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ABSTRACT: This article addresses the calculation of approximation errors in numerical methods for 
solving differential equations. A fundamental challenge when replacing differential equations with 
discrete representations is ensuring that the discrete solution closely approximates the exact solution. 
To tackle this, a grid area is established for the difference solution, with discrete solutions evaluated at 
specific nodal points. Traditionally, the degree of approximation in this context is expressed using the 
notation 𝑂𝑂(ℎ𝑝𝑝), where h represents the grid step and p indicates the order of accuracy. A significant 
advancement in this area is the application of the moving nodes method, which enables the calculation 
of approximation errors at these nodal points. This method allows researchers to derive an 
approximate analytical expression for the discrete solution, which serves as a foundation for 
calculating the approximation error.  
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1. Introduction   

This article is an expanded version of the article 
presented in [1]. The numerical solution methods for 
differential equations fundamentally rely on 
transforming differential problems into difference 
problems [2–5]. In simpler terms, solving differential 
equations requires understanding how to approximate 
them. This involves converting a differential equation 
into a system of algebraic equations, which is based on the 
values of the desired functions at specific points on a grid. 
Recent studies [6]–11] have introduced a new approach 
for approximating differential operators, enhancing the 
accuracy and efficiency of these methods. One of the 
significant advantages of the moved node method is that 
it enables the calculation of an explicit expression for the 
approximation error when replacing differential 
equations with difference ones. Understanding this error 
is crucial because it provides insights into the reliability 
and accuracy of the numerical solution. By quantifying 
the error, researchers can refine their methods and 
improve the overall quality of the numerical solutions 
obtained. 

In conclusion, the transformation of differential 
equations into difference equations is a fundamental 

aspect of numerical analysis. The development of 
innovative methods like the moved node method 
represents a significant advancement in this field, 
providing researchers and practitioners with powerful 
tools to tackle complex differential problems more 
effectively. As numerical methods continue to evolve, the 
importance of understanding and minimizing 
approximation errors will remain a critical area of focus 
for ensuring the accuracy and reliability of solutions. 

On the basis of the movable node, an approximate 
analytical expression for the difference solution of the 
differential problem was obtained [12]. This development 
represents a significant step forward in numerical 
methods, as it provides a more refined approach to 
approximating solutions to differential equations. The 
analytical expression derived from the movable node 
approach allows for greater flexibility and accuracy when 
dealing with complex differential problems. 

In [13], the moving nodes method was further applied 
to construct the control volume method, which is widely 
used in computational fluid dynamics and other 
engineering applications.  
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In [14], the authors explored the potential to increase 
accuracy by combining the moving nodes method with 
the ideas of Richardson’s extrapolation. Richardson’s 
extrapolation is a technique used to improve the precision 
of numerical approximations by utilizing solutions 
obtained at different grid resolutions. By integrating this 
method with the moving nodes approach, it is possible to 
achieve higher-order accuracy in the numerical solutions, 
thereby reducing the error associated with the 
approximation. 

Some questions regarding the monotonicity of the 
difference scheme using the movable node are addressed 
in [15]. Monotonicity is an important property in 
numerical methods, as it ensures that the numerical 
solution behaves in a physically realistic manner, 
avoiding non-physical oscillations or spurious solutions. 
Understanding and ensuring the monotonicity of the 
difference scheme is crucial for maintaining the stability 
and reliability of the numerical method, especially in 
problems involving sharp gradients or discontinuities. 

The application of the moving nodes method to various 
applied problems is reflected in [16]. This demonstrates 
the versatility of the method across different fields, such 
as fluid dynamics, heat transfer, and structural analysis. 

Moreover, based on the choice of the velocity profile 
on the edge of the control volume, qualitative schemes 
were obtained in [17]. The velocity profile plays a critical 
role in determining the flow characteristics and behavior 
within the control volume.  

In summary, the integration of the movable node 
method into various numerical frameworks and its 
application to real-world problems highlights its 
significance in advancing numerical analysis. The 
ongoing exploration of its properties, such as accuracy, 
monotonicity, and adaptability to different contexts, 
continues to enhance the capability of numerical methods 
in solving complex differential equations effectively. As 
research in this area progresses, the potential for further 
innovations and improvements remains substantial, 
promising even greater advancements in the field of 
numerical solutions.  

This paper describes the application of the moving 
nodes method to the calculation of the approximation 
error. The moving nodes method provides a dynamic 
approach to numerical analysis, allowing for the 
adjustment of grid points based on the behavior of the 
solution.  

When a two-point boundary value problem is solved 
using difference methods, the question of the degree of 
approximation typically arises. This degree of 

approximation is crucial as it directly impacts how closely 
the numerical solution aligns with the exact solution. In 
numerical analysis, understanding the closeness of the 
exact solution to its approximation is essential for 
evaluating the effectiveness of the chosen method. 

The quality of the difference scheme is often assessed 
based on this degree of approximation. A higher degree 
indicates a more accurate representation of the solution, 
while a lower degree suggests potential discrepancies 
that may arise from the numerical method employed. 
This evaluation is typically conducted by analyzing the 
behavior of the approximation error, which quantifies the 
difference between the exact solution and the numerical 
approximation. 

Interestingly, in this analysis, other parameters—such 
as the coefficients of the differential equation—are not 
explicitly involved in the expression for the 
approximation error. This is significant because it allows 
researchers to focus on the fundamental aspects of the 
numerical method without being distracted by the 
specific characteristics of the differential equation being 
solved. By isolating the approximation error from these 
coefficients, the analysis can yield more generalized 
insights into the behavior of the numerical solution. 

Obtaining an explicit expression allows researchers to 
identify how changes in the grid size, the choice of the 
moving nodes, and other factors influence the accuracy of 
the numerical solution. Furthermore, it enables the 
development of strategies to minimize the approximation 
error, thus enhancing the overall quality of the numerical 
method. 

By utilizing the moving nodes method to derive this 
explicit expression, the paper contributes to a deeper 
understanding of the approximation error in the context 
of two-point boundary value problems. This 
understanding is crucial for advancing numerical 
methods, as it provides a foundation for improving 
accuracy and reliability in solving complex differential 
equations. Ultimately, the insights gained from this 
analysis can inform future research and applications, 
paving the way for more effective numerical solutions in 
various scientific and engineering fields. 

When a two-point boundary value problem is solved 
by difference methods, the question of the degree of 
approximation usually appears. For the closeness of the 
exact and approximation of the solution, and the quality 
of the difference scheme are evaluated based on the 
degree of this parameter. With such an analysis, other 
parameters (the coefficients of the differential equation) 
are not explicitly involved in the approximation error 
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expression. Obtaining an explicit expression for the 
approximation error makes it possible to analyze it. 

Consider the simplest ordinary differential equation 
with boundary conditions 

2

2 , (0) 0, (1) 1d u C u u
dx

= = =                      (1) 

where C  is constant.  
Create a uniform grid on segments [0, 1]   with step h . 

A uniform grid on a segment  [0, 1]x∈  with step h   has the 
form: 

{ , 0,1,..., , 1}h kx hk k N h Nω = = = ⋅ =  
Let us replace the second-order derivative by the 

difference relation [18]: 
1 1

2

0

2 ,

1 1, 0, 1

i i i

N

U U U C
h

i N U U

+ −− +
=

≤ ≤ − = =                           (2) 
Difference scheme (2) traditionally has order 2( )O h . 

However, if we solve system (2) by the Tomas algorithm, 
we obtain a numerical solution that coincides with the 
exact analytical solution for any grid steps h  at the grid 
nodes. Those. scheme (2) approximates (1) exactly. 

 
2. Method For Determining Approximation Error 

Let we have a differential equation 

,Lu f=                                             (3) 
where L   is a differential operator, f  is a known function, 
and u is an unknown function. (3) the equation is 
considered in some domain D   with appropriate 
boundary conditions. The differential equation (3) is 
replaced by the difference equation [18] : 

,h h hL u f=
                                           (4) 

where hL  is the difference operator, hu  is the unknown 
grid function, and hf   is the approximation of the function 

f  at the grid nodes. 
Usually, the approximation error is given as [18,19]: 

[ ] ,h h h hQ L u f= −                                 (5) 
where [ ]hu  is the exact solution of (3) at the grid nodes. 
Using the Taylor series, from (5) one obtains that, 

( )m
hQ O h= , where  h  is the grid step and m  is the 

degree of approximation. 
You can determine an explicit approximation error if 

you use the method of a moving node, which allows you 
to extend the definition to the entire area D . This allows 
you to introduce an approximation error like this: 

 

{ } .h h h hR L u f= −
                                 (6) 

Here { }hu  is a predefined continuous function by 
means of a moveable node. Approximate calculation of 
the approximation error of type (6) is demonstrated using 
simple examples. 

3. Results and Discussion 

As an application of the above approach, consider 
examples. 

3.1. Simple Boundary Value Problem 
Consider a simple boundary value problem: 

2

2 ( ), (0) , (1)a b
d u f x u u u u
dx

= = =         (7) 

Let's build a non-uniform grid on segments  [0, 1] : 

0 1 1{0 ... 1, 0,1,..., }h N Nx x x x k Nω −= = < < < < = =  

In the non-uniform grid, we replace (7) with the 
difference problem: 

1 1

1 1 1 1

2 ( ),

1, 2,..., 1.

i i i i
i

i i i i i i

U U U U f x
x x x x x x
i N

+ −

+ − + −

 − −
− = − − − 

= −

      (8) 

Here iU  is the grid solution of the problem. From here 

1 1 1 1

1 1

1 1

( ) ( )

1 ( )( )( ), 1, 2,..., 1.
2

i i i i i i
i

i i

i i i i i

U x x U x xU
x x

f x x x x x i N

+ − − +

+ −

− +

− + −
= −

−

− − = −

        

(9) 

We redefine the value of the function at non-nodal points 
as follows. To do this, we consider in (9) 

1 1 1 1, , ,i i i ix x U U+ − − + , to be fixed, and ix   to be moved, 

and the function  ( )f x  to be smooth. Thus, we will 

complete the grid function on each segment 1 1( , )i ix x− + . 
From (9) we get 

1 1

1 1

1( ) ( )( )( )
2

( )( 2 ) ( )

i i i i i i i

i i i i i

U x f x x x x x

f x x x x f x

+ −

+ −

′′ ′′= − − − −

′ + − +

    (10) 

Then the approximation error for the nodal points looks 
like this: 

1 1

1 1

1( ) ( )( )( )
2

( )( 2 )

h i i i i i i

i i i i

R x f x x x x x

f x x x x

+ −

+ −

′′= − − − −

′ + −
          (11) 

If the grid is uniform for the approximation error, we 
obtain the expression 
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21( ) ( ) , 1, 2,..., 1.
2h i iR x f x h i N′′= − = −       (12) 

If on the segments 1 1( , )i ix x− +  the function constant 
approximation error is identically equal to zero and we 
get the exact solution. 

Based on expression (10), the following conclusion can 
be drawn. 

 
Given a two-point boundary value problem 

2
*

2 ( ), (0) , (1)a b
d u f x u u u u
dx

= = =
 

and 
*( )f x  can be represented as 

*
1 1

1 1

1( ) ( )( )( )
2

( )( 2 ) ( )

i i i i i i

i i i i i

f x f x x x x x

f x x x x f x

+ −

+ −

′′= − − − −

′ + − +  

then the difference scheme 

1 1

1 1 1 1

2

( ), 1, 2,..., 1,

i i i i

i i i i i i

i

U U U U
x x x x x x
f x i N

+ −

+ − + −

 − −
− = − − − 

= −  

gives a grid solution coinciding with the exact solution at 
the nodal points. 

If there is only one internal node point (the node 
being moved is one), then an approximate analytical 
solution can be obtained. Indeed, if we rewrite scheme (8) 
for one moving node, we have 

 ( ) ( )2 ( ).
1

b a
i

U U x U x U f x
x x

− − − = − 
   (13)                  

From here we obtain an approximate analytical 
solution: 

1( ) (1 ) ( )(1 ) .
2b a iU x U x U x f x x x= + − − −          (14) 

In this case, (14) represents the exact solution of the 
problem (7) if we put  

* 1( ) ( )(1 ) ( )(1 2 ) ( ).
2

f x f x x x f x x f x′′ ′= − − − − +
 

The form of the approximation error (11) allows the 
construction of new schemes of the collocation type. 
Indeed, if in problem (8) we replace the right side by the 
expression 

𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝐴𝐴(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖), 

Here A is still an unknown constant. Parameter A   is 
determined so that the approximation error (11) for a 

uniform step at node ix  is equal to zero, i.e. collocation 
type scheme. Then we have 

𝐴𝐴 =
1
4
𝑓𝑓″(𝑥𝑥𝑖𝑖) 

. 
 3.2. Boundary value problem for convection and diffusion 
equation 

Consider a stationary equation in which only 
convection and diffusion are present without a source. 

 
0,u uε ′′ ′+ =                                   (15) 

with boundary conditions (0) 0, (1) 1.v v= =  
There are various schemes for the difference solution 

(15) [6, 7]. Based on the moving node technique [1,2], it is 
possible to explicitly express local errors in the 
approximation of differential equations. Using the 
moving node method [1], we will show the efficient 
calculation of local approximation errors for the model 
problem (15). 

3.1.1. Scheme with central-difference approximation of the 
convective term 

 Take a segment 1 1[ ; ]i ix x− + and any point x  . 
Consider the grid analog (15) 

1 1 1 1

1 1 1 1 1 1

2 0i i i i

i i i i i i

u u u u u u
x x x x x x x x

ε + − + −

+ − + − + −

 − − −
− + = − − − − 

    (16) 

At 1 1( ) / 2i ix x x+ −= − , we have a central 

difference approximation. Here, 1iu +  is the approximate 

value of the solution at the point 1ix + , 1iu −  is the 

approximate value of the solution at the point 1ix −  . 
From (16) we find 

    

[ 1 1 1
1 1

1 1 1

1 ( )(2 )
2 ( )

( )(2 ) ]
.

i i i
i i

i i i

u x x x x u
x x

x x x x u

ε
ε

ε

− + +
+ −

+ − −

= − + − +
−

− − +                 (17) 

From here we get, 

 1 1 1 1

1 1

2 2 ,
2

i i i i

i i

x x x u uu
x x

ε
ε

+ − + −

+ −

+ + − −′ =
−

       (18) 

 

1 1

1 1

1 .i i

i i

u uu
x xε
+ −

+ −

−′′ = −
−

                            (19) 

 
If the difference solution at nodal points is known, 

then formula (17) makes it possible to determine the 
unknown at points that are not nodal. 

Using formulas (18) and (19), the derivatives are 
restored at any point of the segment. Multiplying (19) by 
and adding with (18), we obtain 

1,u uε ′′ ′+ = Ψ                                        (20) 

where 
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1 1 1 1
1

1 1

2 .
2

i i i i

i i

x x x u u
x xε

+ − + −

+ −

+ − −
Ψ =

−
 

Equation (20) can be called a differential analog of the 
difference equation (16); difference equation (16) is a 
collocation-type scheme. 

Using (19), the approximation error can be written as 
1 1

1
2 .

2
i ix x x u+ −+ − ′′Ψ = −  

Then equation (20) takes the form 

1 1 2 0.
2

i ix x x u uε + −+ −  ′′ ′+ + = 
 

                   (21) 

Thus, difference equation (16) exactly approximates 

differential equation (21) on the segment 1 1[ , ].i ix x− +  

 Comparison of Eqs. (15) and (21) shows that when Eq. (15) 
is approximated by scheme (16), scheme diffusion 

appears with a variable coefficient 1 1( 2 ) / 2.i ix x x+ −+ −  
3.2.2 Upwind Scheme. Let us consider the difference 

analog of equation (15), in which the convective term is 
approximated by the one-sided difference relation 

1 1

1 1 1 1

1

1

2

0.

i i

i i i i

i

i

u u u u
x x x x x x

u u
x x

ε + −

+ − + −

+

+

 − −
− − − − 

−
+ =

−
                     (22) 

From here we get 

1 1 1 1 1 1

1 1 1

( )(2 ) 2 ( )
( )(2 )

i i i i i i

i i i

x x x x u x x uu
x x x x

ε ε
ε

− + − + + −

+ − −

− + − + −
=

− + −   
 (23) 

Determine the first and second derivatives: 

1 1 1 1
2

1 1 1

2 (2 ) ,
(2 )

i i i i

i i i

x x u uu
x x x x

ε ε
ε

+ − + −

− + −

+ − −′ =
+ − −

        (24) 

1 1 1 1
3

1 1 1

4 (2 )
(2 )

i i i i

i i i

x x u uu
x x x x

ε ε
ε

+ − + −

− + −

− + − −′′ =
+ − −

          (25) 

Let us calculate the approximation error 

1 1 1 1 1
2 3

1 1 1

2 ( )(2 )
(2 )

i i i i i

i i i

x x x x u u
x x x x

ε ε
ε
− + − + −

− + −

− + − −
Ψ =

+ − −
 

The differential analog of scheme (22) has the form 

1 0,
2

ix x u uε −−  ′′ ′+ + = 
 

                   (26) 

those. with a scheme against the flow, we have a scheme 
diffusion with a coefficient . Based on (23) - is a hyperbola, 
which is monotone on the segment, i.e. scheme (22) is 
monotonic. 

Based on the form of the differential analogue (26), we 
can conclude that the differential equation 

0
2
x u uε  ′′ ′+ + = 

                            (27) 

is exactly approximated by the scheme 

2 0
1 1
b a bu u u u u u

x x x
ε

− − − + + = − −                    (28) 

Those. solving (28) with respect to u, we obtain the exact 
solution of differential equation (27). 

 
3.3. Parametric Schemes 

In this case, an attempt is made to create a special 
parametric scheme in order to improve the quality of the 
circuit. The peculiarity of this approach is the choice of the 
parameter, which is carried out on the basis of the 
calculated approximation error, which allows more 
accurately adjusting the parameters of the scheme to 
achieve the best indicators. We demonstrate the 
effectiveness of this method using examples of problems 
related to convection-diffusion processes, where the 
correct choice of parameters is especially important for 
the stability and accuracy of the solution. Consider the 
problem [19,20]. 

( )

2

2

0 1

( ),

0 , (1) ,

du d uPe Pe S x
dx dx
u u u u

= + ⋅

= =
                            (29) 

Here Pe  is the Peclet number, ( )S x  is the source, u   is 
the unknown function. 

When problem (29) is discredited, it is essential to 
approximate the convective term [4]. The standard finite-
difference scheme against the flow on a three-point 
template is: 

2

( ),

W WE

W E W E W

U U U UU UPe
x x x x x x x x

Pe S x

 − −−
= − + − − − − 

⋅

      (30) 

Consider the parametric scheme 
1

2 ( ),

W

kW
k k

WE

E W E W

U UPe kx
x x

U UU U Pe S x
x x x x x x

−−
⋅ =

−

 −−
− + ⋅ − − − 

           (31) 

The choice of the parameter k  can be found by 
numerical experiment. Based on the calculated 
approximation error hR , it is not difficult to select the 

parameter k . The idea of approximating the convective 
term is as follows. We introduce an intermediate variable 

( )y x , and based on the calculation of the derivative of a 
complex function, we have 

.du du dy
dx dy dx

= ⋅
 

For the function ( )y x  we take a monotonically 

increasing function, for example, 
ky x= . /du dy will 
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be replaced by the difference relation upstream. Making 
the assumption that with such a replacement, the 
approximation error decreases. In this way 

1.kW
k k

w

u udu kx
dx x x

−−
≈ ⋅

−  
  Figure 1 shows the results of calculations 

( 0,Pe = 0 1( ) 0, 11, 0, 1)S x N u u= = = = ,  at 1k =  and 

9k = . 
Thus, by carefully choosing the parameter k, we are 

able to obtain a result that is as close as possible to the 
exact solution of the problem. This approach allows us to 
significantly increase the accuracy and reliability of 
calculations, minimizing approximation errors and 
ensuring more stable behavior of the numerical method. 

 

 
Figure 1: Comparison of results. The solid line is the exact solution, 
the circles are the numerical results obtained at k=1, and the solid 
circles at k=9. 

 

 
Figure 2: Comparison of the results of the approximation error at 
internal nodal points. The solid circles are obtained according to the 
scheme (31) at k=9, and the circles at k=1. 

3.3. Iterative method to get a solution 

It is known that after replacing the differential 
equation with discrete ones, we obtain a system of 
algebraic equations [4,5,19,20]. There are two approaches 
to solving systems of algebraic equations: exact methods 
and iterative methods. Using the idea of constructing 
iterative methods for systems of discrete equations, we 
will show the possibilities of an analytical approximate 
solution based on the method of moving nodes. 

Consider problem (29). If there is only one moving 
node, approximating the convective term by the 
upstream scheme from (31) we get 0 1( 0, 1).u u= =   

 1 2 (1 ). ( )
2 (1 ) 2 (1 )

x x xu S x
Pe x Pe x

−
= + ⋅

+ − + −
       (32) 

This expression is taken as the initial approximation of 
problem (29). Let's find the approximation error 

2 1 1
1

2 ( )d u duR Pe Pe S x
dx dx

= − + ⋅             (33) 

Let's calculate the second approximation 

2 1 1(1 )u u x x Rω= + −  

Find the approximation error 2.R  

2 2 2
2

2 ( )d u duR Pe Pe S x
dxdx

= − + ⋅
 

Thus, we carry out an iterative process in the form 

1 1(1 ) ( ), 2,3...k k ku u x x R Pe S x kω− −= + − + ⋅ =     (34) 

In (34) ω is the relaxation parameter. 

 In Fig. 3 the exact solution of the problem as well as 

approximating analytical solutions 
1 2 3, ,u u u  and  

4u  
are compared. As can be seen from the graphic, step by 
step we can improve of analytical solution  
( ( ) 0, 10, 0.08).S x Pe ω= = =   
On fig. 4 the sequence of solution of problem (18) is given 
for ( ) cos(5 ), 10, 0.06.S x x Pe ω= = =  On fig. 3 and 4, 
the solid line corresponds to the exact solution of the 

problem; dot - 
1;u  dashed, 

2;u ; dotted-dashed -- 
3;u  

long-dashed - 
4.u  

 
Figure 3: Comparison of results: S(x) = 0, Pe=10,  ω=0,08 
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Figure 4: Comparison of results: S(x) = cos(5x), Pe=10,  ω=0,06 

As can be seen from the graphic, step by step we can 
improve of the analytical solution.  
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