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ABSTRACT: The crucial need for maintaining specific water potability levels depending on the sector 
of utilization, this is becoming increasingly challenging due to the increased pollution. It is therefore 
important to have fast and reliable water potability assessment techniques. A subset of Machine 
Learning (ML); being Deep Learning (DL), can be utilized to develop models capable of measuring 
water quality while assessing its potability with high levels of accuracy; thus, ensuring that water 
meets the set standards based on the required sector of utilization. In this research, the effectiveness 
of Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Neural Networks (NN) were 
contrasted for Water Quality Classification (WQC).  The MLP model demonstrated superior 
performance, achieving higher precision, accuracy, F-measure, recall and the area under the receiver 
operating characteristic curve (ROC-AUC) scores, indicating its effectiveness in this application 
compared to the LSTM approach. The experimental findings revealed that MLP NN model 
outperformed the LSTM NN model in WQC tasks. The MLP model achieved very high performance 
with an accuracy of 99.9%, an F-measure of 99.9%, a precision of 99.9%, a recall of 99.9%, and a ROC-
AUC of 100%, significantly outperforming the LSTM model, which attained an accuracy of 97.6%, an 
F-measure of 97.1%, a precision of 97.1%, a recall of 97.5%, and a ROC-AUC of 97.9%. The study's 
novelty lies in employing DL for binary classification, yielding outstanding outcomes in the crucial 
domain of WQC. 

KEYWORDS:  Artificial Intelligence, Data Analysis, Water Quality Classification, Neural Networks, 
Civil Engineering. 

1. Introduction  

Water is the main and fundamental component in all 
biological processes; hence, it is the principal element 
crucial for sustaining all forms of life and a balanced 
ecosystem. Additionally, being in the industrial age, 
water became vital in a range of manufacturing processes; 
moreover, as time goes water is introduced into further 
domains; therefore, increasing the water demand 
necessary to sustain all these applications [1]. 

As this demand for water increases the issue of water 
scarcity even grows deeper; this is because of the lack of 
clean, directly utilizable water sources; in addition to, the 
continued pollution of water sources due to 
unresponsible human behavior. This dictates water 
treatment processes that transform contaminated water 
into untainted water. The overlapping of water into a 
variety of domains means that there is a spectrum of 
water quality levels depending on the sector [2].  

Water quality and potability are closely related, as 
evaluating water quality involves assessing its 
appropriateness based on its physical, chemical, and 
biological attributes for different uses. Potability 
specifically focuses on whether water is safe for human 
consumption, ensuring it meets health standards and is 
free from harmful contaminants. Water quality refers to 
the overall status of water as reflected through its 
biological, chemical, and physical characteristics, 
determining its suitability for various uses, such as 
agriculture or industrial processes. The differences 
between them affect their assessment techniques: water 
quality assessments may include a broader range of tests 
for pollutants and environmental impact, while potability 
focuses on specific contaminants and health-related 
criteria to ensure drinking safety. Understanding these 
distinctions is crucial for effective water management and 
public health [2]. 
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Conventional methods have been employed to 
evaluate water quality, particularly to ascertain its 
potability; however, these traditional approaches can 
now be replaced by new procedures that ensure higher 
accuracy and precision. These new techniques are 
equipped with the usage of Artificial Intelligence (AI) and 
specifically the usage of DL, a branch of ML [3].      

Machine learning incorporates the utilization of 
mathematical models that can identify the trends and 
characteristics through which water is classified into 
contaminated or untainted depending on the domain. 
Thus, through a range of variables, water quality and 
water potability are instantly assessed and classified with 
nearly faultless accuracy [3]. 

This study seeks to assess and compare the potency of 
two Neural Network (NN) architectures, LSTM and 
MLPs, for WQC; NNs are the fundamental components 
of DL. The study will abide by the Cross-Industry 
Standard Protocol for Data Mining (CRISP-DM) 
methodology working on a dataset obtained from a 
government-maintained official website in India. 

The upcoming segments of this article will be 
organized beginning with literature review, followed by 
methodology, description and preparation of the dataset, 
moving on to the classification algorithm, the outcomes, 
and concluding with both the discussion and the 
conclusion. 

2.  Literature Review 

Due to the significance of the topic, much research has 
been targeted at the topic of water potability forecasting. 
This section will highlight some of these contributions to 
set a scientific base for comparison with the results 
obtained in this work. 

 To start, a study conducted by [4] investigates the 
applicability of AutoDL in Water Quality Assessment. 
AutoDL is an emerging field, automating DL pipelines; 
subsequently, comparing its performance against 
conventional models. Results show that conventional DL 
outperforms AutoDL by 1.8% for binary class data and 1% 
for multiclass data, with accuracies ranging from ~96% to 
~99%.  

Additionally, In [5], the authors carried a study 
focused on forecasting water’s quality in one of Greece’s 
lakes, conventional ML models such as Support Vector 
Regression (SVR) and Decision Tree (DT) were pitted 
against DL models like LSTM, Conventional Neural 
Network (CNN), and a hybrid CNN-LSTM model. The 
objective was to predict levels of Chlorophyll-a (Chl-a) 
and Dissolved Oxygen (DO) using physicochemical 
variables collected between June 2012 and May 2013. The 
novel merged approach showed improved performance 
over standalone models. Lag times of up to two intervals 

were used for prediction. LSTM excelled in DO prediction, 
while both DL models performed similarly for Chl-a. The 
merged CNN-LSTM approach demonstrated superior 
predictive accuracy for both variables, effectively 
capturing variations in DO concentrations. Evaluation 
metrics included correlation coefficients, RMSE, MAE, 
and graphical analyses, revealing the hybrid model's 
enhanced predictive capabilities in capturing diverse 
water quality levels. 

 Moreover, research proposed by [6] addresses the 
precise estimation of Effluent Total Nitrogen (E-TN) for 
optimizing the operations of Wastewater Treatment 
facilities (WWTPs), ensuring regulatory compliance and 
reducing energy usage. The complexity inherent in 
WWTPs poses a significant obstacle for accurate 
multivariate time series forecasting of E-TN due to their 
intricate nonlinear nature. To tackle this challenge, a new 
predictive framework is proposed, integrating the Golden 
Jackal Optimization (GJO) algorithm for feature selection 
and a hybrid DL architecture, the CNN-LSTM-TCN (CLT) 
model. CLT combines CNN, LSTM, and TCN to capture 
complex interrelations within WWTP datasets. A two-
step feature selection process enhances prediction 
precision, with GJO fine-tuning CLT hyperparameters. 
Findings underscore the effectiveness of the proposed 
system in precisely forecasting multivariate water quality 
time series in WWTPs, demonstrating superior 
performance across diverse prediction scenarios. 

In this study performed by [7] supervised learning is 
utilized to develop precise predictive models from 
labeled data, aiming to categorize water as safe or unsafe 
based on its characteristics. Various ML models are 
assessed for binary classification using features like 
physical, chemical, and microbial parameters. The 
findings demonstrate that the Stacking model, in 
combination with SMOTE and 10-fold cross-validation, it 
surpasses other methods, yielding remarkable outcomes. 
Notably, it demonstrates an accuracy and recall rate of 
98.1%, precision of 100%, and an AUC value of 99.9%. 

Furthermore, a study by [8] introduces a merged IoT 
and ML system for detailed water quality forecasting. By 
analyzing Rohri Canal data in SBA, Pakistan, the system 
predicts Water Quality Class and Water Quality Index 
(WQI). ML models like LSTM, SVR, MLP, and Nonlinear 
Autoregressive Neural Network (NARNet) predict WQI, 
while Support Vector Machine (SVM), Extreme Gradient 
Boosting (XGBoost), DT, and Random Forest (RF) forecast 
WQC. Results indicate that the MLP regression model 
excels with the lowest errors and highest R-squared (R2) 
of 0.93. RF leads in classification, achieving high precision 
(0.93), accuracy (0.91), recall (0.92), and a F1-score of 0.91. 
Notably, models perform better with smaller datasets. 
This study demonstrates enhanced regression and 
classification performance compared to previous research. 
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In another study conducted by [9] a system combining 
a Discrete Wavelet Transform (DWT), LSTM, and an 
Artificial Neural Network (ANN) was created to predict 
the Jinjiang River's water quality. Initially, a MLP-NN 
handled missing values within the water quality dataset. 
Subsequently, the Daubechies 5 (Db5) wavelet divided 
the data into low and high-frequency signals, serving as 
LSTM inputs for training and prediction. Comparative 
analysis against various models such as NAR, 
Autoregressive Integrated Moving Average (ARIMA), 
ANN-LSTM, MLP, LSTM, and CNN-LSTM demonstrated 
the superior performance of the ANN-WT-LSTM model 
across multiple evaluation n metrics, highlighting its 
effectiveness in the forecasting of the quality of water. 

To evaluate the efficacy of the proposed DL method 
incorporating LSTM, Gated Recurrent Unit (GRU), and 
Recurrent Neural Network (RNN) a case study was 
undertaken in a southern Chinese city by [10]. A 
comparison was made between the proposed method, a 
linear approach which is the Multiple Linear Regression, 
(MLR), and a traditional learning algorithm (MLP). The 
DL algorithm demonstrated strong predictive capabilities, 
with GRU outperforming in predicting water quality 
chemical indices and exhibiting a swifter learning curve. 
Findings indicated that GRU outperformed traditional 
ML algorithms by 9.13%–15.03% in terms of R2, 
surpassed RNN and LSTM by 0.82%–5.07%, and 
exceeded linear methods by 37.26%–43.38% for the same 
parameter. 

Moving forward, in a study proposed by [11] a novel 
system for monitoring drinking water potability, 
emphasizing sustainability and environmental 
friendliness was introduced. An adaptive neuro-fuzzy 
inference system (ANFIS) was created for WQI prediction, 
while K-nearest neighbors (KNN) and Feed-forward 
neural network (FFNN) were utilized for WQC. The 
ANFIS model excelled in WQI prediction, while the 
FFNN algorithm achieved 100% accuracy in WQC. 
Notably, ANFIS demonstrated 96.17% accuracy in WQI 
prediction during testing, while FFNN remained robust 
in classifying water quality. 

In the research led by [12], sophisticated AI algorithms 
were formulated to forecast the Water Quality Index 
(WQI) and categorize water quality. SVM, K-NN, and 
Naive Bayes algorithms were utilized for Water Quality 
Classification (WQC) forecasting while NARNet and 
LSTM DL models were applied for WQI prediction. The 
assessment of the models, based on statistical metrics, 
was conducted using a dataset featuring 7 key parameters, 
showcasing their accuracy in predicting WQI and 
classifying water quality effectively. Results indicated 
that NARNET slightly outperformed LSTM in WQI 
prediction, while SVM achieved the highest WQC 
prediction accuracy with 97.01%. During testing, LSTM 

and NARNET showed close accuracies with slight 
differences in regression coefficients with 96.17% and 
94.21% respectively.  

Finally, in a study conducted by [13] ML models were 
trained using the Water Quality dataset sourced from the 
Indian Government website via Kaggle. The WQI served 
as the basis for data categorization. Various ML 
algorithms, including DTs, MLP, XGBoost, KNN, and 
SVM, were investigated. To evaluate model effectiveness, 
metrics including Precision, Recall, Accuracy, and F1-
Score were utilized. Results indicated that XGBoost 
exhibited superior performance as a water quality 
classifier, boasting an accuracy of 95.12%, closely 
followed by SVM with an accuracy of 93.22%. 

While DL and ML approaches have proven effective 
in water quality assessment, several limitations exist in 
prior work. AutoDL, despite its automation, struggles 
with domain-specific optimizations, as conventional 
models outperform it by 1.8% in binary classification and 
1% in multiclass classification. Additionally, model 
comparisons often lack robust justification, as seen in 
Barzegar et al., where SVR, DT, LSTM, CNN, and CNN-
LSTM were analyzed for specific water quality 
parameters without evaluating fully connected 
architectures like MLP, which have shown strong 
performance in another research.  

Furthermore, hybrid models like CLT introduce 
additional computational complexity, requiring feature 
selection via the GJO algorithm, making them less 
practical for real-time water monitoring. Similarly, 
supervised learning approaches using SMOTE, as in 
Dritsas and Trigka, achieve high accuracy (98.1%) but risk 
bias due to synthetic data introduction. Prior research 
highlights MLP’s strength in regression tasks, with Najah 
et al. reporting an R² of 0.93, outperforming other models, 
while Wu and Wang demonstrated MLP’s effectiveness 
in handling missing data alongside LSTM’s ability to 
process sequential dependencies. Moreover, Jiang et al. 
showed that GRU outperformed LSTM and traditional 
ML models by 9.13%-15.03% in R², reinforcing the 
effectiveness of recurrent models for time series water 
quality prediction. These findings emphasize the need for 
a more balanced evaluation of model architectures, 
computational feasibility, and data augmentation risks in 
future research. 

3.  Research Methodology and approach 

3.1. Background of the Research Study  

Google collab was the platform for conducting this 
study; moreover, ML libraries in python called keras and 
Scikit-learn were used in the programming phase. 
Moreover, two ML techniques being LSTM, and MLP 
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were used on the dataset. This study followed a six-phase 
methodology, which is CRISP-DM [14].  

 
Figure 1. Phases of the CRISP-DM Methodology. 

3.2. Dataset Description  

The dataset focuses on water quality (WQ) parameters 
in India, collected between 2012 and 2021. Data was 
gathered from an authorized Indian government website, 
comprising 7339 entries with six attributes per entry and 
a solitary outcome variable [15]. A breakdown of these 
attributes is detailed in Table 1. 

When evaluating water drinkability various essential 
factors were considered, such as Biochemical Oxygen 
Demand (BOD), electrical conductivity (EC), pH, DO, and 
total coliforms (TC). A WQI is calculated using these 
parameters to provide a comprehensive evaluation of 
water potability. The WQI calculation involves deriving 
new parameters from the original measurements using a 
specific classification system. These derived parameters 
are denoted as ndo, nco, nbdo, nec, npH, and nna, 
representing normalized values for pH, DO, TC, BOD, EC, 
and NA. Weighted averages are then calculated for each 
parameter using the following formulas shown in 
equation (1-7)  [15]: 

• Weighted contribution for pH is given by: 

                                        𝑤𝑤𝑤𝑤ℎ = 𝑛𝑛𝑛𝑛ℎ ∗ 0.165                     (1) 

• Weighted contribution for DO is given by: 

                                        𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 0.281                      (2) 

• Weighted contribution for Biochemical Oxygen 
Demand (BOD) is given by: 

                                      𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 0.234                     (3) 

• Weighted contribution for Electrical Conductivity 
(CE) is given by: 

                                     𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 0.009                             (4) 

• Weighted contribution for Sodium (NA) is given by: 

                                         𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 0.028                      (5) 

• Weighted contribution for Total Coliform (TC) is 
given by: 

                         𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 0.281                          (6) 

• The Final Water Quality Index (WQI) is  

Calculated using the formula: 

WQI = 𝑤𝑤𝑤𝑤ℎ + 𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤        (7) 

Water samples are categorized as drinkable (1) when 
the WQI equals or exceeds 75, and undrinkable (0) if the 
WQI falls below 75. This method of classification offers a 
uniform method for evaluating water suitability using 
defined benchmarks and measured concentrations. 

Table 1. Dataset  Description 

 

3.3. Dataset Preparation 

After examining the data, the next step is to prepare it 
for analysis and model building. This involves addressing 
missing data, transforming categorical variables into 
numerical values, and dividing the dataset into 
appropriate testing and training subsets. 

3.3.1. Missing Data 

In this study, two essential functions commonly used 
to check for missing or duplicated data in a dataset, 
isnull().sum() and duplicated().sum(), were applied to 
ensure data integrity. The isnull().sum() function 
identifies and counts missing values in each column, 
while duplicated().sum() detects redundant rows. After 
executing these functions, the results confirmed that there 
were no missing or duplicated data, affirming the 
dataset’s completeness and consistency. This ensures 
higher data quality, ultimately enhancing the reliability 
and accuracy of the ML model. 

3.3.2. Balancing the Dataset 

The value counts () function was used to assess class 
balance, revealing 3,958 instances for class 0 and 3,381 
instances for class 1. A dataset is typically considered 
imbalanced if one class significantly outweighs the other. 

Attribute Description Datatypes

Dissolved 
Oxygen (DO)  Optimum DO Concentration is 10 mg/L. float64

pH  The required pH is 8.5. float64

Conductivity 
(EC)  The wanted Conductivity is 1,000 µS/cm. float64

Biological 
Oxygen Demand 

(BOD) 
The optimum concentration is 5 mg/L. float64

Nitrate (NA) The optimum concentration is 45 mg/L. float64

Total coliform 
(TC)  The required value is 100 per 100 mL float64

Potability
A rating of 1 indicated that the water is safe 
to drink, while a rating of 0 means it is not 
safe to drink.

object
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To quantify this, the imbalance ratio was calculated as 
3958 / 3381 ≈ 1.17, indicating that the dataset is relatively 
balanced. Generally, datasets with imbalance ratios 
exceeding 1.5–2.0 are considered imbalanced and may 
require techniques such as SMOTE (Synthetic Minority 
Over-sampling Technique) or undersampling to correct 
class distribution. 

3.3.3. Encoding Categorical Data 

The LabelEncoder function was applied to the dataset 
to convert categorical data into numerical values, a crucial 
step for preparing data for ML models, which typically 
require numerical inputs. In this study, water samples 
were classified based on the WQI, where a value of 75 or 
higher indicated potable water (labeled as 1), while a WQI 
below 75 signified non-potable water (labeled as 0). This 
transformation ensures that the dataset is properly 
formatted for model training therefore enhancing the 
efficiency of the classification process [16].  

3.3.4. Splitting Data 
To assess the capabilities of the algorithms at water 

potability forecasting, the study employed a 10-fold cross-
validation approach. This method ensured a robust 
assessment of the algorithms, improving the generalizability 
and reliability of the research discoveries [17]. 
3.3.5. Data Normalization   

The numerical data was normalized to scale values 
within a predefined range, typically 0 to 1 or -1 to 1, 
ensuring uniform feature contribution. This 
transformation prevents any single variable from 
dominating the model, promoting balanced and unbiased 
learning. 

3.4.  Modelling 

The two NNs, MLP and LSTM are implemented to 
predict water potability. 

MLPs:  a type of ANN, excel at solving complex 
classification and regression tasks.  These networks are 
structured as layers of interconnected nodes, each 
processing information and relaying it to the next layer.  
The network learns by fine-tuning the connections 
between nodes, enabling it to recognize complex patterns 
within data.  MLPs are particularly adept at handling 
non-linear relationships and can be trained to achieve 
high accuracy across a wide range of applications [18]. 

In this study The MLP model had been configured 
with 2-3 hidden layers, with each layer having 64, 128, or 
256 neurons, depending on the complexity of the task. 
The activation functions used had been ReLU for the 
hidden layers to facilitate efficient training and Sigmoid 
for the output layer to support binary classification. The 
Adam optimizer had been selected for its adaptive 
learning properties, while the Binary Crossentropy loss 

function had been utilized to optimize performance for 
the binary classification task. The batch size had been set 
to 64 to balance computational efficiency and memory 
usage. The model had been trained over 50 to 100 epochs, 
with a learning rate of 0.001 to ensure stable convergence. 
Additionally, dropout rates between 0.2 and 0.3 had been 
applied to prevent overfitting during training. 

LSTM: a type of RNN, designed to handle sequential 
data. Unlike traditional RNNs, it utilizes a unique 
memory cell structure that allows them to retain 
information over extended periods. This renders them 
well-suited for assignments encompassing natural 
language processing, time series analysis, and speech 
recognition. LSTMs' ability to "remember" past 
information enables them to grasp extended  
dependencies within sequences, leading to improved 
accuracy in predicting future outcomes [19]. 

 In this study the LSTM model had been configured 
using a network architecture comprising 1-2 LSTM layers 
followed by a Dense layer. The number of units (neurons) 
in each LSTM layer had ranged from 64 to 256, depending 
on the data’s complexity. The activation functions used 
had been Tanh for the LSTM layers and Sigmoid for the 
output layer, facilitating efficient learning and binary 
classification. The Adam optimizer had been employed 
for its adaptive learning capabilities, paired with the 
Binary Cross entropy loss function for optimizing binary 
classification tasks. The batch size had been set to 64, 
balancing memory usage and computational efficiency. 
The model had been trained over 50 to 100 epochs, with 
dropout rates between 0.2 and 0.5, and recurrent dropout 
rates ranging from 0.2 to 0.3 to reduce overfitting. Finally, 
the learning rate had been set to 0.001 to ensure steady 
convergence during training.      

3.5.  Performance Evaluation  

The capabilities of the NNs are identified through 
accuracy, sensitivity, precision, and ROC-AUC are all 
used to measure their performance. 

3.5.1. Accuracy:  

This metric represents the portion of true forecast by a 
model out of all predictions made as shown in equation 
(8) [20].  

             𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹 
               (8) 

3.5.2. F-measure:  

The F-measure provides an equitable evaluation of a 
model's precision and recall. It calculates a weighted 
average of these two metrics, providing an extensive 
assessment of the model's capabilities shown in equation 
(9)  [21].  
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𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

              (9) 

3.5.3. ROC-AUC Value:  

It evaluates a classification model's performance 
across various threshold settings. The AUC indicates the 
model's ability to distinguish between classes, and higher 
ROC-AUC scores signify improved classification 
performance and discriminative capacity [21].  

3.5.4. Precision:  

It assesses the ratio of accurately identified negative 
instances (true negatives) among all cases predicted as 
negative shown in equation (10)  [21].  

                        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
                        (10) 

3.5.5. Recall: 

 It evaluates a model's capacity to accurately detect all 
positive instances present in a dataset shown in equation 
(11)  [21]. 

                                   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 
                   (11)   

4.  Results 

The experimental findings revealed that MLP NN 
model outperformed the LSTM NN model in WQC tasks. 
The MLP model achieved a near-perfect accuracy of 
99.9%, significantly higher than the 97.6% accuracy of the 
LSTM model. This suggests that the MLP is more reliable 
in correctly classifying the water potability samples.  

The MLP's F-measure of 99.9% surpasses the LSTM's 
97.1%. Recall and Precision for the MLP model are near 
perfect at 99.9%, indicating that the MLP has a very low 
false positive and false negative rate. The LSTM, while 
still performing well, shows slightly lower precision 
(97.1%) and recall (97.5%), suggesting it is less effective in 
minimizing these errors as shown in Table II and Figure 
2. 

This ROC-AUC curve comparison highlights the 
classification performance of the MLP and LSTM models. 
The MLP model achieves a perfect AUC of 100%, 
represented by a diagonal line, indicating flawless 
classification, whereas the LSTM model attains an AUC 
of 97.9%, demonstrating strong but slightly lower 
performance as shown in Figure 3. 
                      Table 2. Performance Comparison between NNs. 

Models MLP  LSTM 

Accuracy 99.9%  97.6% 

F-measure 99.9%  97.1% 

Precision 99.9%  97.1% 

Recall 99.9%  97.5% 

ROC-AUC 100%  97.9% 

 

 
Figure.2: Performance Plot of Proposed Neural Networks 

 

 
     Figure.3: The ROC-AUC Plot of Proposed Neural Networks 

5. Discussion 

The current study demonstrates the superiority of 
MLP over LSTM for binary water potability classification, 
with MLP achieving 99.9% across all metrics, 
outperforming results from prior studies. Compared to 
Prasad et al., who found conventional DL models 
achieving up to 99% accuracy, and Dritsas and Trigka, 
whose stacking model reached 98.1%, the MLP model’s 
perfect ROC-AUC of 100% sets a new benchmark. While 
LSTM performed slightly below MLP in this study, 
previous research, such as by Barzegar et al. and Liu et al., 
highlights LSTM’s strength in multivariate and temporal 
tasks, particularly in hybrid architectures like CNN-
LSTM and CLT. Studies like Najah et al. and Wu and 
Wang reaffirm MLP's excellence for regression and 
classification tasks, and the current study underscores its 
efficiency for simpler tasks without relying on hybrid 
approaches or extensive preprocessing. This suggests that 
while LSTM excels in capturing temporal dependencies, 
MLP’s straightforward architecture is more effective for 
binary classification.  
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Many previous studies have focused on multi-class 
classification or regression-based approaches to predict 
the WQI rather than directly classifying water as potable 
or non-potable. For instance, Liu et al. employed a hybrid 
CLT model to predict multivariate water quality 
parameters, concentrating on continuous values instead 
of binary classification. Similarly, Barzegar et al. used a 
CNN-LSTM hybrid model to predict DO and Chl-a levels 
rather than focusing on binary classification. These 
models require additional steps to convert their outputs 
into potable/non-potable labels, adding unnecessary 
complexity and potential misclassification risks. 
Consequently, there is a need for direct binary 
classification models that efficiently determine water 
potability. The current research explicitly focuses on 
binary classification, optimizing the process for direct 
decision-making and achieving a near-perfect accuracy of 
99.9% using the ML model. 

Many prior studies have also overcomplicated their 
models by integrating multiple DL architectures (e.g., 
CNN-LSTM, ANN-WT-LSTM) under the assumption 
that this will enhance predictive accuracy. Wu and Wang, 
for example, used a hybrid ANN-Wavelet Transform-
LSTM model, significantly increasing computational 
complexity. Similarly, Najah et al. combined IoT with ML 
models such as LSTM, SVR, MLP, and NARNet for WQI 
prediction, instead of opting for a simpler and more 
effective classifier. These hybrid models tend to be 
computationally expensive, require extensive 
hyperparameter tuning, and lack interpretability, making 
them impractical for real-time applications. Additionally, 
many studies fail to demonstrate whether the added 
complexity truly results in better performance than 
simpler models like MLP. In contrast, the current research 
demonstrates that a straightforward MLP model can 
outperform LSTM, achieving an accuracy of 99.9% 
compared to LSTM’s 97.6%, without requiring hybrid 
architectures. 

Another major limitation in prior work is the neglect 
of feature selection and data preprocessing. Some studies 
feed raw data directly into DL models without 
conducting proper feature selection or normalization. For 
example, Liu et al. applied GJO for feature selection, but 
many other studies lacked systematic feature engineering. 
The absence of feature selection can lead to overfitting 
and reduced generalizability. Moreover, many prior 
works do not systematically explore how feature 
normalization or selection impacts model performance. 
The current study addresses this gap by applying proper 
feature engineering, ensuring that only the most relevant 
attributes contribute to model performance, thereby 
improving accuracy and efficiency. 

Additionally, many studies have overlooked 
traditional ML models, assuming that DL models always 

perform better. For instance, Aldhyani et al. compared 
SVM, KNN, and Naïve Bayes with DL models, but many 
other studies did not conduct such benchmarking. 
Traditional ML models, such as DT, RF, and SVM, can 
sometimes perform equally well or even better than DL 
models, particularly with smaller datasets. Many studies 
fail to justify why DL is necessary over simpler, more 
explainable models. In contrast, the current study 
provides a clear justification for using DL. 

The superior performance of MLP over LSTM in this 
study can be attributed to the nature of the task and the 
architectural differences between the two models. MLP, 
being a feedforward NN, is well-suited for binary 
classification tasks where the data lacks significant 
temporal dependencies. Its simpler architecture focuses 
on mapping inputs directly to outputs through fully 
connected layers, enabling efficient learning of non-linear 
relationships in static datasets. 

By critically analyzing prior work, the selection of 
MLP and LSTM had been justified as offering high 
predictive accuracy, robust performance in both 
regression and classification tasks, and efficient 
processing for multivariate tabular data and time-series 
forecasting. Additionally, better scalability for real-world 
applications had been provided compared to 
computationally expensive hybrid models. The ability to 
handle both static and sequential data effectively while 
outperforming existing DL models in accuracy and 
efficiency had made them optimal choices for water 
quality assessment. 

6. Conclusion a Future Direction 

The results clearly demonstrate the inferior 
performance of the LSTM model contrasted to the 
superior MLP model in water potability classification.  
Across all metrics, the MLP consistently outperforms the 
LSTM, achieving near-perfect scores for accuracy, F-
measure, precision, recall, and a perfect ROC-AUC score. 
This suggests that the MLP's architecture is more fitted for 
capturing the intricate relationships and patterns present 
in the datasets concerning water potability, leading to 
more precise predictions. 

This study highlights the crucial role of NNs in 
classification processes, particularly for complex datasets 
like those found in water potability analysis.  NNs, 
utilizing their capability to comprehend intricate patterns 
and adjust to non-linear connections, offer a powerful tool 
for tackling such challenges.  The MLP's superior 
performance in this instance underscores the importance 
of selecting the right NN architecture for the specific task 
since each model excel in different domains. 

Future research can advance water potability 
classification by integrating hybrid DL models, such as 
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combining MLP with CNN or Transformer-based 
architecture, to enhance feature extraction and 
classification accuracy. Utilizing advanced feature 
selection techniques, including genetic algorithms and 
particle swarm optimization, can further refine model 
performance. Expanding from binary to multi-class 
classification would allow for a more detailed evaluation 
of water quality levels. Implementing IoT-enabled real-
time monitoring systems can enable continuous water 
quality tracking and instant alerts when contamination 
exceeds safety thresholds. Additionally, incorporating 
spatiotemporal analysis using GIS and remote sensing 
data can improve predictive capabilities. Exploring 
diverse datasets from various geographical regions and 
environmental conditions would enhance model 
robustness, ensuring its applicability across different 
water sources and pollution levels. 
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