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ABSTRACT: The crucial need for maintaining specific water potability levels depending on the sector 

of utilization, this is becoming increasingly challenging due to the increased pollution. It is therefore 

important to have fast and reliable water potability assessment techniques. A subset of Machine 

Learning (ML); being Deep Learning (DL), can be utilized to develop models capable of measuring 

water quality while assessing its potability with high levels of accuracy; thus, ensuring that water meets 

the set standards based on the required sector of utilization. In this research, the effectiveness of 

Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Neural Networks (NN) were 

contrasted for Water Quality Classification (WQC).  The MLP model demonstrated superior 

performance, achieving higher precision, accuracy, F-measure, recall and the area under the receiver 

operating characteristic curve (ROC-AUC) scores, indicating its effectiveness in this application 

compared to the LSTM approach. The experimental findings revealed that MLP NN model 

outperformed the LSTM NN model in WQC tasks. The MLP model achieved very high performance 

with an accuracy of 99.9%, an F-measure of 99.9%, a precision of 99.9%, a recall of 99.9%, and a ROC-

AUC of 100%, significantly outperforming the LSTM model, which attained an accuracy of 97.6%, an 

F-measure of 97.1%, a precision of 97.1%, a recall of 97.5%, and a ROC-AUC of 97.9%. The study's

novelty lies in employing DL for binary classification, yielding outstanding outcomes in the crucial

domain of WQC.

KEYWORDS:  Artificial Intelligence, Data Analysis, Water Quality Classification, Neural Networks, 

Civil Engineering. 

1. Introduction

Water is the main and fundamental component in all 

biological processes; hence, it is the principal element 

crucial for sustaining all forms of life and a balanced 

ecosystem. Additionally, being in the industrial age, 

water became vital in a range of manufacturing processes; 

moreover, as time goes water is introduced into further 

domains; therefore, increasing the water demand 

necessary to sustain all these applications [1]. 

As this demand for water increases the issue of water 

scarcity even grows deeper; this is because of the lack of 

clean, directly utilizable water sources; in addition to, the 

continued pollution of water sources due to 

unresponsible human behavior. This dictates water 

treatment processes that transform contaminated water 

into untainted water. The overlapping of water into a 

variety of domains means that there is a spectrum of 

water quality levels depending on the sector [2].  

Water quality and potability are closely related, as 

evaluating water quality involves assessing its 

appropriateness based on its physical, chemical, and 

biological attributes for different uses. Potability 

specifically focuses on whether water is safe for human 

consumption, ensuring it meets health standards and is 

free from harmful contaminants. Water quality refers to 

the overall status of water as reflected through its 

biological, chemical, and physical characteristics, 

determining its suitability for various uses, such as 

agriculture or industrial processes. The differences 

between them affect their assessment techniques: water 

quality assessments may include a broader range of tests 

for pollutants and environmental impact, while potability 

focuses on specific contaminants and health-related 

criteria to ensure drinking safety. Understanding these 

distinctions is crucial for effective water management and 

public health [2]. 
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Conventional methods have been employed to 

evaluate water quality, particularly to ascertain its 

potability; however, these traditional approaches can 

now be replaced by new procedures that ensure higher 

accuracy and precision. These new techniques are 

equipped with the usage of Artificial Intelligence (AI) and 

specifically the usage of DL, a branch of ML [3].      

Machine learning incorporates the utilization of 

mathematical models that can identify the trends and 

characteristics through which water is classified into 

contaminated or untainted depending on the domain. 

Thus, through a range of variables, water quality and 

water potability are instantly assessed and classified with 

nearly faultless accuracy [3]. 

This study seeks to assess and compare the potency of 

two Neural Network (NN) architectures, LSTM and 

MLPs, for WQC; NNs are the fundamental components 

of DL. The study will abide by the Cross-Industry 

Standard Protocol for Data Mining (CRISP-DM) 

methodology working on a dataset obtained from a 

government-maintained official website in India. 

The upcoming segments of this article will be 

organized beginning with literature review, followed by 

methodology, description and preparation of the dataset, 

moving on to the classification algorithm, the outcomes, 

and concluding with both the discussion and the 

conclusion. 

2.  Literature Review 

Due to the significance of the topic, much research has 

been targeted at the topic of water potability forecasting. 

This section will highlight some of these contributions to 

set a scientific base for comparison with the results 

obtained in this work. 

 To start, a study conducted by [4] investigates the 

applicability of AutoDL in Water Quality Assessment. 

AutoDL is an emerging field, automating DL pipelines; 

subsequently, comparing its performance against 

conventional models. Results show that conventional DL 

outperforms AutoDL by 1.8% for binary class data and 1% 

for multiclass data, with accuracies ranging from ~96% to 

~99%.  

Additionally, In [5], the authors carried a study 

focused on forecasting water’s quality in one of Greece’s 

lakes, conventional ML models such as Support Vector 

Regression (SVR) and Decision Tree (DT) were pitted 

against DL models like LSTM, Conventional Neural 

Network (CNN), and a hybrid CNN-LSTM model. The 

objective was to predict levels of Chlorophyll-a (Chl-a) 

and Dissolved Oxygen (DO) using physicochemical 

variables collected between June 2012 and May 2013. The 

novel merged approach showed improved performance 

over standalone models. Lag times of up to two intervals 

were used for prediction. LSTM excelled in DO prediction, 

while both DL models performed similarly for Chl-a. The 

merged CNN-LSTM approach demonstrated superior 

predictive accuracy for both variables, effectively 

capturing variations in DO concentrations. Evaluation 

metrics included correlation coefficients, RMSE, MAE, 

and graphical analyses, revealing the hybrid model's 

enhanced predictive capabilities in capturing diverse 

water quality levels. 

 Moreover, research proposed by [6] addresses the 

precise estimation of Effluent Total Nitrogen (E-TN) for 

optimizing the operations of Wastewater Treatment 

facilities (WWTPs), ensuring regulatory compliance and 

reducing energy usage. The complexity inherent in 

WWTPs poses a significant obstacle for accurate 

multivariate time series forecasting of E-TN due to their 

intricate nonlinear nature. To tackle this challenge, a new 

predictive framework is proposed, integrating the Golden 

Jackal Optimization (GJO) algorithm for feature selection 

and a hybrid DL architecture, the CNN-LSTM-TCN (CLT) 

model. CLT combines CNN, LSTM, and TCN to capture 

complex interrelations within WWTP datasets. A two-

step feature selection process enhances prediction 

precision, with GJO fine-tuning CLT hyperparameters. 

Findings underscore the effectiveness of the proposed 

system in precisely forecasting multivariate water quality 

time series in WWTPs, demonstrating superior 

performance across diverse prediction scenarios. 

In this study performed by [7] supervised learning is 

utilized to develop precise predictive models from 

labeled data, aiming to categorize water as safe or unsafe 

based on its characteristics. Various ML models are 

assessed for binary classification using features like 

physical, chemical, and microbial parameters. The 

findings demonstrate that the Stacking model, in 

combination with SMOTE and 10-fold cross-validation, it 

surpasses other methods, yielding remarkable outcomes. 

Notably, it demonstrates an accuracy and recall rate of 

98.1%, precision of 100%, and an AUC value of 99.9%. 

Furthermore, a study by [8] introduces a merged IoT 

and ML system for detailed water quality forecasting. By 

analyzing Rohri Canal data in SBA, Pakistan, the system 

predicts Water Quality Class and Water Quality Index 

(WQI). ML models like LSTM, SVR, MLP, and Nonlinear 

Autoregressive Neural Network (NARNet) predict WQI, 

while Support Vector Machine (SVM), Extreme Gradient 

Boosting (XGBoost), DT, and Random Forest (RF) forecast 

WQC. Results indicate that the MLP regression model 

excels with the lowest errors and highest R-squared (R2) 

of 0.93. RF leads in classification, achieving high precision 

(0.93), accuracy (0.91), recall (0.92), and a F1-score of 0.91. 

Notably, models perform better with smaller datasets. 

This study demonstrates enhanced regression and 

classification performance compared to previous research. 
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In another study conducted by [9] a system combining 

a Discrete Wavelet Transform (DWT), LSTM, and an 

Artificial Neural Network (ANN) was created to predict 

the Jinjiang River's water quality. Initially, a MLP-NN 

handled missing values within the water quality dataset. 

Subsequently, the Daubechies 5 (Db5) wavelet divided 

the data into low and high-frequency signals, serving as 

LSTM inputs for training and prediction. Comparative 

analysis against various models such as NAR, 

Autoregressive Integrated Moving Average (ARIMA), 

ANN-LSTM, MLP, LSTM, and CNN-LSTM demonstrated 

the superior performance of the ANN-WT-LSTM model 

across multiple evaluation n metrics, highlighting its 

effectiveness in the forecasting of the quality of water. 

To evaluate the efficacy of the proposed DL method 

incorporating LSTM, Gated Recurrent Unit (GRU), and 

Recurrent Neural Network (RNN) a case study was 

undertaken in a southern Chinese city by [10]. A 

comparison was made between the proposed method, a 

linear approach which is the Multiple Linear Regression, 

(MLR), and a traditional learning algorithm (MLP). The 

DL algorithm demonstrated strong predictive capabilities, 

with GRU outperforming in predicting water quality 

chemical indices and exhibiting a swifter learning curve. 

Findings indicated that GRU outperformed traditional 

ML algorithms by 9.13%–15.03% in terms of R2, 

surpassed RNN and LSTM by 0.82%–5.07%, and 

exceeded linear methods by 37.26%–43.38% for the same 

parameter. 

Moving forward, in a study proposed by [11] a novel 

system for monitoring drinking water potability, 

emphasizing sustainability and environmental 

friendliness was introduced. An adaptive neuro-fuzzy 

inference system (ANFIS) was created for WQI prediction, 

while K-nearest neighbors (KNN) and Feed-forward 

neural network (FFNN) were utilized for WQC. The 

ANFIS model excelled in WQI prediction, while the 

FFNN algorithm achieved 100% accuracy in WQC. 

Notably, ANFIS demonstrated 96.17% accuracy in WQI 

prediction during testing, while FFNN remained robust 

in classifying water quality. 

In the research led by [12], sophisticated AI algorithms 

were formulated to forecast the Water Quality Index 

(WQI) and categorize water quality. SVM, K-NN, and 

Naive Bayes algorithms were utilized for Water Quality 

Classification (WQC) forecasting while NARNet and 

LSTM DL models were applied for WQI prediction. The 

assessment of the models, based on statistical metrics, 

was conducted using a dataset featuring 7 key parameters, 

showcasing their accuracy in predicting WQI and 

classifying water quality effectively. Results indicated 

that NARNET slightly outperformed LSTM in WQI 

prediction, while SVM achieved the highest WQC 

prediction accuracy with 97.01%. During testing, LSTM 

and NARNET showed close accuracies with slight 

differences in regression coefficients with 96.17% and 

94.21% respectively.  

Finally, in a study conducted by [13] ML models were 

trained using the Water Quality dataset sourced from the 

Indian Government website via Kaggle. The WQI served 

as the basis for data categorization. Various ML 

algorithms, including DTs, MLP, XGBoost, KNN, and 

SVM, were investigated. To evaluate model effectiveness, 

metrics including Precision, Recall, Accuracy, and F1-

Score were utilized. Results indicated that XGBoost 

exhibited superior performance as a water quality 

classifier, boasting an accuracy of 95.12%, closely 

followed by SVM with an accuracy of 93.22%. 

While DL and ML approaches have proven effective 

in water quality assessment, several limitations exist in 

prior work. AutoDL, despite its automation, struggles 

with domain-specific optimizations, as conventional 

models outperform it by 1.8% in binary classification and 

1% in multiclass classification. Additionally, model 

comparisons often lack robust justification, as seen in 

Barzegar et al., where SVR, DT, LSTM, CNN, and CNN-

LSTM were analyzed for specific water quality 

parameters without evaluating fully connected 

architectures like MLP, which have shown strong 

performance in another research.  

Furthermore, hybrid models like CLT introduce 

additional computational complexity, requiring feature 

selection via the GJO algorithm, making them less 

practical for real-time water monitoring. Similarly, 

supervised learning approaches using SMOTE, as in 

Dritsas and Trigka, achieve high accuracy (98.1%) but risk 

bias due to synthetic data introduction. Prior research 

highlights MLP’s strength in regression tasks, with Najah 

et al. reporting an R² of 0.93, outperforming other models, 

while Wu and Wang demonstrated MLP’s effectiveness 

in handling missing data alongside LSTM’s ability to 

process sequential dependencies. Moreover, Jiang et al. 

showed that GRU outperformed LSTM and traditional 

ML models by 9.13%-15.03% in R², reinforcing the 

effectiveness of recurrent models for time series water 

quality prediction. These findings emphasize the need for 

a more balanced evaluation of model architectures, 

computational feasibility, and data augmentation risks in 

future research. 

3.  Research Methodology and approach 

3.1. Background of the Research Study  

Google collab was the platform for conducting this 

study; moreover, ML libraries in python called keras and 

Scikit-learn were used in the programming phase. 

Moreover, two ML techniques being LSTM, and MLP 
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were used on the dataset. This study followed a six-phase 

methodology, which is CRISP-DM [14].  

 

Figure 1. Phases of the CRISP-DM Methodology. 

3.2. Dataset Description  

The dataset focuses on water quality (WQ) parameters 

in India, collected between 2012 and 2021. Data was 

gathered from an authorized Indian government website, 

comprising 7339 entries with six attributes per entry and 

a solitary outcome variable [15]. A breakdown of these 

attributes is detailed in Table 1. 

When evaluating water drinkability various essential 

factors were considered, such as Biochemical Oxygen 

Demand (BOD), electrical conductivity (EC), pH, DO, and 

total coliforms (TC). A WQI is calculated using these 

parameters to provide a comprehensive evaluation of 

water potability. The WQI calculation involves deriving 

new parameters from the original measurements using a 

specific classification system. These derived parameters 

are denoted as ndo, nco, nbdo, nec, npH, and nna, 

representing normalized values for pH, DO, TC, BOD, EC, 

and NA. Weighted averages are then calculated for each 

parameter using the following formulas shown in 

equation (1-7)  [15]: 

• Weighted contribution for pH is given by: 

                                        𝑤𝑝ℎ = 𝑛𝑝ℎ ∗ 0.165                     (1) 

• Weighted contribution for DO is given by: 

                                        𝑤𝑑𝑜 = 𝑛𝑝𝑜 ∗ 0.281                      (2) 

• Weighted contribution for Biochemical Oxygen 

Demand (BOD) is given by: 

                                      𝑤𝑏𝑑𝑜 = 𝑛𝑏𝑑𝑜 ∗ 0.234                     (3) 

• Weighted contribution for Electrical Conductivity 

(CE) is given by: 

                                     𝑤𝑒𝑐 = 𝑛𝑒𝑐 ∗ 0.009                             (4) 

• Weighted contribution for Sodium (NA) is given by: 

                                         𝑤𝑛𝑎 = 𝑛𝑛𝑎 ∗ 0.028                     (5) 

• Weighted contribution for Total Coliform (TC) is 

given by: 

                         𝑤𝑐𝑜 = 𝑛𝑐𝑜 ∗ 0.281                          (6) 

• The Final Water Quality Index (WQI) is  

Calculated using the formula: 

WQI = 𝑤𝑝ℎ + 𝑤𝑑𝑜 + 𝑤𝑏𝑑𝑜 + 𝑤𝑒𝑐 + 𝑤𝑛𝑎 + 𝑤𝑐𝑜        (7) 

Water samples are categorized as drinkable (1) when 

the WQI equals or exceeds 75, and undrinkable (0) if the 

WQI falls below 75. This method of classification offers a 

uniform method for evaluating water suitability using 

defined benchmarks and measured concentrations. 

Table 1. Dataset  Description 

 

3.3. Dataset Preparation 

After examining the data, the next step is to prepare it 

for analysis and model building. This involves addressing 

missing data, transforming categorical variables into 

numerical values, and dividing the dataset into 

appropriate testing and training subsets. 

3.3.1. Missing Data 

In this study, two essential functions commonly used 

to check for missing or duplicated data in a dataset, 

isnull().sum() and duplicated().sum(), were applied to 

ensure data integrity. The isnull().sum() function 

identifies and counts missing values in each column, 

while duplicated().sum() detects redundant rows. After 

executing these functions, the results confirmed that there 

were no missing or duplicated data, affirming the 

dataset’s completeness and consistency. This ensures 

higher data quality, ultimately enhancing the reliability 

and accuracy of the ML model. 

3.3.2. Balancing the Dataset 

The value counts () function was used to assess class 

balance, revealing 3,958 instances for class 0 and 3,381 

instances for class 1. A dataset is typically considered 

imbalanced if one class significantly outweighs the other. 

Attribute Description Datatypes

Dissolved 

Oxygen (DO) 
Optimum DO Concentration is 10 mg/L. float64

pH  The required pH is 8.5. float64

Conductivity 

(EC) 
The wanted Conductivity is 1,000 µS/cm. float64

Biological 

Oxygen Demand 

(BOD) 

The optimum concentration is 5 mg/L. float64

Nitrate (NA) The optimum concentration is 45 mg/L. float64

Total coliform 

(TC) 
The required value is 100 per 100 mL float64

Potability

A rating of 1 indicated that the water is safe 

to drink, while a rating of 0 means it is not 

safe to drink.

object
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To quantify this, the imbalance ratio was calculated as 

3958 / 3381 ≈ 1.17, indicating that the dataset is relatively 

balanced. Generally, datasets with imbalance ratios 

exceeding 1.5–2.0 are considered imbalanced and may 

require techniques such as SMOTE (Synthetic Minority 

Over-sampling Technique) or undersampling to correct 

class distribution. 

3.3.3. Encoding Categorical Data 

The LabelEncoder function was applied to the dataset 

to convert categorical data into numerical values, a crucial 

step for preparing data for ML models, which typically 

require numerical inputs. In this study, water samples 

were classified based on the WQI, where a value of 75 or 

higher indicated potable water (labeled as 1), while a WQI 

below 75 signified non-potable water (labeled as 0). This 

transformation ensures that the dataset is properly 

formatted for model training therefore enhancing the 

efficiency of the classification process [16].  

3.3.4. Splitting Data 

To assess the capabilities of the algorithms at water 

potability forecasting, the study employed a 10-fold cross-

validation approach. This method ensured a robust 

assessment of the algorithms, improving the generalizability 

and reliability of the research discoveries [17]. 

3.3.5. Data Normalization   

The numerical data was normalized to scale values 

within a predefined range, typically 0 to 1 or -1 to 1, 

ensuring uniform feature contribution. This 

transformation prevents any single variable from 

dominating the model, promoting balanced and unbiased 

learning. 

3.4.  Modelling 

The two NNs, MLP and LSTM are implemented to 

predict water potability. 

MLPs:  a type of ANN, excel at solving complex 

classification and regression tasks.  These networks are 

structured as layers of interconnected nodes, each 

processing information and relaying it to the next layer.  

The network learns by fine-tuning the connections 

between nodes, enabling it to recognize complex patterns 

within data.  MLPs are particularly adept at handling 

non-linear relationships and can be trained to achieve 

high accuracy across a wide range of applications [18]. 

In this study The MLP model had been configured 

with 2-3 hidden layers, with each layer having 64, 128, or 

256 neurons, depending on the complexity of the task. 

The activation functions used had been ReLU for the 

hidden layers to facilitate efficient training and Sigmoid 

for the output layer to support binary classification. The 

Adam optimizer had been selected for its adaptive 

learning properties, while the Binary Crossentropy loss 

function had been utilized to optimize performance for 

the binary classification task. The batch size had been set 

to 64 to balance computational efficiency and memory 

usage. The model had been trained over 50 to 100 epochs, 

with a learning rate of 0.001 to ensure stable convergence. 

Additionally, dropout rates between 0.2 and 0.3 had been 

applied to prevent overfitting during training. 

LSTM: a type of RNN, designed to handle sequential 

data. Unlike traditional RNNs, it utilizes a unique 

memory cell structure that allows them to retain 

information over extended periods. This renders them 

well-suited for assignments encompassing natural 

language processing, time series analysis, and speech 

recognition. LSTMs' ability to "remember" past 

information enables them to grasp extended  

dependencies within sequences, leading to improved 

accuracy in predicting future outcomes [19]. 

 In this study the LSTM model had been configured 

using a network architecture comprising 1-2 LSTM layers 

followed by a Dense layer. The number of units (neurons) 

in each LSTM layer had ranged from 64 to 256, depending 

on the data’s complexity. The activation functions used 

had been Tanh for the LSTM layers and Sigmoid for the 

output layer, facilitating efficient learning and binary 

classification. The Adam optimizer had been employed 

for its adaptive learning capabilities, paired with the 

Binary Cross entropy loss function for optimizing binary 

classification tasks. The batch size had been set to 64, 

balancing memory usage and computational efficiency. 

The model had been trained over 50 to 100 epochs, with 

dropout rates between 0.2 and 0.5, and recurrent dropout 

rates ranging from 0.2 to 0.3 to reduce overfitting. Finally, 

the learning rate had been set to 0.001 to ensure steady 

convergence during training.      

3.5.  Performance Evaluation  

The capabilities of the NNs are identified through 

accuracy, sensitivity, precision, and ROC-AUC are all 

used to measure their performance. 

3.5.1. Accuracy:  

This metric represents the portion of true forecast by a 

model out of all predictions made as shown in equation 

(8) [20].  

             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁 

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁 
               (8) 

3.5.2. F-measure:  

The F-measure provides an equitable evaluation of a 

model's precision and recall. It calculates a weighted 

average of these two metrics, providing an extensive 

assessment of the model's capabilities shown in equation 

(9)  [21].  

http://www.jenrs.com/


 R. Taha et al., P Water Potability Prediction Using Neural Networks 
 

www.jenrs.com                       Journal of Engineering Research and Sciences, 4(5): 1-10, 2025                                                                6 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙 
              (9) 

3.5.3. ROC-AUC Value:  

It evaluates a classification model's performance 

across various threshold settings. The AUC indicates the 

model's ability to distinguish between classes, and higher 

ROC-AUC scores signify improved classification 

performance and discriminative capacity [21].  

3.5.4. Precision:  

It assesses the ratio of accurately identified negative 

instances (true negatives) among all cases predicted as 

negative shown in equation (10)  [21].  

                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
                        (10) 

3.5.5. Recall: 

 It evaluates a model's capacity to accurately detect all 

positive instances present in a dataset shown in equation 

(11)  [21]. 

                                   𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁 
                   (11)   

4.  Results 

The experimental findings revealed that MLP NN 

model outperformed the LSTM NN model in WQC tasks. 

The MLP model achieved a near-perfect accuracy of 

99.9%, significantly higher than the 97.6% accuracy of the 

LSTM model. This suggests that the MLP is more reliable 

in correctly classifying the water potability samples.  

The MLP's F-measure of 99.9% surpasses the LSTM's 

97.1%. Recall and Precision for the MLP model are near 

perfect at 99.9%, indicating that the MLP has a very low 

false positive and false negative rate. The LSTM, while 

still performing well, shows slightly lower precision 

(97.1%) and recall (97.5%), suggesting it is less effective in 

minimizing these errors as shown in Table II and Figure 

2. 

This ROC-AUC curve comparison highlights the 

classification performance of the MLP and LSTM models. 

The MLP model achieves a perfect AUC of 100%, 

represented by a diagonal line, indicating flawless 

classification, whereas the LSTM model attains an AUC 

of 97.9%, demonstrating strong but slightly lower 

performance as shown in Figure 3. 

                      Table 2. Performance Comparison between NNs. 

Models MLP  LSTM 

Accuracy 99.9%  97.6% 

F-measure 99.9%  97.1% 

Precision 99.9%  97.1% 

Recall 99.9%  97.5% 

ROC-AUC 100%  97.9% 

 

 

Figure.2: Performance Plot of Proposed Neural Networks 

 

 

     Figure.3: The ROC-AUC Plot of Proposed Neural Networks 

5. Discussion 

The current study demonstrates the superiority of 

MLP over LSTM for binary water potability classification, 

with MLP achieving 99.9% across all metrics, 

outperforming results from prior studies. Compared to 

Prasad et al., who found conventional DL models 

achieving up to 99% accuracy, and Dritsas and Trigka, 

whose stacking model reached 98.1%, the MLP model’s 

perfect ROC-AUC of 100% sets a new benchmark. While 

LSTM performed slightly below MLP in this study, 

previous research, such as by Barzegar et al. and Liu et al., 

highlights LSTM’s strength in multivariate and temporal 

tasks, particularly in hybrid architectures like CNN-

LSTM and CLT. Studies like Najah et al. and Wu and 

Wang reaffirm MLP's excellence for regression and 

classification tasks, and the current study underscores its 

efficiency for simpler tasks without relying on hybrid 

approaches or extensive preprocessing. This suggests that 

while LSTM excels in capturing temporal dependencies, 

MLP’s straightforward architecture is more effective for 

binary classification.  

http://www.jenrs.com/
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Many previous studies have focused on multi-class 

classification or regression-based approaches to predict 

the WQI rather than directly classifying water as potable 

or non-potable. For instance, Liu et al. employed a hybrid 

CLT model to predict multivariate water quality 

parameters, concentrating on continuous values instead 

of binary classification. Similarly, Barzegar et al. used a 

CNN-LSTM hybrid model to predict DO and Chl-a levels 

rather than focusing on binary classification. These 

models require additional steps to convert their outputs 

into potable/non-potable labels, adding unnecessary 

complexity and potential misclassification risks. 

Consequently, there is a need for direct binary 

classification models that efficiently determine water 

potability. The current research explicitly focuses on 

binary classification, optimizing the process for direct 

decision-making and achieving a near-perfect accuracy of 

99.9% using the ML model. 

Many prior studies have also overcomplicated their 

models by integrating multiple DL architectures (e.g., 

CNN-LSTM, ANN-WT-LSTM) under the assumption 

that this will enhance predictive accuracy. Wu and Wang, 

for example, used a hybrid ANN-Wavelet Transform-

LSTM model, significantly increasing computational 

complexity. Similarly, Najah et al. combined IoT with ML 

models such as LSTM, SVR, MLP, and NARNet for WQI 

prediction, instead of opting for a simpler and more 

effective classifier. These hybrid models tend to be 

computationally expensive, require extensive 

hyperparameter tuning, and lack interpretability, making 

them impractical for real-time applications. Additionally, 

many studies fail to demonstrate whether the added 

complexity truly results in better performance than 

simpler models like MLP. In contrast, the current research 

demonstrates that a straightforward MLP model can 

outperform LSTM, achieving an accuracy of 99.9% 

compared to LSTM’s 97.6%, without requiring hybrid 

architectures. 

Another major limitation in prior work is the neglect 

of feature selection and data preprocessing. Some studies 

feed raw data directly into DL models without 

conducting proper feature selection or normalization. For 

example, Liu et al. applied GJO for feature selection, but 

many other studies lacked systematic feature engineering. 

The absence of feature selection can lead to overfitting 

and reduced generalizability. Moreover, many prior 

works do not systematically explore how feature 

normalization or selection impacts model performance. 

The current study addresses this gap by applying proper 

feature engineering, ensuring that only the most relevant 

attributes contribute to model performance, thereby 

improving accuracy and efficiency. 

Additionally, many studies have overlooked 

traditional ML models, assuming that DL models always 

perform better. For instance, Aldhyani et al. compared 

SVM, KNN, and Naïve Bayes with DL models, but many 

other studies did not conduct such benchmarking. 

Traditional ML models, such as DT, RF, and SVM, can 

sometimes perform equally well or even better than DL 

models, particularly with smaller datasets. Many studies 

fail to justify why DL is necessary over simpler, more 

explainable models. In contrast, the current study 

provides a clear justification for using DL. 

The superior performance of MLP over LSTM in this 

study can be attributed to the nature of the task and the 

architectural differences between the two models. MLP, 

being a feedforward NN, is well-suited for binary 

classification tasks where the data lacks significant 

temporal dependencies. Its simpler architecture focuses 

on mapping inputs directly to outputs through fully 

connected layers, enabling efficient learning of non-linear 

relationships in static datasets. 

By critically analyzing prior work, the selection of 

MLP and LSTM had been justified as offering high 

predictive accuracy, robust performance in both 

regression and classification tasks, and efficient 

processing for multivariate tabular data and time-series 

forecasting. Additionally, better scalability for real-world 

applications had been provided compared to 

computationally expensive hybrid models. The ability to 

handle both static and sequential data effectively while 

outperforming existing DL models in accuracy and 

efficiency had made them optimal choices for water 

quality assessment. 

6. Conclusion a Future Direction 

The results clearly demonstrate the inferior 

performance of the LSTM model contrasted to the 

superior MLP model in water potability classification.  

Across all metrics, the MLP consistently outperforms the 

LSTM, achieving near-perfect scores for accuracy, F-

measure, precision, recall, and a perfect ROC-AUC score. 

This suggests that the MLP's architecture is more fitted for 

capturing the intricate relationships and patterns present 

in the datasets concerning water potability, leading to 

more precise predictions. 

This study highlights the crucial role of NNs in 

classification processes, particularly for complex datasets 

like those found in water potability analysis.  NNs, 

utilizing their capability to comprehend intricate patterns 

and adjust to non-linear connections, offer a powerful tool 

for tackling such challenges.  The MLP's superior 

performance in this instance underscores the importance 

of selecting the right NN architecture for the specific task 

since each model excel in different domains. 

Future research can advance water potability 

classification by integrating hybrid DL models, such as 

http://www.jenrs.com/
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combining MLP with CNN or Transformer-based 

architecture, to enhance feature extraction and 

classification accuracy. Utilizing advanced feature 

selection techniques, including genetic algorithms and 

particle swarm optimization, can further refine model 

performance. Expanding from binary to multi-class 

classification would allow for a more detailed evaluation 

of water quality levels. Implementing IoT-enabled real-

time monitoring systems can enable continuous water 

quality tracking and instant alerts when contamination 

exceeds safety thresholds. Additionally, incorporating 

spatiotemporal analysis using GIS and remote sensing 

data can improve predictive capabilities. Exploring 

diverse datasets from various geographical regions and 

environmental conditions would enhance model 

robustness, ensuring its applicability across different 

water sources and pollution levels. 
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