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ABSTRACT: Wildfires are a growing global concern, causing widespread environmental, economic, 
and health impacts. In the USA, fire incidents have become more frequent and intense due to factors 
such as climate change, prolonged droughts, and human activities. Machine learning plays a vital role 
in predicting and classifying fires by analyzing vast satellite and environmental datasets with high 
speed and accuracy. These models support early warning systems and informed decision-making, 
ultimately helping to reduce damage and improve emergency response strategies. This study evaluates 
the effectiveness of supervised machine learning algorithms—including Decision Tree (DT), Random 
Forest (RF), Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), Logistic Regression (LR), 
and Gradient Boosting Classifier (GBC)—in classifying different fire types. The DT emerges as the top-
performing model, achieving the highest results across all evaluation metrics, including 96.69% 
accuracy, precision, recall, and F1 score. RF follows closely with similarly strong performance, making 
it a highly reliable alternative. GBC ranks third, showing balanced and consistent results above 92% in 
all metrics. In contrast, SVC and LR perform less effectively, particularly in precision and F1 score, 
indicating that they are not ideal choices for fire type classification in this study. The novelty of this 
study lies in its application of a comparative ML framework to classify fire types using real satellite-
based observations specific to the USA. region. By integrating and evaluating multiple ML models on 
this large-scale, real-world dataset, the study provides valuable insights into model suitability for fire 
classification tasks and offers practical guidance for deploying predictive tools in environmental 
monitoring and disaster management systems. 

KEYWORDS:  Artificial Intelligence, Data Analysis, Fire type Classification, Machine Learning, USA, 
NASA, Civil Engineering. 

1. Introduction  

Fires represent a major environmental disaster due to 
their rapid spread, the complexity of containment efforts, 
and the extensive damage they inflict on ecosystems, 
infrastructure, and human health. In the USA, fire 
incidents—particularly wildfires—have become 
increasingly frequent and intense, driven by factors such 
as climate variability, land use changes, and human 
activity. The severe consequences of these events have 
underscored the importance of fire detection, 
classification, and management, making fire monitoring a 
vital component of forestry, environmental protection, 
and emergency response strategies [1]. 

Several critical factors contribute to the occurrence and 
spread of fires across the United States. Climatic 

variables—including high temperatures, strong wind 
speeds, low relative humidity, limited rainfall, and 
lightning probability—create conditions that significantly 
increase the risk of fire ignition and propagation. In 
addition to environmental influences, human-related 
factors such as population density, land development, 
and increased recreational or industrial activity in 
forested and rural regions further elevate fire risk. The 
combination of these natural and anthropogenic elements 
makes fire prediction and classification an increasingly 
urgent priority for disaster management and 
environmental protection [1].  

Artificial Intelligence (AI) plays a transformative role 
in modern wildfire detection and classification systems, 
significantly enhancing the ability to anticipate, monitor, 
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and manage fire events. AI technologies contribute to 
various aspects of wildfire preparedness and response, 
including fuel assessment, fire behavior prediction, real-
time detection, impact estimation, and strategic fire 
management. Leveraging tools such as satellite imagery, 
historical weather data, and computational models, AI 
enables the automated analysis of complex 
environmental patterns [2].  

In particular, Machine Learning (ML)—a subset of 
AI—is increasingly utilized for the early prediction and 
accurate classification of fires by identifying patterns in 
large-scale datasets. These intelligent systems support 
timely decision-making and resource allocation, making 
AI a critical component in reducing wildfire-related risks 
and improving emergency response strategies [2]. 

This study utilizes a dataset comprising fire incident 
records detected throughout the United States in 2021. 
The data were collected by the VIIRS sensor aboard the 
SNPP satellite and sourced from the NASA Open Data 
Portal. The research follows the CRISP-DM (Cross-
Industry Standard Process for Data Mining) framework 
to ensure a structured approach to data analysis and 
model development. Since each machine learning method 
has its own advantages and limitations, a comparative 
evaluation is necessary to determine the most effective 
model for classifying fire types. Therefore, this work 
focuses on assessing the performance of six supervised 
learning algorithms—DT, RF, SVC, KNN, LR, and GBC—
in predicting fire categories. The paper is organized into 
several sections: a literature review, methodology, data 
description and preprocessing, model implementation, 
results, discussion, conclusion, and future 
recommendations. 

2. Literature Review 

Several ML algorithms have been instrumental in 
advancing forest fire forecasting. This section reviews 
various studies that have applied these methods, as 
outlined below recent research has extensively explored 
various ML and AI techniques for forest fire prediction 
and management.  

In [3], the authors addressed critical challenges in 
forest fire prediction by proposing a robust ML 
framework specifically designed to handle severely 
imbalanced datasets, a frequent issue in wildfire 
modeling. The study utilized Copernicus reanalysis data 
from 2000 to 2018, incorporating 27 features including 
temperature, soil moisture, wind speed, and vegetation 
indices to model fire susceptibility in Canada’s boreal 
forests. To manage the 158:1 non-fire-to-fire ratio, the 
authors employed a hybrid sampling strategy combining 
NearMiss3 for undersampling and SMOTE-ENN for 
oversampling with noise reduction. Among the models 
tested—RF, XGB, LGBM, and CatBoost—XGB combined 

with NearMiss3 at a 0.09 sampling ratio achieved optimal 
performance, with 98.08% accuracy, 86.06% sensitivity, 
and 93.03% specificity. Moreover, the study emphasized 
the balance between computational efficiency—
demonstrated by LGBM’s histogram-based learning—
and model interpretability, using feature importance to 
highlight soil moisture as a dominant factor in fire 
prediction. 

Similarly, the  authors in [4] conducted a detailed 
evaluation of ML models using meteorological data from 
Algeria, integrating a temporal-stage approach and 
correlation-based feature selection (CFS) to enhance 
predictive accuracy. The study divided the dataset into 
six-time intervals and focused on weather indicators such 
as temperature, humidity, and FWI components. 
Important predictors including FFMC, DMC, and FWI 
were identified through CFS, significantly improving 
model accuracy. Among the tested models—DT, RF, SVC, 
LR, KNN, and GNB—DT and RF both achieved perfect 
accuracy (100%) during the peak fire season (June–July), 
outperforming SVC, LR, and KNN, each of which 
recorded 98%. The authors also observed that variables 
like wind speed contributed minimally, reinforcing the 
need for region-specific features in fire prediction. 
Although GBC was not part of the study, the findings 
strongly support the use of ensemble and tree-based 
methods for regionally adapted fire forecasting, 
particularly within U.S. contexts. 

In another effort to improve prediction through model 
integration, the  authors in [5] employed an ensemble-
based soft voting strategy combining DT, KNN, and LR 
to map wildfire susceptibility in Iran’s Alborz Mountains. 
Using MODIS thermal anomaly data and a GPS-corrected 
fire inventory, the study incorporated 17 variables across 
anthropogenic, vegetation, topographic, climatic, and 
hydrological domains. The ensemble model achieved an 
average AUC of 88%, peaking at 93% in one-fold during 
10-fold cross-validation, surpassing the performance of 
each individual base classifier. The generated 
susceptibility map classified the landscape into five risk 
zones, revealing that 21% of the area was at high or very 
high risk—correlating well with historical fire records. 
The study underscored the benefits of ensemble learning 
for improving accuracy and robustness, and suggested 
that integrating more advanced models like RF or GBC 
into such frameworks could further improve adaptability 
across diverse USA terrains. 

Expanding the geographical scope, the  authors in  [6] 
conducted a large-scale comparative study involving 
more than 1.04 million fire events from the USA (1992–
2015) and 517 cases from Portugal (2000–2003). The 
dataset featured a wide range of spatial, temporal, and 
environmental variables. A variety of models—DL, DT, 
SGD, ExGBT, and LR—were evaluated for wildfire size 
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classification, with results showing accuracy ranging 
from 80% to 82%. DT and ExGBT outperformed others, 
while GA was employed to derive symbolic 
representations of wildfire behavior, producing 
correlation coefficients above 0.80. To enhance balance 
and interpretability, SMOTE was used to address class 
imbalance, and SHAP values revealed temperature and 
weather indices as critical predictive factors. The study 
demonstrates the value of combining performance-
focused models with interpretable AI techniques, 
especially when handling large, complex wildfire 
datasets like those found in the U.S. 

On a global scale, in [7], the authors used high-
resolution (0.25°) global data from 2015 to evaluate 
wildfire susceptibility based on meteorological variables, 
fire weather indices, and anthropogenic influences. 
Models assessed included RF, XGB, and MLP, 
benchmarked against traditional LR and linear regression. 
The XGB model yielded the highest performance with an 
AUC of 97% for wildfire occurrence and a MAE of 3.13 
km² for burned area prediction. SMOTE and class-
weighted loss functions were used to mitigate data 
imbalance, while SHAP analysis identified key variables 
such as historical fire activity, relative humidity, and 
precipitation.  

Although the study aimed for global applicability, 
regional analysis showed that ML models performed 
better in Africa and Asia, while in North America, 
traditional fire indices remained relevant. These findings 
reinforce the effectiveness of ensemble and deep learning 
models like XGB and MLP, particularly in high-
dimensional, data-rich environments such as the U.S. 

In the context of localized prediction, in [8], the 
authors applied several ML models to Greece’s Attica 
basin, using a custom dataset with 12 meteorological 
features including temperature, humidity, wind, and 
rainfall. The study explored binary classification (fire/no 
fire), multiclass classification (fire severity), and 
regression (burned area prediction). Among the tested 
models—RF, XGB, KNN, NN, SVM, LR, and DT—RF 
performed best for binary classification with 70% 
accuracy using all features, XGB was most effective with 
a reduced four-feature set (67.4% accuracy), and KNN 
achieved the highest R² score of 70% for regression. 
Validation against the Montesinho dataset supported the 
generalizability of the approach, suggesting its 
adaptability to fire-prone regions in the USA. 

Similarly, the  authors in  [9] proposed an ML-driven 
prediction framework utilizing meteorological variables 
and FWI data from Portugal’s Montesinho Park. The 
study tested RF, SVM, GBC, LR, and K-means, using 
stepwise regression and backward elimination for feature 
selection. Temperature and humidity were identified as 
the most influential features. SVM and RF performed best 

in estimating burned areas. While regression 
performance was modest (R² = 14%), clustering via K-
means (optimized with the elbow method) allowed for 
localized fire risk assessment. The authors emphasized 
the value of incorporating spatial and climatic diversity 
into prediction models—especially relevant to U.S. 
regions like California and the Pacific Northwest—and 
suggested further improvements including vegetation 
types, forest density, and ignition source modeling. 

Building on the comparison of classifiers, in [10], the 
authors evaluated the performance of RF, SVM, DT, and 
NB and identified RF as the most accurate model for 
wildfire forecasting. Their findings highlight RF's 
reliability in supporting early warning and fire response 
efforts. Similarly, in [11], the authors affirmed RF as the 
top-performing algorithm among the same set, 
emphasizing its critical role in risk reduction strategies. 

The reviewed literature reflects the increasing reliance 
on advanced ML techniques for wildfire prediction and 
classification, particularly ensemble and tree-based 
models such as RF, XGB, LGBM, CatBoost, DT, GBC, and 
AdaBoost. These models consistently outperform 
traditional approaches like LR and linear regression, 
especially when combined with strategies such as SMOTE, 
correlation-based and stepwise feature selection, and 
SHAP for model interpretability. Other algorithms 
including SVM, KNN, GNB, SGD, MLP, NN, and GA 
have also demonstrated strong performance in specific 
tasks, such as burned area regression and symbolic 
modeling. Unsupervised methods like K-means have 
been effectively used for spatial clustering and localized 
risk assessment. The studies emphasize the importance of 
regional and temporal adaptation, the integration of 
spatial and environmental data, and handling class 
imbalance. Although challenges remain in accurately 
modeling fire extent, ensemble and hybrid methods show 
strong potential. Overall, the literature confirms the 
adaptability and scalability of a wide array of ML models 
for wildfire forecasting across the diverse climatic zones 
of the U.S.  

3. Research Methodology and approach 

3.1. Background of the Research Study  

This research was conducted using the Google Collab 
platform as the primary workspace, with Scikit-learn 
serving as the main Python library for implementing 
machine learning models. A total of six algorithms—DT, 
RF, SVC, KNN, LR, and GBC—were employed to explore 
and analyze the dataset. The study adopted the CRISP-
DM methodology, a widely accepted framework for 
machine learning projects. This methodology comprises 
six essential phases: identifying the project goals 
(business understanding), examining the dataset (data 
understanding), preparing the data for analysis (data 
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preparation), building and optimizing models (modeling), 
evaluating the performance of those models (evaluation), 
and making the model ready for real-world use 
(deployment) [2]. Utilizing this structured approach 
ensured clarity and efficiency throughout the process, 
contributing to the reliable and accurate results illustrated 
in Figure 1. 

 
Figure 1: Phases of the CRISP-DM Methodology. 

3.2. Dataset Description  

The data set used in this study contains records of fire 
incidents detected across the USA during the year 2021. 
These observations were captured by the VIIRS sensor on 
board the Suomi National Polar-orbiting Partnership 
(SNPP) satellite and obtained through the NASA Open 
Data Portal [12]. This open-access platform provides 
researchers with dependable, high-resolution datasets 
crucial for advancing studies in renewable energy and 
enhancing grid management strategies. It delivers 
comprehensive information on solar radiation, 
meteorological variables, and atmospheric conditions, 
which are instrumental in building precise energy 
forecasting models and tackling the unpredictability 
inherent in renewable energy systems. Furthermore, the 
platform supports sophisticated simulations and machine 
learning applications, contributing to more accurate 
predictive analytics and improved grid efficiency. Its 
commitment to open data access fosters cross-
disciplinary research and innovation, establishing it as a 
vital resource for environmental and energy research 
communities [12]. 

The dataset includes 661,058 records, comprising 
360,993 nighttime and 300,065 daytime entries. It features 
eight input variables and one categorical target variable, 
which classifies fire events into four categories: Type 0 
(presumed vegetation fires), Type 1 (active volcanic 
activity), Type 2 (fires from stationary land-based 
sources), and Type 3 (offshore fire detections over water 
bodies).  

This classification framework underscores the 
dataset’s emphasis on distinguishing between different 
fire origins and behaviors [12]. A summary of the 
dataset's attributes is provided in Table 1. 

Table 1: Dataset Description 

Attribute Definition Datatypes 

Bright_ti4 
Measures the brightness temperature in 
Band 4 of the thermal infrared spectrum 
(TIR). 

Float64 

Bright_ti5 
Measures the brightness temperature in 
Band 5 of the TIR. 

Float64 

Scan 
Measures the satellite's scanning ability, 
including angle, direction, and spatial 
coverage. 

Float64 

Track 
Describes the satellite's orbital path, 
alongside its current location and 
trajectory. 

Float64 

FRP Fire radiative power (MW). Float64 

Latitude Fire pixel latitude(degree). Float64 

Longitude Fire pixel longitude (degree). Float64 

Day-night 
Uses the solar zenith angle (SZA) to 
determine whether conditions are day or 
night. 

Object 

Type Type attributed to thermal anomaly. Object 

3.3. Dataset Preparation 

Following the data exploration phase, the preparation 
of the dataset is initiated. This stage involves multiple 
preprocessing steps, including managing missing values, 
removing duplicate entries, applying normalization 
techniques, selecting relevant features, encoding 
categorical variables, and dividing the data into training 
and testing sets. These steps are essential to ensure the 
dataset is clean, structured, and ready for effective 
modeling and further analytical procedures. 

3.3.1. Missing Data 

To verify the integrity of the dataset, two standard 
functions were employed: isnull().sum() and 
duplicated().sum() [13]. The isnull(). sum() function is 
used to detect and count any missing values across the 
dataset columns, while duplicated().sum() identifies 
repeated rows that could compromise data quality. The 
execution of these checks revealed that the dataset 
contained neither missing values nor duplicate entries. 
This confirmation of data completeness and consistency 
contributes to improved data quality, which is critical for 
building accurate and reliable machine learning models. 

3.3.2. Balancing the Dataset 

The distribution of fire types in the dataset reveals a 
significant imbalance, with Type 0 (presumed vegetation 
fires) dominating at 86.88% of the total records. In 
contrast, the other categories are considerably less 
represented, especially Type 1 (active volcano), which 
constitutes only 0.10%. To address this disparity and 
enhance the performance of machine learning models 
across all classes, the dataset was balanced using the 
Synthetic Minority Over-sampling Technique (SMOTE) 
technique prior to training. SMOTE is a popular 
technique used in imbalanced classification problems to 
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help balance the dataset by generating synthetic data 
points for the minority class [14].  

3.3.3. Encoding Categorical Data 

The dataset underwent label encoding to transform 
categorical variables into numeric format, an essential 
preprocessing step since most machine learning 
algorithms require numerical input [15].  

In this study, fire incidents were categorized 
according to their type: Type 0 representing presumed 
vegetation fires, Type 1 indicating volcanic activity, Type 
2 referring to stationary land-based fires, and Type 3 
covering offshore fire detections over water. This 
conversion was vital to ensure the data was compatible 
with the classification models, thereby improving the 
effectiveness and accuracy of the training process.  

3.3.4. Splitting Data 

Initially, the dataset was split into two parts: 80% for 
training and 20% for testing. This division allows the 
model to learn from the majority of the data while 
reserving a portion for evaluating its performance on 
unseen examples. 

3.3.5. Data Normalization   

The numerical features bright_ti4, bright_ti5, scan, 
track, and frp were normalized to bring their values 
within a consistent range, such as 0 to 1 or -1 to 1 [16]. This 
scaling process ensures that each feature contributes 
equally during model training, preventing any one 
variable from disproportionately influencing the learning 
process and supporting more balanced, unbiased model 
performance. 

3.4. Modelling 

Six machine learning algorithms—DT, RF, SVC, KNN, 
LR, and GBC—were implemented to classify the fire 
types. 

Decision Tree (DT) is a non-parametric learning 
method that uses a tree-like structure to make decisions 
based on feature thresholds. It recursively splits the 
dataset into subsets based on the most significant feature 
at each node, making it interpretable and efficient for 
handling both categorical and numerical data. However, 
it is prone to overfitting, particularly on noisy datasets 
[15]. 

Random Forest (RF) is an ensemble learning 
technique that builds multiple decision trees during 
training and merges their outputs for improved accuracy 
and robustness. By averaging the results (in classification, 
via majority voting), RF reduces overfitting and variance 
compared to individual trees, offering better 
generalization on unseen data [15]. 

K-Nearest Neighbors (KNN) is a simple, instance-
based learning algorithm that classifies data points based 
on the majority label among their k-nearest neighbors in 
the feature space. Though computationally intensive 
during prediction, KNN is intuitive and works well with 
non-linear data distributions when appropriate distance 
metrics and normalization are applied [17]. 

 Logistic Regression (LR) is a statistical model that 
uses the logistic function to model the probability of a 
binary or multiclass outcome. Despite its simplicity, LR is 
a strong baseline model due to its efficiency, 
interpretability, and solid performance in linearly 
separable problems [18]. 

Gradient Boosting Classifier (GBC) is a powerful 
ensemble method that builds models sequentially, where 
each new model attempts to correct the errors made by 
the previous ones. It combines weak learners (typically 
shallow trees) using gradient descent optimization to 
minimize the loss function, achieving high predictive 
accuracy at the cost of increased training time [16]. 

Support Vector Classifier (SVC) is based on the 
principles of Support Vector Machines (SVM). It attempts 
to find the optimal hyperplane that best separates the data 
into distinct classes by maximizing the margin between 
support vectors. SVC is especially effective in high-
dimensional spaces and is robust to overfitting when the 
kernel and regularization parameters are properly 
selected [19] . 

3.5. Performance Evaluation  

The effectiveness of the supervised machine learning 
models is evaluated using key performance metrics, 
including accuracy, recall, F-measure and precision, 
which collectively provide insight into their classification 
performance. 

3.5.1. Accuracy 

It represents the proportion of correctly predicted 
instances out of the total number of predictions made. It 
reflects the overall effectiveness of a model in classifying 
both positive and negative cases correctly shown in 
equation (1) [15].  

             𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹 
               (1) 

3.5.2. F-measure 

It offers a balanced assessment by combining both 
metrics into a single value, especially useful when the 
data is imbalanced or when equal consideration of false 
positives and false negatives is needed shown in equation 
(2) [15].  

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

              (2) 
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3.5.3. Precision 

It measures the ratio of correctly predicted positive 
instances to the total predicted positives. It indicates how 
many of the instances labeled as positive by the model are 
actually relevant, helping to evaluate the model’s 
reliability in making positive predictions shown in 
equation (3) [17]. 

                        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
                        (3) 

3.5.4. Recall 

It refers to the proportion of actual positive cases that 
are correctly identified by the model. It is particularly 
important in situations where missing positive cases is 
costly or undesirable shown in equation (4) [18]. 

                                   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 
                   (4) 

4.  Results 

 In terms of accuracy, DT attains the top performance 
with 96.69%, closely followed by RF at 96.37%, both 
demonstrating strong capabilities in correctly identifying 
fire types. GBC also delivers notable accuracy at 93.16%, 
with KNN achieving 91.27%. On the other hand, SVC and 
LR register comparatively lower accuracy rates of 88.35% 
and 87.58%, respectively, suggesting relatively less 
effective classification results, as illustrated in Table 2 and 
Figure 2. 

Looking at precision, DT again leads with 96.70%, 
indicating a high level of accuracy in its positive 
predictions and a minimal rate of false positives. RF 
follows closely with a precision of 96.31%, while GBC 
achieves 92.76%, both reflecting reliable classification 
outputs. KNN also shows solid results with 90.57%, 
whereas SVC and LR lag behind at 83.61% and 83.65%, 
respectively, highlighting a greater occurrence of 
incorrect positive classifications. 

Regarding recall, which assesses the ability to correctly 
identify actual fire instances, DT maintains its lead at 
96.69%, with RF slightly behind at 96.37%. GBC continues 
to perform well with 93.16%, while KNN records 91.27%. 
In contrast, SVC and LR exhibit lower recall rates of 
88.35% and 87.58%, indicating a higher chance of failing 
to detect true fire occurrences. 

When considering the F1 score, which harmonizes 
precision and recall into a single performance metric, DT 
secures the highest value at 96.67%, confirming its 
balanced and robust classification ability. RF follows with 
an F1 score of 96.19%, and GBC reaches 92.67%. KNN also 
maintains dependable performance with 90.79%. 
Meanwhile, SVC and LR yield lower F1 scores of 85.50% 
and 84.71%, respectively, indicating limitations in 
managing the trade-off between precision and recall. 

Table 2: Performance Comparison between models. 

Model Accuracy (%) Recall (%) 
Presion 

(%) 
F1-Scor 

(%) 
SVC 88.35  88.35 83.61 85.50 
RF 96.37 96.37 96.31 96.19 

KNN 91.27 91.27 90.57 90.79 
LR 87.58 87.58 83.65 84.71 

DTC 96.69 96.69 96.70 96.70 
GBC 93.16 93.16 92.76 92.67 

 
Figure 2: Performance Plot of Proposed Models 

5. Discussion 

The findings of the current study, which evaluates six 
supervised ML models—DT, RF, GBC, KNN, SVC, and 
LR—for fire type classification, align well with trends 
observed in the reviewed literature while also offering 
noteworthy advancements in model performance and 
application specificity. 

In this study, DT achieved the highest accuracy 
(96.69%), precision (96.70%), recall (96.69%), and F1 score 
(96.67%), outperforming other models. These results are 
consistent with the findings of Khosravi et al., who 
reported perfect classification accuracy for DT and RF 
during peak fire seasons in Algeria, confirming the 
effectiveness of tree-based models in wildfire 
classification tasks. Similarly, RF performed robustly 
across all metrics in the current study—attaining 96.37% 
accuracy and 96.19% F1 score—which echoes its 
dominant position in several previous studies, including 
those by Tavakoli, Barzani et al., and Al-Bashiti & Naser, 
where RF either matched or exceeded other ensemble 
models in terms of predictive accuracy and 
interpretability. 

GBC also demonstrated strong performance in this 
work, with consistent results across accuracy (93.16%), 
precision (92.76%), recall (93.16%), and F1 score (92.67%). 
While GBC was not explicitly evaluated in some past 
works such as those by Khosravi et al., its potential was 
highlighted in Chaubey et al. and Alkhatib et al., who 
supported the integration of ensemble models to improve 
classification reliability—particularly when using 
complex and high-dimensional environmental data. 
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KNN, although not an ensemble method, delivered 
solid results (accuracy: 91.27%, F1 score: 90.79%), which 
aligns with Stafylas Demetrios’ regression-based analysis, 
where KNN showed competitive performance in 
predicting burned area. However, KNN remains sensitive 
to feature scaling and may not capture complex decision 
boundaries as effectively as tree-based models, which is 
reflected in its slightly lower scores compared to DT, RF, 
and GBC.In contrast, SVC and LR showed the weakest 
performance across all metrics. SVC recorded 88.35% 
accuracy and 85.50% F1 score, while LR followed closely 
behind with 87.58% accuracy and 84.71% F1 score. These 
outcomes are consistent with earlier studies, such as those 
by Al-Bashiti and Naser, where LR underperformed 
relative to ensemble and tree-based models, and by 
Shmuel and Heifetz, who showed that while traditional 
models like LR offer baseline predictability, they fall short 
in handling the nonlinear and complex nature of wildfire 
dynamics. 

 Another important point of comparison is how well 
the current study addresses model balance. Unlike some 
previous works that focused on peak fire seasons or 
lacked formal imbalance-handling strategies, this study 
ensured an equal class distribution prior to training, 
which likely contributed to the high and consistent scores 
for DT, RF, and GBC across all evaluation metrics. This 
balanced approach strengthens the reliability and 
generalizability of the findings, especially for real-world 
applications in USA fire forecasting, where 
underrepresented classes often challenge prediction 
accuracy. 

Furthermore, this study’s comparative framework 
adds value by using a unified dataset and standardized 
preprocessing, enabling a fair and direct performance 
comparison. While prior literature often evaluated 
models on region-specific or task-specific datasets (e.g., 
ignition, size, burned area), this study provides a focused 
comparison on fire type classification, offering insights 
particularly useful for U.S.-based fire management 
systems aiming for categorical fire event identification. 

6. Conclusion and Future Directions  

This study assessed the effectiveness of six supervised 
machine learning algorithms—DT, RF, GBC, KNN, SVC, 
and LR—in classifying fire types in the United States 
using satellite-derived data. Among the evaluated models, 
DT consistently achieved the best results, recording the 
highest scores in accuracy (96.69%), precision (96.70%), 
recall (96.69%), and F1 score (96.67%). RF closely followed, 
while GBC also demonstrated strong and balanced 
performance across all metrics. In contrast, SVC and LR 
exhibited comparatively lower predictive capabilities, 
highlighting their limitations in capturing the complex, 
nonlinear patterns characteristic of fire behavior. 

These findings align with previous research, where 
tree-based and ensemble models—particularly DT, RF, 
and XGB—have repeatedly proven effective in wildfire 
prediction. Their success can be attributed to several key 
strengths. First, these models are well-suited to capturing 
nonlinear interactions among environmental variables 
such as temperature, humidity, wind, and vegetation, 
which are critical in fire dynamics. Second, they 
effectively manage heterogeneous and high-dimensional 
datasets, including those combining meteorological 
indices, satellite imagery, and geospatial information. 
Third, they demonstrate robustness to noise, missing 
values, and outliers, enabling more reliable predictions in 
real-world conditions. 

Moreover, ensemble methods such as RF and XGB 
offer enhanced generalization through the aggregation of 
multiple decision paths, thereby reducing the risk of 
overfitting. These models also support model 
interpretability through feature importance rankings and 
SHAP analysis, providing valuable insights into the most 
influential factors driving fire classifications—an essential 
feature for transparent and accountable decision-making 
in wildfire management systems. 

By applying a balanced dataset and a standardized 
evaluation framework, this study provides a robust 
comparison of model performance, contributing novel 
insights to the evolving field of ML-driven wildfire 
forecasting. The findings reaffirm that tree-based and 
ensemble algorithms are not only highly accurate but also 
scalable, flexible, and interpretable, making them 
particularly well-suited for operational deployment in 
real-world fire risk management applications—especially 
across the diverse climatic and ecological regions of the 
USA. 

Looking forward, future research should explore the 
integration of real-time meteorological feeds, higher-
resolution spatial data, and advanced ensemble strategies 
such as model stacking and hybrid architectures. 
Additionally, incorporating deep learning techniques and 
spatiotemporal modeling could further enhance 
predictive precision, enabling more dynamic and 
proactive wildfire forecasting systems capable of 
addressing both localized threats and broader regional 
patterns. 
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