.

Users can also track the volume change by analyzing
the amplitude of a sound over time. For example, users
can determine the beginning and end of a specific sound,
or users can analyze the state of attenuation and
amplification of the sound.

Further in waveform analysis, characteristic waveform
characteristics can also be extracted, which is particularly
important for classification or characterization of acoustic
signals [21].

3.3. The characteristics of piano sound

The piano is a system with a built-in hammer
corresponding to each key, and when the key is pressed,
the hammer knocks on the string to produce a sound. The
length, thickness, and tension of the string, and the size
and material of the hammer are the main factors that
determine the tone of the piano. Each note is converted
into sound through vibrations with specific frequencies.
Frequency is an important factor in determining the pitch
of a note. Piano notes range from 20 Hz to 4,000 Hz. They
range from the lowest note of the piano, A0 (27.5 Hz), to
the highest note, C8 (4,186 Hz).

The pitch is directly related to the frequency, and the
higher the frequency, the higher the pitch, and the lower
the frequency, the lower the pitch.

The piano's scale consists of 12 scales, separated by
octaves. For example, the A4 is 440 Hz, and the A5 doubles
its frequency to 880 Hz.

Tone is an element that makes sounds different even at
the same frequency. In other words, it can be said to be the
"unique color" of a sound.

The tone generated by the piano is largely determined
by its structure of harmonics. Since the piano can produce
non-sinusoidal waveform sounds, each note contains
several harmonics in addition to the fundamental
frequencies. This pattern of tone makes the piano's tone

unique.

For example, the mid-range of the piano has a soft and
warm tone, the high-pitched range has clear and sharp
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characteristics, and the low-pitched range has deep and
strong characteristics.

Dynamic is the intensity of a sound, or the volume of a
sound. In a piano, the volume varies depending on the
intensity of pressing the keyboard. The piano is an
instrument that allows users to delicately control
decremental and incremental dynamics. For example, the
piano (p) is a weak sound, and the forte (f) is a strong
sound. In addition to this, medium-intensity expressions
such as mezzoforte (mf) and mezzo piano (mp) are
possible.

In addition, the sound of the piano depends on the
temporal characteristics such as attack, duration, and
attenuation. Attack is a rapid change in the moment a note
begins. The piano's note begins very quickly, and the
volume is determined when the hammer hits the string.

The piano's attack is instantaneous and gives a faster
reaction than other instruments. For example, the pitch on
the piano pops out right away, and the other instruments,
such as string or woodwind, can start more smoothly.
Duration is a characteristic of how long a sound lasts after
it is played. The piano strings gradually decay when they
make a sound, because the string's vibration gets weaker
and weaker due to friction with the air or other factors. The
length, thickness, and tension of the strings affect the
duration of the sound at this time. If pianists use a pedal,
they can increase the duration of the sound, but when they
press the damper pedal, the strings continue to ring
without stopping the vibration, making the sound longer.
If users look at the waveform, the piano is an instrument
that generates non-sine sound. This is a complex
waveform, not a sine wave, and several frequency
components are mixed to create a rich tone. The sound
waves on the piano are rich in harmonics, so they have
various tones and rich characteristics. For example, more
low-frequency components are included in the lower
register, and high-frequency components are more
prominent in the upper register.

The notes generated by the piano can be divided into
low, medium, and high notes, each range having the
following characteristics.

¢ Blow (A0 to C4): It contains deep, rich, and strong low-
frequency components. For example, Blow C1 has a
very low frequency of 32.7 Hz.

e Middle tones (C4 to C5): range similar to the human
voice, which is the key range of the piano. The mid
tones of the piano have a balanced sound and a warm
tone.

e High note (C6 to C8): It has a sharp, clear sound, and
a clearer sound is produced at a fast tempo or high
note.

the characteristics of the sound
produced by the piano are influenced by a combination of
several factors, including frequency, tone, attack and
duration, dynamic, and attenuation. The piano is an
instrument with very rich and complex harmonics, and its
sound is characterized by fast attacks and various
dynamic controls. In addition, the tone is determined by
the characteristics of the strings used and the material of
the hammer, which makes the piano sound a unique and
distinctive sound.

In conclusion,

3.4. Characteristics of classical piano music

Piano classical music usually includes classical and
romantic music, and its style has characteristic elements in
musical structure, dynamics, emotional expression, and
technical techniques.

First, complex chords and colorful tones are important
features in piano classical music. Since the piano can play
multiple notes at the same time, it is excellent at expressing
different chords.

The way chords are created is the synthesis of sound
waves, which combine several frequency components to
create more complex and rich notes. In this process, each
note has its own harmonics, which provides a touching
and colorful tone to the music.

The second feature is that it delicately controls the
dynamics. It can express dramatic changes and subtle
emotions by crossing the piano(p) and the forte(f). It also
expresses the rhythm and melody by using various
technical techniques such as precise rhythms and
arpeggios, trills, and scales.

These techniques require fast and repetitive vibrations,
resulting in more complicated waveform fluctuations.
Lastly, classical piano music focuses on expressing
emotional depth, and deals with epic development and
emotional flow. The music delicately utilizes the dynamics
and rhythm in expressing dramatic contrast or emotional
height. When viewed from the perspective of a scientific
wave, the notes of classical piano music are not just sine
waves but complex non-sinusoidal waveforms. Because of
this, the piano's sound includes harmonics, making it
richer and more colorful in tone. This sonic quality is very
important in classical music.

1) Complex waveform structure. The waveform consists
of a fundamental frequency and multiple overtones.
For example, the piano's sound vibrates according to
its harmonic series, which means that in addition to
the fundamental frequency, the background sounds
such as 2x frequency, 3x frequency, and 4x frequency
are also present. Piano tones have frequencies higher
than the basic notes, and they enhance or distort the
characteristics of the basic notes. The tone of a piano is
formed by the way these tones are nonlinearly
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combined. For example, there are many and strong
tones at lower notes, and relatively few and
microscopic tones at higher notes.

2) (2) Quick attack and sudden waveform changes. In a
piano, notes begin quickly, which is a part called an
attack. The moment a note begins, the waveform
undergoes a drastic change. For example, the sound
pressure on a piano rise very quickly as soon as the
hammer hits the string, and then it attenuates rapidly.
This causes a drastic change in the waveform. The
attack part is very short, producing an abnormal
waveform indicating a spike with a fast frequency
change. The waveform at this moment takes the form
of a sharp peak and then a quick decrease in
amplitude.

3) Nonlinearity. The sound of classical piano music has
nonlinear  characteristics, forming unexpected
waveforms through multiple nonlinear interactions,
even at the same frequency. For example, the moment
a hammer hits a string, complex nonlinear oscillations
can occur depending on the hammer's mass, speed,
and string tension. This results in a mixed waveform
in addition to the fundamental frequency, which
forms its own tone.

To sum up, the characteristics of piano classical music
are very complex and colorful, ranging from its musical
composition to the physical characteristics of the sound.
Musically, it is characterized by complex chords and
various dynamics, and it deals with emotional expression
as important. These musical characteristics are physically
revealed through the wave peculiarities of sound—
complex waveforms, fast attacks, dynamic frequency
changes, etc., and the singularity is well represented by the
piano's tonal structure and nonlinear waves. The sound
waves of the piano are very rich and complex, which
contribute to expressing the emotional depth and emotion
that classical music is trying to convey well.

4. Method
4.1. Mathematical techniques

4.1.1.  Short-time Fourier transform (STFT)

For a given signal x(t), the short-time fourier transform
(STFT) is defined as follows:

STFT(t,w) = ij('[) cw(T—t) e J9%dr

Here, x(t) is time domain signal to analyze, while w(r —
t) defined window function depending on t.

The x(t) is called the window function, and it is used
to extract only certain sections of the signal. Typical
window functions include Hamming, Hanning, and
Gaussian windows. The shorter the length of the window
function, the higher the time resolution, and the longer the

frequency resolution. The sliding window analyzes the
signal by sliding the w(r —t) over time t. After these
processes, the results of STFT are given as complex
numbers, amplitude represents the strength of the
frequency component, and phase represents the phase of
the frequency component.

In this case, the information provided in the form of a
plural number includes two. The first is the intensity of the
frequency expressed in the |STFT(t, w)|, and the second is
the phase information of the frequency component
expressed in the ZSTFT (¢t, w).

However, when actually analyzing a signal on the
computer, the signal is discrete, so it is calculated by
discretizing the STFT for continuous signals. For discrete
signal x[n], the STFT is defined as follows:

[ee)
.2mkn

STFT[m, k] = Z x[n]-wn—m]-e”’N

n=—oo

where x[n] denotes the discrete signal, and w[n — m] is the
window function applied in the time m.

Since N represents the length of the window or the size
of the FFT, the frequency resolution determination is
determined by N.

4.1.2.  Autocorrelation

Autocorrelation is an important tool for analyzing the
self-similarity of signals, measuring how repetitive or
periodic they are over time.

The autocorrelation function R,(t) of the continuous
signal x(t) is defined as follows:

R.(7) = fwx(t) ‘x(t+1)dt

Autocorrelation functions can be applied in many
ways in sonic analysis, first of all they are excellent for
periodicity
correlation function in which a signal is repeated can
estimate the fundamental frequency from a voice signal.

analysis. For example, an automatic

It is also used to distinguish noise from useful
components in signals. Noise is generally less correlated
in time, while useful signals are highly correlated.

And this study can also measure the signal energy
mathematically.

R,(0) = J x2(t) dt (a continuous signal)

N-1
R,[0] = Z x2[n] (discrete signal)
n=0
Finally, it can be used to calculate the period (e.g.,
pitch) of a speech signal, or to detect a rhythm in a music
signal.
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Autocorrelation functions are closely related to Fourier
transforms. In particular, according to the Wiener-Hinchin
theorem:

Fourier Transform
Ry (1) —— > [X(w)I?

In other words, the autocorrelation function R, (7) of
the signal pairs the size square of the Fourier transform
|X(w)|? of the signal with the Fourier transform X(w).
This allows us to quickly compute the automatic
correlation function via FFT.

Re[k] = FHF ()

The automatic correlation function is a very important
tool in signal analysis and is used for a variety of purposes,
including periodicity detection, noise cancellation, and
energy calculation. For discrete signals, it can be calculated
quickly using FFT and has a wide range of applications
such as acoustic analysis, speech recognition, and bio-
signal analysis.

4.1.3.  Non-negative matrix factorization (NMF)

Non-negative matrix factorization (NMF) is a
technique that decomposes a non-negative matrix into two
non-negative matrices, and is used in various fields such
as data analysis, dimensionality reduction, signal
processing, and text mining. In this paper, we will explain
this mathematically and provide intuition.

The NMEF is based on the process of solving the following
optimization problems:

miny u|IX — WHIIZ

The Frobenius norm represents the square of the
Euclidean distance between the matrix X and WH.

NMF optimization is classified as a nonlinear optimization
problem due to non-negative constraints. To address this,
the following update method is used:
wTx
"WTWH
XHT
WHHT
At this point, it ends when the convergence condition
(e.g., the change in the Frobenius norm is below the
threshold), and at each stage, it solves the least-squares

H<«—H

We—Wo

L

Highpass

A

Original FFT

] w

Lowpass

é M3

Original sound

problem with non-negative constraints to maintain the
non-negative constraints.

NMEF is a simple yet powerful matrix decomposition
technique that is very useful for extracting patterns in data
and interpreting hidden structures. However, it can be
effectively utilized only when users understand the
limitations and characteristics of NMF and set the
appropriate parameters for the data.

4.2. Physical Tools

In this paper, we differentiated and coded the acoustic
signal analysis tool by providing a user interface. The tool
works modular, allowing users to blend and match
different tools to tailor their interfaces and features to
specific analysis requirements.

The key idea here is the analysis chain. This research
interconnect the signal itself or the signal analysis results
to different windows to form a functional block sequence.
It includes file input, data collection modules, FFT
analysis, measuring instruments, etc.

There is only one segment of the signal needed to
visually represent a musical signal. Efficient physical tools
were used to effectively imitate real-time signal analysis
using pre-recorded offline signals.

The sequence of all values is "signal" at this time. The
concept of "signal” includes an array of all X/Y values,
including audio signals, spectra, or other data
representations. This broad definition means that all
sequences are attributed to the sampling rate, which can
also be applied to data not derived from digital sampling
of analog signals. For example, the "sampling rate" of the
FFT analysis results is determined by the number of bins
(values) per unit of frequency (Hz) on the X-axis.

This framework enables a flexible analysis approach,
such as performing FFT on the results of previous FFTs.
The biggest advantage of this work is that there are no
restrictions on analytical exploration. I would like to
compare and analyze classical piano music while
pioneering a unique methodology to achieve the desired
insights.

Lo
/

Lowpass filter

Figure 1: A schematic diagram of the process by which actual music is represented in a graph.
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import librosa
import numpy as np
import matplotlib.pyplot as plt

# make signal

s = 22858 # sampling rate

t = np.linspace(®, 2, sr * 2, endpoint=False) # 2s signal
¥ = 8.5 * np.sin(2 * np.pi * 448 * t) # 448Hz sin wave

W0 o= @ W W R e

# STFT calculation
stft_result = librosa.stft(x, n_ft+t=2848, hop_length=512, win_length=2848, window="

e
WoR R ®

spectrogram = np.abs({stft_result)

==
IS

# visuwalization

plt.figure(figsize=({18, 6))

librosa.display.specshow(librosa.amplitude_to_db{spectrogram, ref=np.max},
sr=sr, hop_length=512, x_axis="time', y_axis="log")

plt.colorbar{format="%+2.8f dB")

plt.title( 'Spectrogram’)

= = ==
® 0 W o~ O

o
=

Figure 2: Python code for STFT

The above code is a Python code that calculates the STFT of a 440Hz sine wave and visualizes it as a spectrogram.

import numpy as np
import matplotlib.pyplot as plt

# make signal

fs = 1888 # sampling frequency

t = np.linspace(®@, 1, fs, endpoint=False) # for 1s
freq = 5 # frequency (Hz)

signal = np.sin(2 * np.pi * freq * t) # make sin wave

L= s I o T T L L I

[y
o

# calculation

ey
[y

def autocorrelation(x):
n = len(x)
result = np.correlate(x, x, mode="full")
return result[result.size //f 2:] /' n

B e e
[T TR S IR

auto corr = autocorrelation(signal)

s
|

# visualization

=
0 o0

lags = np.arange(len{auto _corr))
plt.figure(figsize=(16, 6))
plt.plot(lags, auto _corr)
plt.title("Autocorrelation of Signal™)
plt.xlabel("Lag")
plt.ylabel("Autocorrelation™)
plt.grid()

plt.show()

[ I S I oS T S T LS
[ = R N

[
oh

Figure 3: Python code for calculating the automatic correlation function of the signal.

WWWw.jenrs.com Journal of Engineering Research and Sciences, 4(3): 08-21, 2025 14


http://www.jenrs.com/

@3 JENRS

E. Jekal et al., Software Development and Application for Sound Wave Analysis

1 import numpy as np
2 from sklearn.decomposition import MMF
=
4 # make data
5 ¥ = np.abs({np.random.randn{le, 8)) # ramdom
&
7 # NMF model
g2 k =32 # dimension
S model = NMF({n_components=k, init="random', random_state=42)
1a
11 # NMF calculation
12 W = model.fit_ transform{X)
12 H = model.components_
14
15 # result
16 print{"Original Matrix (X}:")
17 print(X)
12 print{"MnBasis Matrix (W):™)
19 print{k)
28 print("MwnCoefficient Matrix (H):")
21 print{H)
22 print{"AwnReconstructed Matrix (W * H):")
23 print{np.dot(k, H))
24

Figure 4: Python code for implementing NMF.

The code above generates a sine wave of 5 Hz and
calculates the automatic correlation function of the signal
using np.correlate. The visualization of the result is then
plotted according to the lag.

When implementing NMF in Python, the Sklearn library
makes it easy to handle.

4.3. The specifications of a piano

The piano used for the performance and recording was
the Yamaha Grand Piano GC1, which was produced in
Japan. There were a total of 88 keys, a soft pedal (left), a
Sostenuto pedal (center), and a damper pedal (right). The
top lid was open in the recording environment.

The depth of the grand piano varies depending on the
model, but it usually ranges from 151 cm to 188 cm. For
the grand piano used in this study, it should be noted that
the total length from the keyboard to the longest string end
is 161 cm, therefore the actual sound and the recorded
sound may differ if no sinusoidal waves are made at that
length.

4.4. Characteristics of performed music and performers
characteristics

4.4.1.  Twinkle, Twinkle, Little Star

The original song is titled “Mozart Variations 12 on
'Ah, vous dirai-je, Maman' in Camajor, K265", but it is
popularly known as a twinkling little star.

The theme is a folk melody consisting of 12 simple and
simple bars. It is composed in C major and features a clear
and clear sound pattern.

4.4.2.  Gavotte composed by Cornelius Gurlitt

In this paper, we chose Gavotte composed by
Cornelius Gurlitt because it is a specific song that can
show the connection and disconnection of notes, and
changes in articulation, a playing technique that
represents legato and staccato, due to its relatively fast
rhythm. It also has the advantage of being able to clearly
express the visual through the waveform graph because
the phrase section on the score is clear.

A total of five notes are connected to the regato until
the first note of the next bar, followed by two staccato
notes. If we look closely at this part, this study can
distinguish the waveform difference between the regato
and staccado methods.

There's also a part that gradually becomes a crescendo
from the 9th bar to the 12th bar, and from the 13th bar to
the 16th bar, this study can even look at the volume in a
single piece because it's played quietly with the right hand
only without the left hand.

4.4.3. Rachmaninov Piano Concerto No. 2 in ¢ minor, Op.

18

In the case of the first seven bars, the two-handed chord
that is pressed at the same time and the left-handed bass F
alternate. In addition, since the right-handed inner part
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changes with each bar, it is easy to observe the change of
sound waves with right-handed chords.

The volume of the sound is also gradually increasing
from pp to ff, so this study can see if the "feel of something
coming from a distance" is also expressed on the graph
when drawn in a waveform.

4.4.4.  Characteristics of performers

1) Younju Kim, Female: 166cm, b54kg. She is
characterized by having relatively long arms and is a
performer with good movement. However, instead of
having a large arm movement, the force cannot be
transmitted quickly to the fingertips, making it
difficult to perform strong strokes. The sound

resonates well, but the amplitude is not large.

2) Juhyun Ku, Female: 163.5cm, 60kg, hand size: From
the first note of Do to the next octave Mi. The weight
of the arms is heavier and the fingertips are harder
than other pianists. There is less movement of the
arms and the fingertips are attached to the piano to
control the speed. It is characterized by less movement
of the arms.

3) Hyoeun Park, Female : 161cm, 47kg. The weight of the
arms is light and the movement is fast. She is one of
the musicians who produce accurate sounds. When
playing the piano, the movement is big, but the time
when the hands are attached to the piano keys is short.

4) Eunsung Jekal, Female: 158, 42kg, beginner. Unlike
other pianists, he recorded on the Kawai Digital Piano.
He has been learning for about a year, so he has no
movement in his arms and is very weak in other
health compared to professional pianists.

5. Results
5.1. Magnitude of sounds

Root Mean Square (RMS) represents the average
energy of a signal and is the basic method for quantitative
comparison of sound magnitudes as shown in figure 5. In
this paper, two recorded files were imported into the
software and calculated as the rms function of MATLAB.
Afterwards, this study measured the Loudness Units Full
Scale (LUFS). LUFS is an international standard that
measures the loudness of sounds based on the volume felt
by the human ear. The LUFS values of the two
performances were compared using the Loudness
Normalization function, and it is generally considered
that the lower the LUFS value, the higher the volume.
That is, the size increases as it approaches zero. Finally,
this research analyzed decibels (dB), and we gave it as
fig.6. Decibels compare the loudness based on the peak
amplitude or average amplitude of the signal. In this
paper, the Peak Level and Average Level were measured
using their own software, and the Peak Amplitude was
calculated using MATLAB's max (abs(signal).

Performer Jekal:
RMS: -20.5dB

LUFS: -15 LUFS
Dynamic range: 10 dB

Performer Ku:

RMS: -18.2dB

LUFS: -12 LUFS
Dynamic range: 14 dB

In conclusion, Ku makes an overall louder sound, and
the dynamic range is also wider, showing that it is more
expressive.

Amplitude

Time

Figure 5: Sound waves of “Twinkle, Twinkle, Little Star’ performed by (a) Jekal and (b) Ku.

WWW.jenrs.com

Journal of Engineering Research and Sciences, 4(3): 08-21, 2025 16


http://www.jenrs.com/

@) JENRS

E. Jekal et al., Software Development and Application for Sound Wave Analysis

Time

Figure 6: Sound volume of (a) Jekal and (b) Ku

et

Time

Figure 7: Differential graphs of waveforms for velocity analysis

5.2. Velocity

By differentiating the waveform graph, this research
can get information that represents the rate of change of
the signal. This rate of change can be interpreted as speed,
which varies depending on the physical or mathematical
properties of the signal. For acoustic signals,
differentiation is useful for analyzing the rate of
amplitude change or for deeply understanding the
characteristics of the signal.

1st differential expressed as

_dx(®)

v ==

2nd differential expressed as

d2x(t)
dzt

a(t) =

Here, if it is calculated as a discrete signal instead of a
continuous signal, it may be approximated as follows:

_ x[n + 1] — x[n]

v[n] AL

Figure. 7 shows the change in speed by
differentiating the waveform. Comparing (a) and (b) in
the boxed sections, this research can see that the change
in (b) is more rapid. In other words, (b) the performer hits
one note while playing the piano and then moves on to
the next note compared to (a). This may have been due to
the performer's movement or body shape.
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Keyboard

(a) Jekal

sec

Figure 8: Piano keyboard touch strength of (a) Jekal and (b) Park

5.3. Touch intensity

To mathematically analyze the strength (touch
strength) of pressing the keys when playing the piano,
users need to obtain and analyze data related to the force
on the keys through acoustic signals or physical sensors.
This can be represented by the amplitude of an acoustic
signal, or the physical movement of the keys.

In this paper, amplitude-based analysis was utilized.
This is because the amplitude of the generated acoustic
signal increases when the keyboard is pressed hard, so the
intensity can be estimated by analyzing the amplitude.

For this purpose, the recorded acoustic signal was
imported into its own analysis software, and the average
amplitude was measured by calculating the RMS value of
the signal.

The RMS is calculated as follows:

RMS = j%; x[i]?

Part 1 Part 3
1

Part 2
1 A

Part 4

Here, x[i] expresses value of sample signal and N denotes
number of samples.

Gavotte composed by Cornelius Gurlit, expressed in
the form of sound waves in fig.9, can be largely divided
into six parts. Sections 1 and 2, and sections 5 and 6 are all
played with the same note and rhythm. However, in
section 4, it can be seen that the sudden sound becomes
smaller, and the difference between the three pianists can
be seen more clearly here. The note played by Kim grows
and decreases again, the note of the beat becomes louder
and louder, and the note of the sphere becomes smaller
and smaller. In the case of part 5 as well, Kim starts with
a loud sound following section 4 and Park starts with a
small sound before playing louder and louder.
In fact, it is often difficult to hear the change in detail
when listening to fast songs such as Gavotte.
However, the software used in this study shows changes
in the overall structure and musical image of the song

well through the waveform graph.

Part 5 Part 6

I 1 ¥

== = |

Amplitude

Time

| | |
T I

Figure 9: Sound waves of ‘Gavotte” performed by (a) Kim, (b) Park and (c) Ku.
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Amplitude

Amplitude

Amplitude

Figure 10: Sound flows of ‘Gavotte’

5.4. Music flow

Graph theory was used in this paper because it can be
very useful in structural and relational analysis of piano
music, and the results are shown in Fig.10.

First, the graph G consists of node set V and edge set E, so
it is expressed as G = (V, E).

Music has a direction, so this study need a graph that
considers the direction here, and the in-degree is
expressed as

degin(v) = [{(w,v) € E}|
The out-degree is expressed as

degout(v) = |{(U, u) € E}l

and the sum of entry and exit orders for all nodes is
expressed as

Y degu®) =) dego(®) = IE|
vev vev
Entropy of graph G denoted as
H@ == pW)logp()
ve

deg (v)
2|E|

where p(v) =

‘I‘i_n;e 15)

performed by (a)Kim, (b)Park and (c)Ku.

In this way, graph theory can be used to create a key
tool for analyzing music or solving problems that arise
during the practice process.

6. Discussion

In this work, we explore ways to improve the smooth
connection of visual and auditory flows through
waveform analysis of music.

The sound was analyzed using mathematical
techniques such as Short-Time Fourier Transform (STFT),
Non-Negative Matrix Factorization (NMF), and Root
Mean Square (RMS), and the analysis results reflecting
the characteristics of various performers were presented.
Analyzing sound in this way allows various applications
such as emotional expression, structural analysis,
understanding differences in musical instrument tones,

and supporting music production.

The sound volume analysis compared the size of the
performance and the dynamic range through the analysis
of the performer's RMS, LUFS, and dB.

For velocity analysis, the rate of change of the signal
and the difference in the movement of the performer were
evaluated through the first and second derivatives of the
waveform. As for the touch intensity, the intensity of the
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keyboard touch was estimated by RMS, and the
expressive power of the player was compared.

In addition, in the flow of music, the structural
change of the song was visualized as a waveform graph
to clearly confirm the difference in the interpretation of
the performer.

7. Limitations and future works

7.1. Overcome the difference between soundproof room and
hall

This
performances from the introduction of movement 1 to 9

graph is a visualized graph of three
of Rachmaninoff Piano Concerto No. 2. Although it is a
concerto, it is easy to compare the sound wave graphs in
the soundproof room and hall because only the piano is
played at the introduction without an orchestra.

Figure 11(a) and (b) are recorded on the same piano
in the same soundproof room, and Fig.11(c) is recorded in
a large concert hall.

Looking at the green box, it can be seen that the up-
and-down symmetry of the sound wave is greatly broken
in Fig.11(c) played in the hall, which is seen as irregularity
in the effect on the echo of the hall.

L | (@) Kim

r (c) recorded in the hall
i (performed by Sung jin Cho)

Amplitude

.
Lad

Time

b

7.2. Improved visual-audible connection smoothness

Music waveforms can naturally have irregular, sharp
shapes. To visualize them seamlessly, the signals need to
be processed smoothly.

Low-pass Filter can be utilized for smoothing the
signal, which reduces the high frequency component
(noise) and softens the waveform.

N-1
Z x[n — k]

k=0

=2~

y[n] =

In addition, Spline Interpolation creates curves that
seamlessly connect data points, enabling smoother
waveform representations.

There's visual

synchronization. It reinforces visual effects, which align

another ~way to enhance
with auditory perception, by emphasizing features such
as music's rhythm, tempo, and range. For example, users
might consider extracting the music's rthythm through
beat detection algorithms to synchronize visual "beat" or

change the color according to frequency band or

amplitude.

L M

Figure 11: Sound waves of “Rachmaninoff Piano Concerto No. 2” performed by (a)Kim, (b)Ku and (c)Sung jin Cho.
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