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ABSTRACT: Controller Area Network (CAN) bus data is used on most vehicles today to report and
communicate sensor data. However, this data is generally encoded and is not directly interpretable
by simply viewing the raw data on the bus. However, it is possible to decode CAN bus data and
reverse engineer the encodings by leveraging knowledge about how signals are encoded and using
independently recorded ground-truth signal values for correlation. While methods exist to support the
decoding of possible signals, these methods often require additional manual work to label the function
of each signal. In this paper, we present CANClassify — a method that takes in raw CAN bus data,
and automatically decodes and labels CAN bus signals, using a novel convolutional interpretation
method to preprocess CAN messages. We evaluate CANClassify’s performance on a previously
undecoded vehicle and confirm the encodings manually. We demonstrate performance comparable
to the state of the art while also providing automated labeling. Examples and code are available at
https://github.com/ngopaul/CANClassify.

KEYWORDS External interfaces for robotics, Computing methodologies: Learning paradigms, Neural
networks

1. Introduction

Modern vehicles are equipped with advanced sensors which
record speed, detect and track nearby vehicles, and estimate
fuel efficiency. Vehicles use Electronic Control Units (ECUs)
and the CAN protocol to communicate the data among these
sensors. While on the road, these sensors generate a large
amount of information which is communicated through
ECUs to be used for driver assistance, collision avoidance,
fuel estimation, and general operation. However, this data
is generally discarded after use. Vehicles are becoming
increasingly digitized, resulting in a greater amount of data
being communicated between ECUs. This CAN bus data
is becoming increasingly important for many applications,
including improving driving behavior [1], understanding
and reducing traffic congestion [2], driver profiling [3], and
improving fuel efficiency through human-in-the-loop CPS.
CAN data is also a major source for general automotive
data, which is evaluated to be worth between 450 and 750
billion USD by 2030 [4]. Due to the great potential of CAN
bus data, decoding this data is becoming increasingly rele-
vant in vehicle-related research. However, decoding CAN
bus data is no trivial task. While a standardized protocol,
SAE J1939 [5], for communication between ECUs has been
developed, much of this data is encoded according to an
encoding known only to each Original Equipment Manu-

facturer (OEM). Since these OEMs are generally unwilling
to publicly release the encodings used for their CAN mes-
sages, it has become common to decode the CAN messages
independently.

In the past, CAN signal decoding has largely been done
by hand, though in recent years, new methods have been
developed which support the automation of CAN signal
decoding. Many of these methods use common features of
encoded signals in order to detect the presence of signals
and then refine their encodings. Signals are then correlated
to ground truth signals, and the type of signal (e.g., wheel
speed, brake pedal, etc.) is manually labeled by hand. In
this paper, we present CANClassify, a method that both
decodes CAN bus signals, as well as automatically labels
them. We describe the problem in technical detail, discuss
relevant research in the area, and present and evaluate our
method. Finally, we discuss possible implications and future
directions for this work.

2. Problem Statement

Modern vehicles use electrical buses following a protocol
called CAN, in order to communicate between different sen-
sors and processors on the vehicle. Sensors and processors
interface directly with ECUs. Each ECU, also called a ‘node’,
communicates a specific set of CAN messages to all other
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Figure 1: A CAN message is interpreted with specific bit boundaries and an encoding, generating a signal. A CAN message consists of a series of 64
bits that change every timestep. Bit boundaries delineate the start and end of a possible signal. A signal is interpreted using an endianness, signedness,
scale, and offset. A final interpreted signal can then be generated.

ECUs on the same bus. Open-source tools can be used to
interface with ports on the vehicle in order to read messages
published on the CAN bus, or buses if there are multiple
[6]. These CAN messages can be processed in real time
(which can include real-time intercepting and modifying),
or recorded for later analysis.

CAN messages contain an ID, which uniquely identifies
a message on a bus and is related to the nature of the con-
tent of the message, and a payload. This payload, which
generally ranges in length from 1 byte to 8 bytes, usually
encodes multiple signals packaged together.

While sometimes a single CAN bus will contain all sig-
nals of interest, it is often the case that some signals of
interest are broadcasted on separate CAN buses. There-
fore, hardware that records or processes CAN bus messages
generally must be able to do so on multiple buses simul-
taneously. However, for the work presented in this paper,
we assume that a single unified set of CAN message data
has been collected and stored with unique non-overlapping
message IDs.

The goal of CAN signal decoding is to identify the pres-
ence of signals within CAN messages and reverse engineer
their encodings. Within each CAN message payload, a sig-
nal is confined to a continuous stretch of bits. These bits can
be interpreted with the correct endianness and signedness
in order to get a decimal value. For this work, we assume
that the encoding for any signal does not change and is
always published on the same bits, e.g., signals are not
multiplexed. This possibility is considered in the discussion
on future work.

Once the correct bit boundaries, endianness, and signed-
ness are identified for a signal, most of the decoding work
is done. The final step is to determine the proper scale and
bias to apply to the value to get the final signal in the desired
unit, such as speed in km/hr. The solution presented in this
paper automatically labels signals, so solving for the scale
and bias of signals becomes the simple problem of obtaining
a small number of data points on the relevant sensor.

Present work in the literature focuses heavily on identify-
ing the correct bit boundaries for encoded signals, which is a
major challenge for CAN signal decoding [7]–[8]. However,

for a decoded signal to be of use, it must also be labeled. Cur-
rent CAN decoding methods find bit boundaries through
common signal features, such as the rate of bits switching
between 1 and 0, and finalize the encoding and signal label
by correlating with an external ground-truth signal. For
example, GPS sensors, Inertial Measurement Units (IMUs),
or previously decoded CAN signals can be used to validate
new signals [7]. Present methods commonly use such sig-
nals to validate the decoding of continuous signals, such as
wheel speed. However, this requirement of having another
external ground truth signal to validate and label signals
becomes increasingly difficult to automate as the signals
being decoded become more complicated. For example,
obtaining a ground truth value for a gas pedal signal re-
quires installing a physical sensor to detect when and how
the gas pedal is pressed, or developing a dynamics model
of the vehicle to calculate the gas pedal signal from other
known values. Such signals must be decoded by hand or
require specific equipment to record a ground truth. In this
work, we demonstrate that it is not necessary to perform
signal-specific work to label and decode a signal — instead,
previous decoding knowledge can be used to further decode
and label signals on new vehicles.

3. Related Work

3.1. LSTMs

LSTMs, Long Short-Term Memory neural networks, are a
type of neural network which are able to learn long-term
dependencies and relationships in data. They demonstrate
excellent performance at predicting and classifying time
series data [9, 10]. The solution presented in this work trains
an LSTM to classify multiple convolutions of encoded CAN
messages, which have continuous time-series-like behav-
iors. By reinterpreting the CAN decoding problem into
this known form, we can leverage existing successes in the
application of LSTMs.

Stacking multiple layers of LSTMs allows for the possibil-
ity of developing a latent space for higher order features of
data, including different time scales and signal relationships
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in time [11]. Developing a model of higher order features is
useful for classifying signals even with incorrect bit bound-
ary placements, which is demonstrated by our results in
this paper.

3.2. CAN Signal Decoding

There exists a body of work related to decoding CAN mes-
sages from vehicles. Many methods in the literature are
based on the work presented in READ [12]. READ seg-
ments CAN message payloads into sections by looking at bit
flip rates. These sections are categorized into six different
message types: UNUSED (an unused set of bits), CONST
(constant values), MULTI (values that change but do not
fall into other categories), COUNTER (clock- or counter-like
signals), CRC (cyclic redundancy check signals), and PHYS
(signals which represent a physical value). LibreCAN [13]
is one method based on READ, which further attempts to
gain accuracy with PHYS signals by using correlation to
a known signal. CAN-D [14] presents another pipeline to
decode CAN signals, notably generating a full set of de-
coding parameters (bit boundaries, endianness, signedness,
scale, and offset). These CAN decoding methods seek to
find commonalities between different signal encodings, in-
creasing the accuracy of identifying the correct encoding
by leveraging features such as bit flip rates, bit flip corre-
lations, and other derived features. Our work approaches
the decoding problem from a different point of view: our
model attempts to learn the characteristic signature of spe-
cific types of PHYS signals, instead of identifying features
relevant to all encoded signals.

Our work leverages known encodings in order to fur-
ther assist in the decoding of new CAN vehicles. In this
way, it is similar to the work presented in CANMatch [15].
CANMatch leverages frame matching, which relies upon
vehicle manufacturers’ re-use of the same Message IDs and
signal encodings across multiple makes and models. The
researchers discuss a possible mitigation to the success of
their strategy, which is the scrambling of Message IDs and
frames. We address this with CANClassify. By assessing
the features of the signals themselves, our method can still
find the same signals no matter which message they are
published on, where they are within a message, and how
they are encoded.

These other CAN decoding methods are generally eval-
uated for the methods’ ability to predict signals on CAN
messages, avoid predicting signals when there are none
present in a range of bits, and find the correct encoding for
identified signals. Therefore, methods are usually evalu-
ated using a vehicle that has been fully decoded already. In
this work, we evaluate on a vehicle that has not yet been
fully decoded and verify the results manually. Another
consideration is the time cost of decoding. For methods that
decode CAN messages live, it is essential to keep decoding
run times low, as high-speed CAN messages (as specified
by ISO 11898-2) can transmit information at bit speeds at
a rate of either 1 or 5 Mbit/s. For offline decoding, as
with CANMatch and CANClassify, it is not as necessary to
decode as quickly; however, the worst case runtime perfor-
mance should be bounded by the time it takes to interpret

all possible signal encodings (on the order of 106 encodings)
and score each signal interpretation with a correlation to a
ground-truth signal. On a modern 5 GHz processor, this
brute force method takes on the order of days to process the
information from an hour-long drive. However, it is more
common to compare to the present state of the art, which
takes on the order of minutes and hours.

4. Solution

We present two primary contributions in the area of CAN
signal decoding, which form the CANClassify method. The
first is the method of interpretive convolutions, a novel
way to generate a feature vector for encoded binary signals.
This technique is used to preprocess data for input to an
LSTM-based CAN signal decoding network. This enables
the network to both decode and label continuous CAN sig-
nals. The second contribution is the masking and filtering
method used to decode using the neural network.

4.1. CAN Classifier Network

Data were collected using the comma.ai [6] panda black
OBD-II interface and Libpanda [16] on two vehicles: the
2021 Toyota RAV-4 and 2017 Honda Pilot. The following sig-
nals were selected for classification, based on their relevance
to driving behavior, traffic conditions, and fuel usage:

• vx, velocity in the forward direction

• ax, acceleration in the forward direction

• ay, acceleration in the horizontal direction

• θs, the angle of the steering wheel

• ωs, the rate at which the steering wheel turns

• pb, continuous value for how much the brake pedal is
pressed

• pg, continuous value for how much the gas pedal is
pressed

• radar-long, longitudinal radar signal

• radar-lat, latitudinal radar signal

• radar-rel-vel, radar signal tracking relative velocity in
the forward direction

• radar-rel-acc, radar signal tracking relative acceleration
in the forward direction

In order to generate the training set for the classification
network, the relevant bits for each of the above signals were
taken from 3 hours of recorded CAN data. Algorithm 1 was
used to generate randomized messages from these relevant
bits.
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Algorithm 1 Generate Randomly Positioned Messages
randomized_messages← []
for s in can_signals do
start_positions← random0 . . . 64, 10 times
for p in start_positions do
s_1← place s at p, pad=random(0, 1)
s_2← place s at p, pad=0
randomized_messages⇐ s_1
randomized_messages⇐ s_2

end for
end for

Algorithm 2, interpretive convolutions, were then used
to generate a signal of the correct input size for the CAN
classification network. This algorithm is similar to what
Convolutional Neural Networks [17] do for images, but
instead are interpretive convolutions for CAN messages.
Differing sizes of bit widths are used to interpret the same
message across all possible positions in the message. This
generates a vector of varying bit boundaries, byte orders,
and sign values used to interpret the message. Interpreting
CAN signals with bit widths similar to the true bit width of
a signal will generate time series signals which have similar
behavior to the true signal, allowing the LSTM to learn
from signal behaviors relevant to each type of signal. This
behavior similarity is visually demonstrated in Figure 2.

Algorithm 2 Interpretive Convolutions
Require: msg is 64 bits
out← []
for i from 1 to 61 do
out⇐ interpret(msg, i:i+4, big, +)
out⇐ interpret(msg, i:i+4, little, -)

end for
for i from 1 to 57 do
out⇐ interpret(msg, i:i+8, big, +)
out⇐ interpret(msg, i:i+8, little, +)
out⇐ interpret(msg, i:i+8, big, -)
out⇐ interpret(msg, i:i+8, little, -)

end for
for i from 1 to 53 do
out⇐ interpret(msg, i:i+12, big, +)
out⇐ interpret(msg, i:i+12, little, +)

end for
for i from 1 to 49 do
out⇐ interpret(msg, i:i+16, big, +)
out⇐ interpret(msg, i:i+16, little, +)
out⇐ interpret(msg, i:i+16, big, -)
out⇐ interpret(msg, i:i+16, little, -)

end for

Convolutionally interpreted signal vectors are then
scaled and shifted according to the training set means and
ranges of the vectors, placing the vector values to be between
the values of -1 and 1. This enables the network to identify
signature patterns for each type of signal regardless of the
signal’s order of magnitude, which is directly related to the
length of the interpretation.

The final preprocessing step samples the convolutionally

interpreted signals every 100 time-steps for a total of 100
samples. This sampling value was fixed because the data
rates of broadcasted CAN messages reflect the relative rate
at which the CAN signals on the message change in time.
Various other sampling strides and sample counts perform
similarly.

The layers of the CAN classification neural network
model were as follows:
Fully Connected, 500 units
LSTM, 256 units
LSTM, 256 units, dropout 0.1
Fully Connected, 100 units, dropout 0.1
Fully Connected, 50 units
Fully Connected, 12 units, sigmoid activation

The model’s objective was to correctly predict the pres-
ence of 11 signals from 100 sampled values from a convolu-
tionally interpreted CAN message. All data were prepro-
cessed according to the described algorithms. A prediction
is only correct if the model predicts the presence of the
relevant signal and the absence of all other signals.

An 80:20 train-test split was used to train and evalu-
ate the model. The model was trained for 6 epochs on
CAN message data collected from 3 hours of driving. The
model achieved 0.8118 training set accuracy after 6 epochs
of training, which took 3 hours on a 4.3 GHz processor (with
multi-threading disabled). The model achieved 0.8170 test
set accuracy.

4.2. Using CAN Classifier for Decoding

The CAN classifier network can be used to both detect spe-
cific signal types, as well as decode the exact bit boundaries
of detected signals. CAN messages are first preprocessed
according to Algorithm 2. The model can then predict the
signal types transmitted on each message. Only signals
which are predicted to be present with a probability of 80%
or greater are accepted.

The bit boundaries of the signal can then be found using
Algorithm ??, which iteratively masks the signal to evaluate
which part of the message contributes to the prediction of
the class of interest. This algorithm generates scores for each
possible starting and ending bits of a signal. The left bit
boundary is encoded as a peak in the starting scores, and the
right bit boundary is encoded as a peak in the ending scores.
Each boundary combination, endianness, and signedness
are interpreted for each signal. Finally, these interpretations
are filtered based on three criteria. First, the interpretations
scored based on continuity. Continuity is approximated by
counting the number of differences in value between two
timesteps which are within 10% of the range of a signal, as
shown in Equation 1. Only signals which have a continuity
score of greater than 50% are accepted. Signals are then
scored based on the rate at which they vary, which is the
number of times the value changes — the highest score
is accepted as the encoding. Finally, counter signals are
filtered out [13]. The ultimate output from this filtering
process is an endianness, signedness, and signal type label
for each detected signal.
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Figure 2: Similar but varying bit widths at the same bit positions in a binary-encoded signal generates signals with similar behaviors. Signal
shapes, relative peak heights, and signal rates of change are similar.

score 1
count(diff(signal) > 0.1 ∗ range(signal)) + 1 (1)

A raw signal value can be obtained by interpreting the
original CAN message with the signal boundaries, endian-
ness, and signedness from this decoding process. Figure 3
shows an example of this decoding workflow.

5. Results

CANClassify was evaluated on a previously undecoded
vehicle, a 2020 Nissan Rogue Sport. The data was collected
by interfacing with the ADAS module located in the pas-
senger rear quarter panel. All messages on a single CAN
bus were recorded over a 5 minute period. This shows the
power of the model to identify useful signals even with
small amounts of data. CANClassify identified, decoded,
and labeled seven signals, of which two were radar-long sig-
nals, one was a radar-lat signal, one was a pb signal, one was
an ax signal, and two were vx signals. In the final filtering
stage, two of these seven signals were filtered out as counter
signals.

The non-radar signals found were manually verified us-
ing Strym [18] and mapped to valid signal labels. The wheel
speed signal was independently decoded on the vehicle
using bit flipping techniques as described in previous litera-
ture. The model predicted the same encoding for the wheel
speed signal as was found manually. Figure 3 illustrates
the decoding process as applied to the wheel speed signal.

The model was also successful at learning the signal
behavior of more complicated signals, such as acceleration-
and pedal-related signals. Figure ?? shows a signal that
the model classified as a brake pedal signal. This signal is
more likely to be associated with acceleration, but the model
and decoding process obtained a sufficiently close labeling
result, as braking is closely related to acceleration. This
example demonstrates that CANClassify is able to learn
signal features such as braking without having to individ-
ually define physical signal relationships (e.g., calculating
an acceleration signal by differentiating wheel speeds and
searching for signals that correlate with the differentiated
value).

A single-core 4.3 GHz processor was used for evaluating
the runtime of CANClassify. The time taken to decode
using CANClassify is linearly correlated to the number
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Figure 3: Bit boundary masking for likely wheel speed signal on test Nissan data. a) The model predicts the CAN message to only contain a velocity
signal. b) The masking process generates peak values at possible beginning and ending bit positions. c) Through the scoring process, an encoding is
chosen. The encoding is applied to view the raw velocity signal.
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of messages and the length of the CAN data because the
same convolutions are evaluated regardless of the message.
Therefore, CANClassify will take the same time to decode
any vehicle make and model, assuming the previous factors
are constant. We evaluated on data from a five-minute
drive, recording 129 CAN messages, where each message
published at a rate of 400 bytes per second on average.
CANClassify took 55 seconds to preprocess and classify
all messages without decoding. The bit decoding process
took 165 seconds per message on the same hardware. No-
tably, the CANClassify method for decoding can be entirely
parallelized across messages, across time, and across bit
masks during bit decoding. With the same hardware and
16-threads, CANClassify only takes 3 seconds to classify all
messages, and 10 seconds per message (on which a signal of
interest is detected) to identify the correct encoding. There-
fore, we conclude that CANClassify is competitive with the
current state of the art while achieving the additional task
of labeling discovered signals.

6. Discussion

In this work, we presented an alternative approach to
CAN signal decoding. Many current CAN decoding meth-
ods, such as LibreCAN [13] and CAN-D [14], use signal-
independent features such as bit flipping rates to identify
and decode signals, and then rely on manual work and
correlation with labeled ground truth signals to label the
decoded signals. While there has been previous work that
leverages known decodings to further decode CAN signals
[15], there has been no corresponding work to automate
the labeling of these signals. Our solution, CANClassify,
leverages known encodings and labels to further accelerate
both decoding as well as labeling.

However, more efficient CAN decoding brings up some
concerns about the security and safety of these methods. As
vehicles become more interconnected, it becomes increas-
ingly likely that infrastructure is created for inter-vehicle
communication. Adversarial attacks on physical CAN sys-
tems in conjunction with these new inter-vehicle commu-
nication protocols [19] could allow adversaries to remotely
decode additional vehicles, or interfere with intra-vehicle
CAN messages. Accelerated CAN decoding could also al-
low attackers to more easily identify the CRC bits packaged
with CAN signals, which act as a checksum and a way to
detect modified or invalid CAN signals. Such an attacker
could maliciously inject or modify CAN signals by correctly
setting CRC signals to valid values.

Some intrusion detection methods have been developed
to detect such attacks [20, 21]. Another simple solution
to secure CAN data is the use of encryption. Encryption
solutions have been demonstrated to be both feasible and
fast enough to be used on modern CAN buses [22]. While
signals could still be detected through power analysis, the
true encoding, as well as the underlying value of the CAN
signals, would be obfuscated — such a solution could only
be defeated through a cryptographic attack.

7. Conclusion

We presented a novel method for decoding CAN signals
from vehicle driving data by leveraging existing knowledge
of CAN message encodings and signal dynamics. Instead
of identifying features about the signal encodings them-
selves, we use our network to identify features about signal
behaviors. By using convolutional interpretations of CAN
messages, our model can learn from known encodings and
be used to identify the encodings of unknown signals. It is
able to do so even with a small amount of driving data —
a trained network is able to quickly decode signals as well
as label them, a task that would normally require manual
work for each type of signal.

Our solution was validated by evaluating the model on
signals recorded from a previously undecoded vehicle. En-
codings were validated by independently decoding the same
signals using present techniques and using correlations to
ground truth values.

Future directions for work include training on additional
signal types. With our current method, COUNTER and
CRC signals are sometimes detected as other PHYS signals
(though they are ultimately filtered out of the output). By
including these types of signals in the training set for the
model, these over-detections can be mitigated. Additionally,
we assume a consistent encoding for each signal. However,
some signals are multiplexed in time over the same set of
bits, where a single bit or a small number of bits are used to
specify which signal is transmitted over the rest of the bits.
By assessing the evolution of prediction probabilities across
time, CANClassify has the potential to detect multiplexed
signals and individually classify each multiplexed signal.
However, additional work must be done to identify the
multiplexing selection bit or bits.
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