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ABSTRACT: Irregular Pyramids are powerful hierarchical structures in pattern recognition and image
processing. They have high potential of parallel processing that makes them useful in processing of a
huge amount of digital data generated every day. This paper presents a fast method for constructing an
irregular pyramid over a binary image where the size of the images is more than 2000 in each of 2/3
dimensions. Selecting the contraction kernels (CKs) as the main task in constructing the pyramid is
investigated. It is shown that the proposed fast labeled spanning tree (FLST) computes the equivalent
contraction kernels (ECKs) in only two steps. To this purpose, first, edges of the corresponding
neighborhood graph of the binary input image are classified. Second, by using a total order an efficient
function is defined to select the CKs. By defining the redundant edges, further edge classification is
performed to partition all the edges in each level of the pyramid. Finally, two important applications
are presented : connected component labeling (CCL) and distance transform (DT) with lower parallel
complexity 𝒪(𝑙𝑜𝑔(𝛿)) where the 𝛿 is the diameter of the largest connected component in the image.
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1. Introduction

Pyramids are important structures in pattern recognition
and image processing. They were invented [1] as ordered
collection of images at multiple resolutions that are able to
process high resolution data at lower resolution and prop-
agating the local information into global and abstracted
information at higher levels [2]. Pizlo [3] states that the pyra-
mid is a general model for human problem solving where
a massively parallel processing must be accomplished in
order to recognizing a complex scene (like a busy street) in
the blink of an eye [4, 5].

Motivated by a biological point of view, this paper intro-
duces a fast method to construct the pyramidal structure of
a given 2D binary image in a fully parallel scheme. Using
the built pyramid, fundamental operations in analysing
the binary images can be performed with lower complex-
ity: Connected Component Labeling (CCL) and Distance
Transform (DT). In particular, the current research is an
extension of the previous work [6] that computes connected
components (CCs) with the help of the pyramid. Propagat-
ing the labels in [6] is performed in linear time, hence the
parallel complexity at the worst case is 𝒪(𝛿) where 𝛿 is the
diameter of the largest CC in the image. In contrast, this
paper mathematically proves that the parallel complexity is
decreased to 𝒪(𝑙𝑜𝑔(𝛿)).

The paper is organized as follows. Sec. 1 gives a short
overview of the theoretical background of image pyramids,
graph pyramids and different graph representations. The
classification of edges is defined in Sec. 2. Selecting the
contraction kernels as the main step in constructing the
irregular pyramid is completely described in Sec. 3. To this

aim, the concept of redundant edges is covered by detail. The
proposed fast labeled spanning tree (FLST) is defined in
Sec. 4. Two main applications are presented in Sec. 5. The
last section, provides a conclusion and considerations for
future research.

1.1. Image Pyramids

Image Pyramids consist of a series of successively reduced
images produced from a high resolution base image [2].
Generally, two types of the pyramids, namely regular and
irregular pyramids exist. In regular pyramids [7] the resolu-
tion is decreased in regular steps and therefore the size of
the pyramid is fixed. On the contrary, in irregular pyramids
[8, 9] the size of the pyramid is not fixed and it is adapted
to the image data. In addition, unlike the regular ones, the
irregular pyramids are shift- and rotation-invariant which
make them useful to use in a variety of tasks, in particular
image segmentation [10, 11].

It should be noticed that the irregular image pyramid
is interpreted as the irregular graph pyramid when its
pixels and the neighborhood relations between adjacent
pixels correspond to the vertices and the edges of the graph,
respectively.

1.2. Irregular Graph Pyramids

Irregular pyramids are a stack of successively reduced
graphs where each graph is constructed from the graph
below by selecting a specific subset of vertices and edges.
For generation of irregular pyramids, two basic operations
on graphs are needed: edge contraction and edge removal.
The former contracts an edge connecting two vertices, and
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the two vertices are joined into one. All edges that were
incident to the joined vertices will be incident to the result-
ing vertex after the operation. The latter removes an edge
from the graph, without changing the number of vertices or
affecting the incidence relationships of other edges.

In each level of the pyramid, the vertices/edges which
disappear in a level above are called non-surviving ver-
tices/edges. Those vertices/edges which appear in the
upper level are called surviving vertices/edges. Consider
𝐺 = (𝑉, 𝐸) as the neighborhood graph of an image 𝑃 where
𝑉 corresponds to the vertex set and 𝐸 corresponds to the
edge set. The vertex 𝑣 ∈ 𝑉 associates with the pixels in
image 𝑃 and the edge 𝑒 ∈ 𝐸 connects the corresponding
adjacent vertices. Let the gray-value of vertex 𝑔(𝑣) = 𝑔(𝑝)
where 𝑝 ∈ 𝑃 is a pixel in the image corresponding to vertex
𝑣. Consider 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑒) as an attribute of an edge 𝑒(𝑢, 𝑣)
where 𝑢, 𝑣 ∈ 𝑉 and 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑒) = |𝑔(𝑢) − 𝑔(𝑣)| in the base
level. Since we are working with binary images only, the
vertices have either of the two values 0 and 1. Similarly the
contrast of an edge is either 0 or 1.

Definition 1 (Contraction Kernel (CK)). A CK is a tree con-
sisting of a surviving vertex as its root and some non-surviving
neighbors with the constraint that every non-survivor can be part
of only one CK.

An edge of a CK is denoted by the directed edge and
points towards the survivor.
In this paper, the 4-connectivity between pixels of the input
image is assumed. The reason is that the 8-connectivity
would not be a plane graph [12]. A plane graph is a graph
embedded in the plane such that its edges intersect only at
their endpoints [13]. In a plane graph there are connected
spaces between edges and vertices and every such connected
area of the plane is called a face. The degree of the face is
the number of edges bounding the face. In addition a face
bounded by a cycle is called an empty face. In a non-empty
face, traversing the boundary would require to visit vertices
or edges twice [12].
An empty face consisting only one edge is called an empty
self-loop. Consider an empty face of degree 2: it contains
two edges that have the same endpoints. These parallel
edges are called multiple edges. The multiple edges mean
edges between the same endpoints, i.e. for example edges
𝑒𝑢1 ,𝑣1 ≠ 𝑒𝑢2 ,𝑣2 ≠ 𝑒𝑢3 ,𝑣3 where 𝑢1 = 𝑢2 = 𝑢3 and 𝑣1 = 𝑣2 = 𝑣3.

1.3. Graph Representation

Graphs as a versatile representative tool are common in the
representation of the irregular pyramid. There are different
graph representations such as a simple graph, a dual graph
and a combinatorial map.

A simple graph [14] 𝐺 = (𝑉, 𝐸) consists of a set of ver-
tices 𝑉 and of edges 𝐸 without self-loops and multiple edges
between pairs of vertices. The relationships between dif-
ferent regions can be represented by the region adjacency
graph (RAG). Although plane simple graphs are a common
model for the RAG they cannot distinguish between different
topological configurations, namely inclusion and multiple
adjacency relationships (multi-boundaries) of regions [14].

A dual graph model encodes multiple boundaries be-
tween regions in a non-simple graph. The problem with

dual graphs [9] is that they cannot unambiguously repre-
sent a region enclosed in another one on a local level [14].
Therefore, in this paper the combinatorial map (CM), as a
planar embedding of a RAG, is used. It not only solves the
mentioned problems but also provides an efficient structure
to preserve topological relations between regions while it
can be extended to higher dimensions (nD).

1.4. Combinatorial Pyramid

A combinatorial pyramid [15] is a hierarchy of successively
reduced combinatorial maps. A combinatorial map (CM)
is similar to a graph but explicitly stores the orientation of
edges around each vertex. The 2D combinatorial map (𝐺)
is defined by a triple 𝐺 = (𝐷, 𝛼, 𝜎) where the D is a finite
set of darts [14]. A dart is defined as a half edge and it is
the fundamental element in the CM’s structure. The 𝛼 is an
involution on the set D and it provides a one-to-one mapping
between consecutive darts forming the same edge such that
𝛼(𝛼(𝑑)) = 𝑑. The 𝜎 is a permutation on the set D and encodes
consecutive darts around the same vertex while turning
counterclockwise [16]. Note that the clockwise orientation
is denoted by 𝜎−1.

Fig. 1a shows a set adjacent darts with their 𝜎 and 𝛼
encoding. Note that the edge 𝑒 between two vertices 𝑢 and
𝑣 is denoted by 𝑒 = (𝑑, 𝛼(𝑑)). The 𝑢, 𝑣 ∈ 𝑉 and the 𝑒 ∈ 𝐸
where the 𝑉 and 𝐸 are the set of vertices and edges of the
graph 𝐺 = (𝑉, 𝐸), respectively.
The removal and the contraction operations in the combina-
torial pyramid is defined as follows:
Definition 2 (Removal operation). The removal operation re-
moves one edge, 𝐺\{𝑒}, while it modifies the adjacent darts such
that:

𝜎(𝜎−1(𝑑)) = 𝜎(𝑑), 𝜎(𝜎−1(𝛼(𝑑))) = 𝜎(𝛼(𝑑)) (1)

Definition 3 (Contraction operation). The contraction oper-
ation removes one edge, 𝐺/{𝑒}, and collapses its two endpoints
and modifies the adjacent darts such that:

𝜎(𝜎−1(𝑑)) = 𝜎(𝛼(𝑑)), 𝜎(𝜎−1(𝛼(𝑑))) = 𝜎(𝑑) (2)

Fig. 1b and Fig. 1c illustrate the removal and contraction
operations in the combinatorial map. Note that the con-
traction operation does not disconnect the graph, and thus
preserves connectivity [8].

2. Edge Classification in a Binary Image Graph

Let neighborhood graph 𝐺 = (𝑉, 𝐸) be the undirected con-
nected plane graph consisting of a finite set of vertices 𝑉
and a finite set of edges 𝐸. In the neighborhood graph of
the binary input image, each connected component (CC)
consists of a set of vertices with the same gray value, 0 or 1.
In the paper, black pixels (vertices) are shown by 0 while
white pixels (vertices) are shown by 1. In this regard, we
partition the edges of the neighborhood graph into two
categories: edges connecting two vertices of the same CC,
intra-CC and edges connecting vertices of different CCs,
inter-CCs as follows:
Definition 4. Intra-CC edge: an edge 𝑒 = (𝑢, 𝑣)∈ 𝐸 within a
CC is intra-CC iff 𝑔(𝑢) = 𝑔(𝑣).
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(a) An edge 𝑒 with its incident darts in the CM. (b) Removal operation, 𝐺\{𝑒}. (c) Contraction operation, 𝐺/{𝑒}.

Figure 1: Two main operations in irregular graph pyramids. (a) Before applying an operation. (b), (c) after applying the operations.

Definition 5. Inter-CC edge: an edge 𝑒 = (𝑢, 𝑣)∈ 𝐸 between
two CCs is inter-CC iff 𝑔(𝑢) ≠ 𝑔(𝑣).

The contrast of an intra-CC edge is equal to zero,
𝑐(𝑖𝑛𝑡𝑟𝑎-𝐶𝐶) = 0. Therefore, we denote the intra-CC edge
by 𝑒0 ∈ 𝐸0. The contrast of an inter-CCs edge is one,
𝑐(𝑖𝑛𝑡𝑒𝑟-𝐶𝐶𝑠) = 1. Therefore, the inter-CCs edge is de-
noted by 𝑒1 ∈ 𝐸1. All edges in the neighborhood graph are
partitioned into 𝐸0 and 𝐸1 edges:

𝐸 = 𝐸0
·
∪ 𝐸1 (3)

3. Selecting the CKs using a Total Order

Selecting the CKs plays the main role in constructing the
irregular pyramid. The height of the built pyramid and
the complexity of the construction depends on how the
CKs are selected. In order to achieve an efficient and a
unique selection of the CKs a total order is defined over the
vertices [17]. Consider 𝐺 as the neighborhood graph of an
binary input image with 𝑀 by 𝑁 vertices. Let (1, 1) be the
coordinate of the vertex at the upper-left corner and (𝑀, 𝑁)
at the lower-right corner. Let 𝑟 and 𝑐 denote the row and the
column in the grid structure of 𝐺, respectively. The vertices
of 𝐺 receive a unique index as follows:

𝐼𝑑𝑥 : [1, 𝑀] × [1, 𝑁] ↦→ [1, 𝑀 · 𝑁] ⊂ N (4)
𝐼𝑑𝑥(𝑟, 𝑐) = (𝑐 − 1) ·𝑀 + 𝑟 (5)

We use the properties of the total order [18] in selecting the
CKs. First, every two elements of a total ordered set (indices
of vertices) are comparable. Second, each subset of the total
ordered set (a set of vertices) has exactly one minimum and
one maximum.

In the binary neighborhood graph 𝐺 a CC consists of
only intra-CC (𝐸0) edges. In constructing the irregular pyra-
mid this CC is shown by only one single vertex at the top of
the pyramid. Therefore, all the CKs are selected only from
the intra-CC edges. From the vertex point of view, a vertex
that is not incident to an intra-CC edge is an isolated vertex.
This vertex is surrounded by only inter-CC edges.

Let 𝑣 be a non-isolated vertex, i.e, it is the endpoint of
at least one intra-CC edge. The upper neighborhood 𝒩 is
defined as follows :

𝒩(𝑣) = {𝑤 ∈ 𝑉 |(𝑣, 𝑤) ∈ 𝐸0 , 𝐼𝑑𝑥(𝑤) > 𝐼𝑑𝑥(𝑣)} (6)

The cardinality of the set |𝒩(𝑣)| indicates the number of
intra-CC edges incident to 𝑣 having greater vertex than 𝑣.
Therefore, the cardinality of the non-isloated vertex is
|𝒩(𝑣) ≥ 1|.

In order to determine the CKs in the graph 𝐺 = (𝑉, 𝐸),
the selecting contraction kernel SCK(.) function is defined as
follows:

𝑆𝐶𝐾 : [1, 𝑀 · 𝑁] ↦→ [1, 𝑀 · 𝑁] (7)
𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = max{𝐼𝑑𝑥(𝑤)| 𝑤 ∈ 𝒩(𝑣)} if |𝒩(𝑣)| ≥ 1 (8)

𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = 𝐼𝑑𝑥(𝑣) if |𝒩(𝑣)| = 0 (9)

The output of the SCK function partitions the vertices
into two categories: surviving vertices and non-surviving
vertices as follows:

Definition 6. [Surviving vertex] A vertex 𝑣 ∈ 𝑉 in a bi-
nary neighborhood graph 𝐺 = (𝑉, 𝐸), is a surviving vertex
iff 𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = 𝐼𝑑𝑥(𝑣).

Proposition 1. An isolated vertex survives always.

Proof. Assume 𝑣 is an isolated vertex. Since there is no
intra-CC edge incident to the isolated vertex, it leads to
|𝒩(𝑣)| = 0. Based on the (9), 𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) = 𝐼𝑑𝑥(𝑣) and
therefore employing the Def. 6 𝑣 is the surviving ver-
tex. □

Definition 7 (Non-surviving vertex). A vertex 𝑣 ∈ 𝑉 in a
binary neighborhood graph 𝐺 = (𝑉, 𝐸), is a non-surviving vertex
iff 𝑆𝐶𝐾(𝐼𝑑𝑥(𝑣)) ≠ 𝐼𝑑𝑥(𝑣).

Proposition 2. For a non-surviving vertex 𝑣 at the base level,
|𝒩(𝑣)| ∈ {1, 2}.

Proof. Based on (5) a non-surviving vertex may be incident
to maximum two vertices with greater indices (right or down
vertices) at the base level. In addition, the non-surviving
vertex must be incident to at least one vertex, namely its
right or its down vertex. The former states |𝒩(𝑣)| = 2 while
the latter states |𝒩(𝑣)| = 1. □

1All total orders are permutations of each other.
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(a) First step of selecting the CKs at the base level. (b) Second step of selecting the CKs. (c) Top of the pyramid.

Figure 2: Two steps of selecting the CKs. The edge 𝑎 shows the inclusion relationship between CCs.

In a CK there is one surviving vertex (the root of the
CK) while the remaining vertices are non-surviving vertices.
Each non-surviving vertex connects to the surviving root
by a unique monotonically 𝐼𝑑𝑥-increasing path of oriented
edges. In a graph with 𝑛 vertices there are 𝑛! different total
order1. Each selected total order has its own properties.
Selecting an efficient total order effects on selecting the CKs
where the number of CKs determines the height of the pyra-
mid. Pyramids with logarithmic height reduce the parallel
computational complexity of fundamental operations such
as connected component labeling [19, 17] and distance trans-
form [20]. Therefore, a proper selection of the total order
must result in constructing the pyramid with logarithmic
height. In Sec. 4.1 it is proved that the proposed total order
leads to this logarithmic height.
In contrast to the common methods of constructing the pyra-
mid [2, 8], using the proposed total order has the advantage
that the vertices are partitioned in every level of the pyramid.
In other words, the vertices are either the non-surviving
or the surviving vertices. Next sections show how this
partitioning reduces the number of steps in selecting the
CKs into only two steps.

3.1. First Step of Selecting the CKs

Selecting the CKs at the base level of the pyramid is the
first step of the selection. To this aim, the SCK function is
performed over each vertex of the neighborhood graph of
the base level. As the result, each CK has one surviving
vertex and all the other vertices of the CK do not survive. In
Fig. 2-a the surviving vertices at the base level are denoted
by a red circle around each vertex while all the other vertices
do not survive.

At the base level of the pyramid, all faces in the grid struc-
ture are bounded by four edges containing two horizontal
and two vertical edges.

Proposition 3. A horizontal intra-CC edge in a face of degree 4
at the base level of the pyramid always belongs to a CK.

Proof. Assume a horizontal intra-CC edge 𝑒 = (𝑢, 𝑣) at the
base level does not belong to a CK. Let 𝑢 and 𝑣 locate at
the left and the right side of the edge 𝑒, respectively. Since

𝑢 is the endpoint of 𝑒, thus 𝑢 is not an isolated vertex
(|𝒩(𝑢)| > 1) and based on (5), 𝐼𝑑𝑥(𝑢) < 𝐼𝑑𝑥(𝑣). Due to
Pro. 2 if |𝒩(𝑢)| = 1 then 𝑣 is the only vertex of 𝒩(𝑢) that
is incident to 𝑢 and thus 𝑣 is selected as the survivor. In
case |𝒩(𝑢)| = 2, there are two right and down vertices in
the 𝒩(𝑢) where based on (5) the right vertex is selected as
surviving vertex. □

3.2. Redundant Edges

Graphs as a versatile representative tool may have many
unnecessary (redundant) edges [17]. Through the construc-
tion of the pyramid, contracting edges results in a smaller
induced graph at the upper level. The resulting graph may
consist of empty self-loops or double-edges. At this point,
the edge removal simplifies the graph and removes these
redundant edges.

Definition 8 (Redundant Edges). In a hierarchical structure,
those edges that are not needed to fully reconstruct the hierarchy
are considered as redundant edges.

Generally, the definition of the redundant edges de-
pends on the applications and to what extend the recon-
struction needs to be performed. For example, Banaeyan et
al. [6, 17, 19] defined the concept of the redundant edges
in a binary graph pyramid in order to do the connected
component labeling task where the fully reconstruction is
performed. They showed that the redundant edges can be
detected (predicted) before performing the contraction of
edges. In this paper, we use the same concept for defining
the redundant intra-CC and redundant inter-CC edges.

Definition 9 (Redundant Intra-CC edge (𝑅𝐸0)). In an empty
face consisting of only intra-CC edges, the non-oriented edge
incident to the vertex with lowest Idx is a redundant intra-CC
edge.

The definition above states that a redundant intra-CC
edge (𝑅𝐸0) exists only in a face bounded by intra-CC edges.
Fig. 3 illustrates the configuration of the redundant intra-CC
edges.
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(a) 𝑅𝐸0, before contracting the CKs.

(b) Corresponding 𝑅𝐸0, after contracting the CKs.

Figure 3: Configurations of the redundant intra-CC edges.

Definition 10 (Redundant Inter-CCs Edge (𝑅𝐸1)). In an
empty face, an inter-CCs edge incident to the vertex with lowest
Idx is redundant iff:

• The empty face consists of only two inter-CCs edges.

• The empty face is bounded by inter-CCs edges and oriented
intra-CC edges.

Fig. 4 illustrates all different configurations of the 𝑅𝐸1
edges before and after contracting the CKs.

Figure 4: All different configurations of redundant inter-CCs edges

3.3. Second Step of Selecting the CKs

At the base level of the pyramid there are three types of the
intra-CC edges:

1. The oriented edges that belong to the CKs.

2. The non-oriented redundant edges, 𝑅𝐸0, were defined
in Def. 9.

3. The remaining non-oriented intra-CC edges are de-
fined as the bridges.

Definition 11 (Bridge). A bridge is a non-oriented intra-CC
edge that bridges the gap between two contraction kernels of a
connected component.

Note that the bridge is the edge of the equivalent con-
traction kernel (ECK) that is contracted after the two CKs
are contracted.

Proposition 4. A bridge in a face of degree 4 at the base level of
the pyramid is the vertical edge.

Proof. In the face of degree 4, there are two horizontal and
two vertical edges. Assume the non-oriented bridge is the
horizontal edge. However, due to Pro. 3 every horizon-
tal intra-CC edge is oriented and therefore it cannot be a
non-oriented intra-CC edge. □

Proposition 5. A face of degree 4 at the base level of the binary
pyramid does not have more than one bridge.

Proof. Assume a face of degree 4 contains two bridges.
Since the bridges are vertical intra-CC edges, the oriented
intra-CC edge must connect two different CCs which is in
contradiction with the definition of the oriented edge (see
Fig. 5-b). □

Proposition 6. Two bridges at the base level of the binary pyramid
are not incident to a same vertex.

Proof. Assume that two bridges are incident to the same
vertex. Therefore, the horizontal common edge between
their two corresponding faces must be the oriented intra-CC
edge and the inter-CCs edge at the same time (see Fig. 5-c) ,
contradiction. □

Figure 5: (a) The configurations of a bridge at the base level. (b) A face
does not have two bridges. (c) Bridges are not incident to the same vertex

In order to select the CKs at the second step, the SCK
function is performed over the bridges.

Definition 12 (inclusion edge). An inclusion edge is a non-
empty self-loop inter-CC edge that preserves the topological inclu-
sion relationship between two different CCs.

Note that if the inclusion relationships exists between
two different CCs, the inclusion edge is one of the bridges
that will be detected after the contractions of oriented edges.
In Fig. 2 the inclusion edge is shown by a non-empty self-
loop that is denoted by the letter a with the red color.

Proposition 7. All the redundant intra-CC edges are detected at
the base level of the binary pyramid.
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(a) The configurations of a bridge before and after the edge contraction. (b) Contradiction to planarity of the graph G.

(c) Contradiction to planarity of the graph G. (d) Contradiction to (5).

Figure 6: All redundant intra-CC edges, 𝑅𝐸0, are at the base level of the pyramid.

Proof. The redundant intra-CC edges occur in a face
bounded by only intra-CC edges. At an upper level, the
remaining intra-CC edges are the bridges at the base level.
However, since each bridge has the 𝜎-related to a inter-CCs
edge (Fig. 6a), therefore, there is no empty face containing
only intra-CC edges at upper levels of the pyramid. Note
that in the simple graph 𝐺, two bridges cannot be the 𝜎-
related of each other because this contradicts to planarity of
the graph (Fig. 6b and Fig. 6c) or it contradicts to (5) that is
shown in Fig. 6d. □

The Proposition .7 states that there is no redundant intra-
CC edge at an upper level of the pyramid. In fact, this is
because of the important property of the defined total order
over the indices of vertices where at the base level each
non-surviving vertex only can be contracted into its right or
down neighborhood vertex.

4. Fast Labeled Spanning Tree (FLST)

A CC in a binary graph pyramid is represented by a single
surviving vertex at the top level of the pyramid. This vertex
is the root of the tree spanning its receptive field at the base
level [21]. In [22] it was shown that the combination of two
(or more) successive reductions in an equivalent weighting
function allows to calculate any level of the pyramid directly
from the base. Kropatsch in [21] introduced the Equivalent
Contraction Kernels (ECK) in the irregular graph pyramid
and it was later used [23] in the minimum spanning tree
(MST) segmentation.

In the binary pyramid, every spanning tree of a CC is
the MST because the contrast (weight) of the intra-CC edges
is zero. To drive the spanning tree of a CC, the previous
common methods [14, 16, 11] need to select the CKs in 𝑛
iterations where 𝑛 is the height of the pyramid. In contrast,
in the proposed method we only need two steps of selecting
the CKs. Moreover, the SCK function is performed locally
over each vertex. This means that the CKs are selected with
parallel complexity of 𝒪(1). Note that, it is assumed there

are sufficient processing elements available in order to do
the parallel computations.

4.1. Independent Edges

To contract the CKs in a parallel manner, finding a set of
independent edges plays the key role. Dependency of the
edges differs based on what processing is going to be per-
formed between a set of edges. In [19] two edges not sharing
an endpoint are considered as independent edges. Using this
definition all the CKs at the first selection can be contracted
with parallel complexity bounded as follows:

𝒪(𝑙𝑜𝑔2(𝛿(𝐶𝐾))) ≤ 𝐶𝐾𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≤ 𝒪(𝑙𝑜𝑔3(𝛿(𝐶𝐾)))
(10)

To determine the parallel complexity of contracting the CKs
at the second step of selection, the dependencies between
darts [6] is considered. Since in this step, each edge of the
CK is a bridge at the base level, hence, there is an inter-CCs
edge with a 𝜎-relation incident to this edge. Therefore, all
the CKs at the second selections are independent of each
other and they will be contracted in parallel complexity
𝒪(1).

5. Applications

To highlight the usefulness of the proposed method, two
main applications are presented. In both application the par-
allel complexity is 𝒪(𝑙𝑜𝑔(𝑁)) in a 𝑁 × 𝑁-size input binary
image.

5.1. Connected Component Labeling

Connected Component Labeling (CCL) is a fundamental
task in analyzing binary images [24] where background
and foreground are denoted by zero and one, respectively.
A connected region is a group of pixels where all pairs of
pixels are connected together. The role of the CCL is to
assign a unique label to each CC. Common methods of CCL
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[24, 25, 26] are linear; i.e., they search the binary image
row by row in the raster-scan fashion. In contrast, using a
hierarchical structure, within the bottom-up construction
each pixel reaches its single surviving pixel (super-pixel) at
top of the pyramid in a logarithmic number of steps. At this
top-level of the pyramid, each of the super-pixels receives
its unique label 𝐼𝑑𝑥. Afterwards, through the top-down
propagation the vertices of the lower levels inherit the labels
from the higher levels until all the pixels at the receptive
field (base level of the pyramid) received their labels.

Figure 7: CCL by //ACC method.

The hierarchical method is called Parallel Pyramidal
Connected Component (//ACC2) where the details can be
found in [19]. The //ACC not only does the CCL task but
also preserves the topological relations between the CCs.
Fig. 7 shows how the //ACC encodes inclusion relation-
ships between three CCs. Table 1 [19] shows the execution
time of the //ACC method over three different categories
of binary images; Random, MRI and Finger-print images.
In addition, the execution time of the algorithm over differ-
ent image-size is compared to the state-of-the-art methods;
Spaghetti_RemSP, BBDT_RemSP, SAUF_UF, in [27]. The
results in Fig. 8 encourage the //ACC method should be
used in large images including more than one million pixels.

Table 1: Results for the different categories from (YACCLAB[28]).

Database Type Random MRI Finger-print
size of Images 128×128 256×256 300×300
Num. of Images 89 1170 962
mean time (ms) 0.098 1.643 2.317
worst time (ms) 0.127 2.973 3.518

5.2. Distance Transform

The distance transform (DT) is another important funda-
mental operation that is applied to the binary image [1].
It is employed in a broad range of applications containing
template matching [29, 30], image registration [31], map
matching robot self-Localization [32], skeletonization [33],
Line Detection in Manuscripts [34], Weather Analysis and
Forecasting [35], etc. After applying the DT to a binary
image, the result of the transform is a new gray-scale image
whose foreground 1 pixels have intensities representing the
minimum distance from the background 0 pixels.

Figure 8: Illustration of the execution time (ms) over different image-sizes

In order to compute the DT, the common methods [1, 36],
propagate the distances in linear sequential time. By con-
trast, using the hierarchical structure the distances can be
propagated by a set of power-of-two numbers [20] where
the parallel complexity is reduced into the logarithmic-time.
The computation of DT with lower complexity makes the
pyramid as a useful tool in analysing large binary images. In
particular, currently we are working on the Water’s gateway
to heaven project3 dealing with high-resolution X-ray micro-
tomography (�𝐶𝑇) and fluorescence microscopy. The size
of the images is more than 2000 in each of 3 dimensions
where we use the saddle points of the DT to separate cells,
which are visually difficult to be separated.

In the mentioned project above the input image is a
labeled 2D cross slice of a leaf scan where it has six different
labels illustrating different regions inside the leaf (Fig. 9a).
The task of stomata is to control the amount of CO2 that
is entering the leaf. In order to do the photosynthesis, the
CO2 propagates through the airspace inside the leaf to reach
the cells where it combines with water and sunlight. To
model the procedure of the gas exchange in the leaf [37], we
compute the geodesic distance transform (GDT) from the
stomata through the airspace (Fig. 9b) to find out how long it
takes to reach the necessary CO2 concentration [20]. The use
of pyramids would enormously speed up the computations
of the DT in the large images of the project.

6. Conclusion

The paper presents a fast parallel method to select the
equivalent contraction kernels in the irregular pyramid of
a binary input image. It was shown that the first step of
selecting the contraction kernels (CKs) at the base level is
done with parallel complexity 𝒪(1). These CKs are con-
tracted with parallel 𝒪(𝑙𝑜𝑔(𝛿)) complexity where the 𝛿 is
the diameter of the maximum connected component (CC)

2It is pronounced pac where the // and A stand for parallel and pyramidal.
3https://waters-gateway.boku.ac.at/
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(a) The labeled cross slice of a leaf (b) Computing the Geodesic Distance Transform (GDT)

Figure 9: Computing the Geodesic Distance Transform in a multi-labeled image [20].

in the neighborhood graph of the image. By detecting the
redundant edges (RE) the selection of CKs is performed in
one parallel step. By defining the independent set of edges,
we proved that all the selected CKs at the second step of se-
lection are contracted in parallel complexity 𝒪(1). The Fast
labeled spanning tree (FLST) of the CCs is produced with
parallel complexity 𝒪(𝑙𝑜𝑔(𝛿)). Using the total order there is
no random processing in construction of the pyramid and
the resulting FLST is unique.

In addition, it was shown by employing the proposed
FLST, that the fundamental operations in analyzing the
binary image can be performed in lower parallel complexity.
In particular, two main operations, connected component
labeling (CCL) and distance transform (DT), were presented
in detail. Finally, we presented how the proposed method
can be useful in processing of the large images in practical
real applications. For future works we plan to compute 3D
distance transform in order to study the diffusion in the air
space within a leaf.
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