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ABSTRACT: The crucial need for maintaining specific water potability levels depending on the sector
of utilization, this is becoming increasingly challenging due to the increased pollution. It is therefore
important to have fast and reliable water potability assessment techniques. A subset of Machine
Learning (ML); being Deep Learning (DL), can be utilized to develop models capable of measuring
water quality while assessing its potability with high levels of accuracy; thus, ensuring that water
meets the set standards based on the required sector of utilization. In this research, the effectiveness
of Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Neural Networks (NN) were
contrasted for Water Quality Classification (WQC). The MLP model demonstrated superior
performance, achieving higher precision, accuracy, F-measure, recall and the area under the receiver
operating characteristic curve (ROC-AUC) scores, indicating its effectiveness in this application
compared to the LSTM approach. The experimental findings revealed that MLP NN model
outperformed the LSTM NN model in WQC tasks. The MLP model achieved very high performance
with an accuracy of 99.9%, an F-measure of 99.9%, a precision of 99.9%, a recall of 99.9%, and a ROC-
AUC of 100%, significantly outperforming the LSTM model, which attained an accuracy of 97.6%, an
F-measure of 97.1%, a precision of 97.1%, a recall of 97.5%, and a ROC-AUC of 97.9%. The study's
novelty lies in employing DL for binary classification, yielding outstanding outcomes in the crucial
domain of WQC.

KEYWORDS: Artificial Intelligence, Data Analysis, Water Quality Classification, Neural Networks,
Civil Engineering.

1. Introduction Water quality and potability are closely related, as
evaluating water quality assessing its
appropriateness based on its physical, chemical, and
biological attributes for different uses. Potability
specifically focuses on whether water is safe for human
consumption, ensuring it meets health standards and is
free from harmful contaminants. Water quality refers to
the overall status of water as reflected through its
biological, chemical, and physical characteristics,
determining its suitability for various uses, such as

involves
Water is the main and fundamental component in all

biological processes; hence, it is the principal element
crucial for sustaining all forms of life and a balanced
ecosystem. Additionally, being in the industrial age,
water became vital in a range of manufacturing processes;
moreover, as time goes water is introduced into further
domains; therefore, increasing the water demand
necessary to sustain all these applications [1].

As this demand for water increases the issue of water
scarcity even grows deeper; this is because of the lack of
clean, directly utilizable water sources; in addition to, the
continued pollution of water sources due to
unresponsible human behavior. This dictates water
treatment processes that transform contaminated water
into untainted water. The overlapping of water into a
variety of domains means that there is a spectrum of
water quality levels depending on the sector [2].

agriculture or industrial processes. The differences
between them affect their assessment techniques: water
quality assessments may include a broader range of tests
for pollutants and environmental impact, while potability
focuses on specific contaminants and health-related
criteria to ensure drinking safety. Understanding these
distinctions is crucial for effective water management and
public health [2].
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Conventional methods have been employed to
evaluate water quality, particularly to ascertain its
potability; however, these traditional approaches can
now be replaced by new procedures that ensure higher
accuracy and precision. These new techniques are
equipped with the usage of Artificial Intelligence (AI) and
specifically the usage of DL, a branch of ML [3].

Machine learning incorporates the utilization of
mathematical models that can identify the trends and
characteristics through which water is classified into
contaminated or untainted depending on the domain.
Thus, through a range of variables, water quality and
water potability are instantly assessed and classified with
nearly faultless accuracy [3].

This study seeks to assess and compare the potency of
two Neural Network (NN) architectures, LSTM and
MLPs, for WQC; NNs are the fundamental components
of DL. The study will abide by the Cross-Industry
Standard Protocol for Data Mining (CRISP-DM)
methodology working on a dataset obtained from a
government-maintained official website in India.

The upcoming segments of this article will be
organized beginning with literature review, followed by
methodology, description and preparation of the dataset,
moving on to the classification algorithm, the outcomes,
and concluding with both the discussion and the
conclusion.

2. Literature Review

Due to the significance of the topic, much research has
been targeted at the topic of water potability forecasting.
This section will highlight some of these contributions to
set a scientific base for comparison with the results
obtained in this work.

To start, a study conducted by [4] investigates the
applicability of AutoDL in Water Quality Assessment.
AutoDL is an emerging field, automating DL pipelines;
subsequently, comparing its performance against
conventional models. Results show that conventional DL
outperforms AutoDL by 1.8% for binary class data and 1%
for multiclass data, with accuracies ranging from ~96% to
~99%.

Additionally, In [5], the authors carried a study
focused on forecasting water’s quality in one of Greece’s
lakes, conventional ML models such as Support Vector
Regression (SVR) and Decision Tree (DT) were pitted
against DL models like LSTM, Conventional Neural
Network (CNN), and a hybrid CNN-LSTM model. The
objective was to predict levels of Chlorophyll-a (Chl-a)
and Dissolved Oxygen (DO) using physicochemical
variables collected between June 2012 and May 2013. The
novel merged approach showed improved performance
over standalone models. Lag times of up to two intervals

were used for prediction. LSTM excelled in DO prediction,
while both DL models performed similarly for Chl-a. The
merged CNN-LSTM approach demonstrated superior
predictive accuracy for both variables, effectively
capturing variations in DO concentrations. Evaluation
metrics included correlation coefficients, RMSE, MAE,
and graphical analyses, revealing the hybrid model's
enhanced predictive capabilities in capturing diverse
water quality levels.

Moreover, research proposed by [6] addresses the
precise estimation of Effluent Total Nitrogen (E-TN) for
optimizing the operations of Wastewater Treatment
facilities (WWTPs), ensuring regulatory compliance and
reducing energy usage. The complexity inherent in
WWTPs poses a significant obstacle for accurate
multivariate time series forecasting of E-TN due to their
intricate nonlinear nature. To tackle this challenge, a new
predictive framework is proposed, integrating the Golden
Jackal Optimization (GJO) algorithm for feature selection
and a hybrid DL architecture, the CNN-LSTM-TCN (CLT)
model. CLT combines CNN, LSTM, and TCN to capture
complex interrelations within WWTP datasets. A two-
step feature selection process enhances prediction
precision, with GJO fine-tuning CLT hyperparameters.
Findings underscore the effectiveness of the proposed
system in precisely forecasting multivariate water quality
time in WWTPs, demonstrating
performance across diverse prediction scenarios.

series superior

In this study performed by [7] supervised learning is
utilized to develop precise predictive models from
labeled data, aiming to categorize water as safe or unsafe
based on its characteristics. Various ML models are
assessed for binary classification using features like
physical, chemical, and microbial parameters. The
findings demonstrate that the Stacking model, in
combination with SMOTE and 10-fold cross-validation, it
surpasses other methods, yielding remarkable outcomes.
Notably, it demonstrates an accuracy and recall rate of
98.1%, precision of 100%, and an AUC value of 99.9%.

Furthermore, a study by [8] introduces a merged IoT
and ML system for detailed water quality forecasting. By
analyzing Rohri Canal data in SBA, Pakistan, the system
predicts Water Quality Class and Water Quality Index
(WQI). ML models like LSTM, SVR, MLP, and Nonlinear
Autoregressive Neural Network (NARNet) predict WQIL
while Support Vector Machine (SVM), Extreme Gradient
Boosting (XGBoost), DT, and Random Forest (RF) forecast
WQC. Results indicate that the MLP regression model
excels with the lowest errors and highest R-squared (R2)
of 0.93. RF leads in classification, achieving high precision
(0.93), accuracy (0.91), recall (0.92), and a F1-score of 0.91.
Notably, models perform better with smaller datasets.
This study demonstrates enhanced regression and
classification performance compared to previous research.
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In another study conducted by [9] a system combining
a Discrete Wavelet Transform (DWT), LSTM, and an
Artificial Neural Network (ANN) was created to predict
the Jinjiang River's water quality. Initially, a MLP-NN
handled missing values within the water quality dataset.
Subsequently, the Daubechies 5 (Db5) wavelet divided
the data into low and high-frequency signals, serving as
LSTM inputs for training and prediction. Comparative
against models such as NAR,
Autoregressive Integrated Moving Average (ARIMA),
ANN-LSTM, MLP, LSTM, and CNN-LSTM demonstrated
the superior performance of the ANN-WT-LSTM model
across multiple evaluation n metrics, highlighting its
effectiveness in the forecasting of the quality of water.

analysis various

To evaluate the efficacy of the proposed DL method
incorporating LSTM, Gated Recurrent Unit (GRU), and
Recurrent Neural Network (RNN) a case study was
undertaken in a southern Chinese city by [10]. A
comparison was made between the proposed method, a
linear approach which is the Multiple Linear Regression,
(MLR), and a traditional learning algorithm (MLP). The
DL algorithm demonstrated strong predictive capabilities,
with GRU outperforming in predicting water quality
chemical indices and exhibiting a swifter learning curve.
Findings indicated that GRU outperformed traditional
ML algorithms by 9.13%-15.03% in terms of R2,
surpassed RNN and LSTM by 0.82%-5.07%, and
exceeded linear methods by 37.26%-43.38% for the same
parameter.

Moving forward, in a study proposed by [11] a novel
system for monitoring drinking water potability,
emphasizing  sustainability @ and  environmental
friendliness was introduced. An adaptive neuro-fuzzy
inference system (ANFIS) was created for WQI prediction,
while K-nearest neighbors (KNN) and Feed-forward
neural network (FFNN) were utilized for WQC. The
ANFIS model excelled in WQI prediction, while the
FFNN algorithm achieved 100% accuracy in WQC.
Notably, ANFIS demonstrated 96.17% accuracy in WQI
prediction during testing, while FENN remained robust
in classifying water quality.

In the research led by [12], sophisticated Al algorithms
were formulated to forecast the Water Quality Index
(WQI) and categorize water quality. SVM, K-NN, and
Naive Bayes algorithms were utilized for Water Quality
Classification (WQC) forecasting while NARNet and
LSTM DL models were applied for WQI prediction. The
assessment of the models, based on statistical metrics,
was conducted using a dataset featuring 7 key parameters,
showcasing their accuracy in predicting WQI and
classifying water quality effectively. Results indicated
that NARNET slightly outperformed LSTM in WQI
prediction, while SVM achieved the highest WQC
prediction accuracy with 97.01%. During testing, LSTM

and NARNET showed close accuracies with slight
differences in regression coefficients with 96.17% and
94.21% respectively.

Finally, in a study conducted by [13] ML models were
trained using the Water Quality dataset sourced from the
Indian Government website via Kaggle. The WQI served
as the basis for data categorization. Various ML
algorithms, including DTs, MLP, XGBoost, KNN, and
SVM, were investigated. To evaluate model effectiveness,
metrics including Precision, Recall, Accuracy, and F1-
Score were utilized. Results indicated that XGBoost
exhibited superior performance as a water quality
classifier, boasting an accuracy of 95.12%, closely
followed by SVM with an accuracy of 93.22%.

While DL and ML approaches have proven effective
in water quality assessment, several limitations exist in
prior work. AutoDL, despite its automation, struggles
with domain-specific optimizations, as conventional
models outperform it by 1.8% in binary classification and
1% in multiclass classification. Additionally, model
comparisons often lack robust justification, as seen in
Barzegar et al.,, where SVR, DT, LSTM, CNN, and CNN-
LSTM were analyzed for specific water quality
parameters evaluating fully connected
architectures like MLP, which have shown strong
performance in another research.

without

Furthermore, hybrid models like CLT introduce
additional computational complexity, requiring feature
selection via the GJO algorithm, making them less
practical for real-time water monitoring. Similarly,
supervised learning approaches using SMOTE, as in
Dritsas and Trigka, achieve high accuracy (98.1%) but risk
bias due to synthetic data introduction. Prior research
highlights MLP’s strength in regression tasks, with Najah
et al. reporting an R? of 0.93, outperforming other models,
while Wu and Wang demonstrated MLP’s effectiveness
in handling missing data alongside LSTM’s ability to
process sequential dependencies. Moreover, Jiang et al.
showed that GRU outperformed LSTM and traditional
ML models by 9.13%-15.03% in R? reinforcing the
effectiveness of recurrent models for time series water
quality prediction. These findings emphasize the need for
a more balanced evaluation of model architectures,
computational feasibility, and data augmentation risks in
future research.

3. Research Methodology and approach
3.1. Background of the Research Study

Google collab was the platform for conducting this
study; moreover, ML libraries in python called keras and
Scikit-learn were used in the programming phase.
Moreover, two ML techniques being LSTM, and MLP
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were used on the dataset. This study followed a six-phase
methodology, which is CRISP-DM [14].

Figure 1. Phases of the CRISP-DM Methodology.
3.2. Dataset Description

The dataset focuses on water quality (WQ) parameters
in India, collected between 2012 and 2021. Data was
gathered from an authorized Indian government website,
comprising 7339 entries with six attributes per entry and
a solitary outcome variable [15]. A breakdown of these
attributes is detailed in Table 1.

When evaluating water drinkability various essential
factors were considered, such as Biochemical Oxygen
Demand (BOD), electrical conductivity (EC), pH, DO, and
total coliforms (TC). A WQI is calculated using these
parameters to provide a comprehensive evaluation of
water potability. The WQI calculation involves deriving
new parameters from the original measurements using a
specific classification system. These derived parameters
are denoted as ndo, nco, nbdo, nec, npH, and nna,
representing normalized values for pH, DO, TC, BOD, EC,
and NA. Weighted averages are then calculated for each
parameter using the following formulas shown in
equation (1-7) [15]:

e  Weighted contribution for pH is given by:
wph = nph * 0.165 (@8]

¢  Weighted contribution for DO is given by:

wdo = npo * 0.281 (2)
e  Weighted contribution for Biochemical Oxygen
Demand (BOD) is given by:
wbdo = nbdo * 0.234 3

e  Weighted contribution for Electrical Conductivity
(CE) is given by:

wec = nec * 0.009 4)

e  Weighted contribution for Sodium (NA) is given by:

e  Weighted contribution for Total Coliform (TC) is
given by:

wco = nco * 0.281 (6)

e  The Final Water Quality Index (WQI) is
Calculated using the formula:

WQI = wph + wdo + wbdo + wec + wna + wco @)

Water samples are categorized as drinkable (1) when
the WQI equals or exceeds 75, and undrinkable (0) if the
WOQI falls below 75. This method of classification offers a
uniform method for evaluating water suitability using
defined benchmarks and measured concentrations.

Table 1. Dataset Description

Attribute Description Datatypes
Dissolved
Oxylgses:l \(/Ie) 0) Optimum DO Concentration is 10 mg/L. float64
pH The required pH is 8.5. float64
Conductivit L
On(l;lé)m ¥ The wanted Conductivity is 1,000 pS/cm. float64
Biological
Oxygen Demand | The optimum concentration is 5 mg/L. float64
(BOD)
Nitrate (NA) |The optimum concentration is 45 mg/L. float64
Total colife . .
o a(;g) oM e required value is 100 per 100 mL float64
A rating of I indicated that the water is safe
Potability to drink, while a rating of 0 means it is not object
safe to drink.

3.3. Dataset Preparation

After examining the data, the next step is to prepare it
for analysis and model building. This involves addressing
missing data, transforming categorical variables into
and dividing the dataset into
appropriate testing and training subsets.

numerical values,

3.3.1. Missing Data

In this study, two essential functions commonly used
to check for missing or duplicated data in a dataset,
isnull().sum() and duplicated().sum(), were applied to
ensure data integrity. The isnull().sum() function
identifies and counts missing values in each column,
while duplicated().sum() detects redundant rows. After
executing these functions, the results confirmed that there
were no missing or duplicated data, affirming the
dataset’s completeness and consistency. This ensures
higher data quality, ultimately enhancing the reliability
and accuracy of the ML model.

3.3.2. Balancing the Dataset

The value counts () function was used to assess class

wna = nna * 0.028 (5) balance, revealing 3,958 instances for class 0 and 3,381
instances for class 1. A dataset is typically considered
imbalanced if one class significantly outweighs the other.
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To quantify this, the imbalance ratio was calculated as
3958 / 3381 = 1.17, indicating that the dataset is relatively
balanced. Generally, datasets with imbalance ratios
exceeding 1.5-2.0 are considered imbalanced and may
require techniques such as SMOTE (Synthetic Minority
Over-sampling Technique) or undersampling to correct
class distribution.

3.3.3. Encoding Categorical Data

The LabelEncoder function was applied to the dataset
to convert categorical data into numerical values, a crucial
step for preparing data for ML models, which typically
require numerical inputs. In this study, water samples
were classified based on the WQI, where a value of 75 or
higher indicated potable water (labeled as 1), while a WQI
below 75 signified non-potable water (labeled as 0). This
transformation ensures that the dataset is properly
formatted for model training therefore enhancing the
efficiency of the classification process [16].

3.3.4.  Splitting Data

To assess the capabilities of the algorithms at water
potability forecasting, the study employed a 10-fold cross-
validation approach. This method ensured a robust
assessment of the algorithms, improving the generalizability
and reliability of the research discoveries [17].

3.3.5. Data Normalization

The numerical data was normalized to scale values
within a predefined range, typically 0 to 1 or -1 to 1,
feature This
transformation prevents any single variable from
dominating the model, promoting balanced and unbiased
learning.

3.4. Modelling

ensuring  uniform contribution.

The two NNs, MLP and LSTM are implemented to
predict water potability.

MLPs: a type of ANN, excel at solving complex
classification and regression tasks. These networks are
structured as layers of interconnected nodes, each
processing information and relaying it to the next layer.
The network learns by fine-tuning the connections
between nodes, enabling it to recognize complex patterns
within data. MLPs are particularly adept at handling
non-linear relationships and can be trained to achieve
high accuracy across a wide range of applications [18].

In this study The MLP model had been configured
with 2-3 hidden layers, with each layer having 64, 128, or
256 neurons, depending on the complexity of the task.
The activation functions used had been ReLU for the
hidden layers to facilitate efficient training and Sigmoid
for the output layer to support binary classification. The
Adam optimizer had been selected for its adaptive
learning properties, while the Binary Crossentropy loss

function had been utilized to optimize performance for
the binary classification task. The batch size had been set
to 64 to balance computational efficiency and memory
usage. The model had been trained over 50 to 100 epochs,
with a learning rate of 0.001 to ensure stable convergence.
Additionally, dropout rates between 0.2 and 0.3 had been
applied to prevent overfitting during training.

LSTM: a type of RNN, designed to handle sequential
data. Unlike traditional RNNs, it utilizes a unique
memory cell structure that allows them to retain
information over extended periods. This renders them
well-suited for assignments encompassing natural
language processing, time series analysis, and speech
recognition. LSTMs' ability to past
information enables them to extended

"remember”
grasp
dependencies within sequences, leading to improved
accuracy in predicting future outcomes [19].

In this study the LSTM model had been configured
using a network architecture comprising 1-2 LSTM layers
followed by a Dense layer. The number of units (neurons)
in each LSTM layer had ranged from 64 to 256, depending
on the data’s complexity. The activation functions used
had been Tanh for the LSTM layers and Sigmoid for the
output layer, facilitating efficient learning and binary
classification. The Adam optimizer had been employed
for its adaptive learning capabilities, paired with the
Binary Cross entropy loss function for optimizing binary
classification tasks. The batch size had been set to 64,
balancing memory usage and computational efficiency.
The model had been trained over 50 to 100 epochs, with
dropout rates between 0.2 and 0.5, and recurrent dropout
rates ranging from 0.2 to 0.3 to reduce overfitting. Finally,
the learning rate had been set to 0.001 to ensure steady
convergence during training.

3.5. Performance Evaluation

The capabilities of the NNs are identified through
accuracy, sensitivity, precision, and ROC-AUC are all
used to measure their performance.

3.5.1. Accuracy:

This metric represents the portion of true forecast by a
model out of all predictions made as shown in equation
(8) [20].

TP + TN
TP + TN + FP + FN

Accuracy =

3
3.5.2. F-measure:

The F-measure provides an equitable evaluation of a
model's precision and recall. It calculates a weighted
average of these two metrics, providing an extensive
assessment of the model's capabilities shown in equation
©) [21].
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precision X recall
F —measure = 2 X

)

precision + recall

3.5.3. ROC-AUC Value:

It evaluates a classification model's performance
across various threshold settings. The AUC indicates the
model's ability to distinguish between classes, and higher
ROC-AUC scores signify improved
performance and discriminative capacity [21].

classification

3.5.4. Precision:

It assesses the ratio of accurately identified negative
instances (true negatives) among all cases predicted as
negative shown in equation (10) [21].

TP

p , . -
recision TP + FP

(10)

3.5.5.  Recall:

It evaluates a model's capacity to accurately detect all
positive instances present in a dataset shown in equation
(11) [21].

TP

Recall = 757N

(11)
4. Results

The experimental findings revealed that MLP NN
model outperformed the LSTM NN model in WQC tasks.
The MLP model achieved a near-perfect accuracy of
99.9%, significantly higher than the 97.6% accuracy of the
LSTM model. This suggests that the MLP is more reliable
in correctly classifying the water potability samples.

The MLP's F-measure of 99.9% surpasses the LSTM's
97.1%. Recall and Precision for the MLP model are near
perfect at 99.9%, indicating that the MLP has a very low
false positive and false negative rate. The LSTM, while
still performing well, shows slightly lower precision
(97.1%) and recall (97.5%), suggesting it is less effective in
minimizing these errors as shown in Table II and Figure
2.

This ROC-AUC curve comparison highlights the
classification performance of the MLP and LSTM models.
The MLP model achieves a perfect AUC of 100%,
represented by a diagonal line, indicating flawless
classification, whereas the LSTM model attains an AUC
of 97.9%, demonstrating strong but slightly lower
performance as shown in Figure 3.

Table 2. Performance Comparison between NNs.

Models MLP LSTM
Accuracy 99.9% 97.6%
F-measure 99.9% 97.1%

Precision 99.9% 97.1%
Recall 99.9% 97.5%
ROC-AUC 100% 97.9%

100.50%
100.00%

99.50%
99.00%
98.50%
98.00%
97.50%
97.00%
96.50%
96.00%
95.50%
MLP

Precision MRecall WROC-AUC

LSTM

W Accuracy F-measure

Figure.2: Performance Plot of Proposed Neural Networks

ROC Curves for MLP and LSTM

_

1.0f

0.8r

0.6

0.4r

True Positive Rate (TPR)

0.2r

—— MLP (AUC = 100.0%])
—— LSTM (AUC = 97.9%)
-~ Random Classifier (AUC = 50%)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

Figure.3: The ROC-AUC Plot of Proposed Neural Networks

5. Discussion

The current study demonstrates the superiority of
MLP over LSTM for binary water potability classification,
with MLP
outperforming results from prior studies. Compared to

achieving 99.9% across all metrics,
Prasad et al., who found conventional DL models
achieving up to 99% accuracy, and Dritsas and Trigka,
whose stacking model reached 98.1%, the MLP model’s
perfect ROC-AUC of 100% sets a new benchmark. While
LSTM performed slightly below MLP in this study,
previous research, such as by Barzegar et al. and Liu et al.,
highlights LSTM's strength in multivariate and temporal
tasks, particularly in hybrid architectures like CNN-
LSTM and CLT. Studies like Najah et al. and Wu and
Wang reaffirm MLP's excellence for regression and
classification tasks, and the current study underscores its
efficiency for simpler tasks without relying on hybrid
approaches or extensive preprocessing. This suggests that
while LSTM excels in capturing temporal dependencies,
MLP’s straightforward architecture is more effective for
binary classification.
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Many previous studies have focused on multi-class
classification or regression-based approaches to predict
the WQI rather than directly classifying water as potable
or non-potable. For instance, Liu et al. employed a hybrid
CLT model to predict multivariate water quality
parameters, concentrating on continuous values instead
of binary classification. Similarly, Barzegar et al. used a
CNN-LSTM hybrid model to predict DO and Chl-a levels
rather than focusing on binary classification. These
models require additional steps to convert their outputs
into potable/non-potable labels, adding unnecessary
complexity and potential misclassification risks.
Consequently, there is a need for direct binary
classification models that efficiently determine water
potability. The current research explicitly focuses on
binary classification, optimizing the process for direct
decision-making and achieving a near-perfect accuracy of
99.9% using the ML model.

Many prior studies have also overcomplicated their
models by integrating multiple DL architectures (e.g.,
CNN-LSTM, ANN-WT-LSTM) under the assumption
that this will enhance predictive accuracy. Wu and Wang,
for example, used a hybrid ANN-Wavelet Transform-
LSTM model, significantly increasing computational
complexity. Similarly, Najah et al. combined IoT with ML
models such as LSTM, SVR, MLP, and NARNet for WQI
prediction, instead of opting for a simpler and more
effective classifier. These hybrid models tend to be
computationally expensive, require extensive
hyperparameter tuning, and lack interpretability, making
them impractical for real-time applications. Additionally,
many studies fail to demonstrate whether the added
complexity truly results in better performance than
simpler models like MLP. In contrast, the current research
demonstrates that a straightforward MLP model can
outperform LSTM, achieving an accuracy of 99.9%
compared to LSTM’s 97.6%, without requiring hybrid

architectures.

Another major limitation in prior work is the neglect
of feature selection and data preprocessing. Some studies
feed raw data directly into DL models without
conducting proper feature selection or normalization. For
example, Liu et al. applied GJO for feature selection, but

many other studies lacked systematic feature engineering.

The absence of feature selection can lead to overfitting
and reduced generalizability. Moreover, many prior
works do not systematically explore how feature
normalization or selection impacts model performance.
The current study addresses this gap by applying proper
feature engineering, ensuring that only the most relevant
attributes contribute to model performance, thereby
improving accuracy and efficiency.

Additionally, many
traditional ML models, assuming that DL models always

studies have overlooked

perform better. For instance, Aldhyani et al. compared
SVM, KNN, and Naive Bayes with DL models, but many
other studies did not conduct such benchmarking.
Traditional ML models, such as DT, RF, and SVM, can
sometimes perform equally well or even better than DL
models, particularly with smaller datasets. Many studies
fail to justify why DL is necessary over simpler, more
explainable models. In contrast, the current study
provides a clear justification for using DL.

The superior performance of MLP over LSTM in this
study can be attributed to the nature of the task and the
architectural differences between the two models. MLP,
being a feedforward NN, is well-suited for binary
classification tasks where the data lacks significant
temporal dependencies. Its simpler architecture focuses
on mapping inputs directly to outputs through fully
connected layers, enabling efficient learning of non-linear
relationships in static datasets.

By critically analyzing prior work, the selection of
MLP and LSTM had been justified as offering high
predictive accuracy, robust performance in both
regression and classification tasks, and efficient
processing for multivariate tabular data and time-series
forecasting. Additionally, better scalability for real-world
applications had been provided compared to
computationally expensive hybrid models. The ability to
handle both static and sequential data effectively while
outperforming existing DL models in accuracy and
efficiency had made them optimal choices for water
quality assessment.

6. Conclusion a Future Direction

The results clearly demonstrate the inferior
performance of the LSTM model contrasted to the
superior MLP model in water potability classification.
Across all metrics, the MLP consistently outperforms the
LSTM, achieving near-perfect scores for accuracy, F-
measure, precision, recall, and a perfect ROC-AUC score.
This suggests that the MLP's architecture is more fitted for
capturing the intricate relationships and patterns present
in the datasets concerning water potability, leading to
more precise predictions.

This study highlights the crucial role of NNs in
classification processes, particularly for complex datasets
NN,
utilizing their capability to comprehend intricate patterns
and adjust to non-linear connections, offer a powerful tool
for tackling such challenges. The MLP's superior
performance in this instance underscores the importance
of selecting the right NN architecture for the specific task
since each model excel in different domains.

like those found in water potability analysis.

Future research can advance water potability

classification by integrating hybrid DL models, such as
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combining MLP with CNN or Transformer-based
architecture, to
classification accuracy. Utilizing advanced feature
selection techniques, including genetic algorithms and
particle swarm optimization, can further refine model
performance. Expanding from binary to multi-class

enhance feature extraction and

classification would allow for a more detailed evaluation
of water quality levels. Implementing IoT-enabled real-
time monitoring systems can enable continuous water
quality tracking and instant alerts when contamination
exceeds safety thresholds. Additionally, incorporating
spatiotemporal analysis using GIS and remote sensing
data can improve predictive capabilities. Exploring
diverse datasets from various geographical regions and
environmental enhance model
robustness, ensuring its applicability across different
water sources and pollution levels.
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