
Special Issue on Computing, Engineering and Sciences

Received: 31 October 2022, Revised: 22 December 2022, Accepted: 29 December 2022, Online: 28 January 2023

DOI: https://dx.doi.org/10.55708/js0201002

CAPEF: Context-Aware Policy Enforcement Framework for Android
Applications
Saad Inshi 1, Mahdi Elarbi 1, Rasel Chowdhury 1,∗ , Hakima Ould-Slimane 2 , Chamseddine Talhi 1

1 Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, Canada
2 Département de Mathématiques et d’Informatique, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
∗Corresponding author: rasel.chowdhury.1@ens.etsmtl.ca

ABSTRACT: The notion of Context-Awareness of mobile applications is drawing more attention, where
many applications need to adapt to physical environments of users and devices, such as location, time,
connectivity, resources, etc. While these adaptive features can facilitate better communication and
help users to access their information anywhere at any time, this however bring risks caused by the
potential loss, misuse, or leak of users’ confidential information. Therefore, a flexible policy-based access
control system is needed to monitor critical functions executed by Android applications, especially,
those requiring access to user’s sensitive and crucial information. This paper introduces CAPEF,
which is a policy specification framework that enforces context-aware inter-app security policies to
mitigate privacy leakage across different Android applications. It also, provides an instrumentation
framework to effectively enforce different behaviors based on automated context-aware policies to
each Android application individually without modifying the underlying platform. Accordingly, the
modified applications will be forced to communicate with our centralized policy engine to avoid any
malware collusion that occur without the users’ awareness. Experiments conducted on CAPEF shows an
effective performance on the size of the enforced application after the instrumentation. The average size
added was 705 bytes, which is about 0.063% of the size of the original applications, which is significantly
small compared to other existing enforcement approaches. Also, we have denoted that the size and the
execution time of the policy increases whenever the policies become more complex.

KEYWORDS Security, Android applications, Application instrumentation, Context-aware policies,
Policy enforcement, Privacy

1. Introduction

Context awarenes service is a key driver for the modern
mobile operating systems which are commonly prompting
users by showing authorization dialog boxes asking for
allowing or denying access to some functionalities. These
services opened a big interest in defining, managing, and
enforcing context-aware policies especially for those scenar-
ios that put users under the risk of leaking or misusing their
credential information. Yet, thousands of malicious appli-
cations are developed on the Android store and affecting
millions of Android users worldwide. To safeguarded An-
droid users, Google is frequently announcing the cracking
down of such malicious applications. For instance, Google
has removed over 700,000 malicious applications from the
Play Store in 2017 only [1]. Based on Goggle statistics, this is
70% more than what Google removed in 2016. Very recently
in 2022, Google has removed 16 bad apps that missuses
mobile data and draining batteries. Surprisingly, these
apps have been downloaded by more than 20 million users
around the world [2].

Android system protects sensitive APIs by granting

them permissions to amplify application privileges on the
device, including access to stored data and services, such
as network, memory, and so on. All permissions required
to access the protected APIs in each application’s manifest
file (AndroidManifest.xml) [3] are necessarily set by the
Android app developers. System permissions are divided
into two categories, normal and dangerous. Normal per-
missions do not pose a direct threat to the privacy of the
user, although dangerous permissions may allow the ap-
plication to access the user’s confidential data. Existing
application authorization system in Android allows you to
control only the permissions that are classified as dangerous,
whereas our developed policy approach, offers the ability
to control all monitored permissions as any application may
cause a risk or conflict within a specific context without
user awareness. Also, our model will mitigate malware
collusion in which two or more malicious apps combine
to accomplish their goals. For example, a user can choose
to allow a camera app to access the camera, but not to the
contact information without his consent or awareness. An-
other example, where normal applications can be granted
permissions to collecting user’s contacts, photos, videos,

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 13

https://dx.doi.org/10.55708/js0201002
https://orcid.org/0000-0001-6056-8691
https://orcid.org/0000-0002-2694-6959
http://www.jenrs.com

Inshi et al., CAPEF

locations, or banking information then sending it over the
internet to a remote server and taking into consideration
pre-defined context aware access control policies. Therefore,
a flexible policy-based access control system is needed to
monitor APIs functions in Android applications, especially
those requiring access to the user’s sensitive and crucial
information. The current permission system of Android still
has some limitations, where users must grant most permis-
sions requested by an application to install it, without being
able to automatically manage most of these permissions
based on the user’s context afterwards.

This drawback has motivated the researchers to propose
context-aware policies and/or define policy languages to
enforce the current Android permission system either by
modifying the Android platform such as in [4]–[8] or by
instrumenting the Android Applications [9]–[18] and more
recently in [19]–[21] (more details and comparisons can be
seen in the background and literature review section). While,
existing works have demonstrated significant effectiveness
in protecting users against threats, these approaches are still
impeded by several drawbacks.

1.1. Challenges

Defining and monitoring context-aware inter-app policies
of sensitive APIs on Android applications presents sev-
eral challenges. Especially, when we are trying to defend
applications collaborating to create malicious contexts:

i Context-aware inter-app policies are difficult to pre-
dict as they frequently get changed and need to be
updated accordingly for accuracy and correctness.

ii Beside the difficulty of representing the security poli-
cies in a logical language which can contain user
contexts and semantics, a key challenge is how to
design and develop effective and efficient algorithms
to monitor private information leakage on semantics
levels.

iii There is a need for a policy language that can provide
certain agreements that empower users with the abil-
ity to prioritize specific mobile resource and specify
the amount and kind of information that can be shared
within particular contexts. For instance, a user should
be able to share a personal data with a specific service
provider based on his location or at a specific time of
the day to ensure his privacy. In this case, the user
must agree on a trade-off between data privacy and
the needed service. As a result, a policy should be
defined to ensure privacy, while certain context-based
information can be shared.

iv Android Sandboxing is introduced in the recent An-
droid version 13.0. Sandboxing protects apps data
and permission from getting access from other apps.
This new feature will have an impact on our inter-apps
policy model, but our main goal still effective which
is to allow the user to define his policies to work au-
tomatically depending on the context update, to the
running apps etc. Therefore our, framework can fully
protect the Android OS versions lower than 13.0 in

which the installed apps can communicate between
each others.

v Due to the resourced constrained mobile devices, we
have to decide, in early stages the instrumentation and
monitoring location, whether to be on device, external
PC or App market.

1.2. Contributions

This article is contributing solutions for the above-mentioned
challenges and limitations by introducing:

i A formal context-aware policy specification framework
for Android applications that effectively describe users
defined consents.

ii A design and implementation of an instrumentation
framework to mitigate privacy leakage across different
Android applications.

iii Providing a centralized applications controller. This
will allow users to manage all API calls performed by
the applications installed on the device and to mitigate
malware activities.

iv Effectively enforce different behaviors based on au-
tomated context-aware policies for each Android ap-
plication individually without any modification to be
entailed in the underlying platform.

v Experiments conducted on our CAPEF in terms of
performance by analyzing the size of the enforced
application after the instrumentation, also, the execu-
tion time of the policy decision, and the policy size
which affects the complexity of the applied rules and
conditions.

2. Background and Literature review

Android applications are distributed as APK files (Android
Package). Each package consists of the application’s mani-
fest file, resources and application bytecode encoded for the
Dalvik Virtual Machine (DVM) as a single classes.dex file.
The APK file has to be signed for verifying its authenticity.
Android signed package (Dex files) runs separately in its
own DVM. Also, Android system is an open source plat-
form where applications are published in different markets
without being monitored or analyzed to guarantee their
behavior. For that reason, Android platform protection
mechanisms such as Application Sandboxing, Permission
Model and Application Signing are developed for privacy
and security purposes. Accordingly, at the time of installing
Android applications, each application will get a unique
user identifier (UID) [22]. Also, no application will be able
to access other application’s files. Besides, every applica-
tion run into separate VMs. Accordingly, no vulnerable
application will affect other applications.

For Android access control policies, context awareness
have become an essential accessory in most mobile plat-
forms and applications. This necessity has motivated many
researchers to provide policy enforcement mechanisms to

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 14

http://www.jenrs.com

Inshi et al., CAPEF

define, manage and enforce different context aware policies.
In this context, traditional access control models which
generally refer to the process of determining what actions
are allowed by a given subject upon objects and resources
should be reinforced to fulfill the modern context-aware
applications.

The most popular access control models are Discre-
tionary Access Control (DAC), Mandatory Access Control
(MAC), Role Based Access Control (RBAC) and Attribute
Based Access Control (ABAC) [23] . For instance, RBAC is
a model that uses “roles” to determine access control, also
permissions are associated with these roles, and users are
made members of appropriate roles. In ABAC, requests are
granted or denied based on subject and resource attributes,
environment conditions, and a set of policies specified in
terms of those attributes and conditions. When it comes
to using ABAC models, one of the well-known standard
system implementations is XACML [24]. The XACML stan-
dard defines a declarative access control policy language
implemented in XML and provides a processing model on
how to evaluate access requests.

Thus, to adopt an effective context-aware access control
model on Android platform and its application, there are
series of work studying and proposing security mechanisms
for privacy and security requirements. In this context, many
reviewed efforts in [4]–[8] have been developed to extend the
Android security framework in order to improve the stan-
dard permission control provided by the operating system.
For example, SecureDroid [4] addressed the issue of control-
ling security policies while applications are executing in the
Android environment. During the installation of an appli-
cation, Android allows the user to grant permission for an
application to use certain features of the system. Therefore,
SecureDroid introduced an extension of Android’s security
framework in order to improve the standard permission
control provided by the operating system. To achieve this
goal, they introduced a new control mechanism adding
granularity and flexibility. Moreover, their policy frame-
work is based on customizing the XACML standard to work
on the Android system. Also, they have provided the ability
to add or edit a policy through a dedicated system service.
This will allow users to specify which permissions to grant
and which others to deny for each of the defined contexts.

However, modified Android platform has a number of
major drawbacks such as the need of building different ver-
sions of firmware and platform codes, where applications
will be limited by the security policies supported by the
modified Android platform. Therefore, many researchers
in [9]–[18] and more recently in [19]–[21] have provided
solutions that are based on instrumenting Android Appli-
cations in ordered to enforce some security policies. These
solutions require no modification to the Android platform
and can be easily deployed. For instance, Aurasium [9] is a
concurrent approach that rewrites Android application to
sandbox important native API methods and monitors the
behavior of the application to detect any security violations.
Also, Capper [17] is a prototype for context-aware policy
enforcement to mitigate privacy leakage in Android appli-
cations. This mechanism will enforce privacy policy based
on user preferences. By using this system, when a user tries

to install any Android application the bytecode rewriting
engine called BRIFT will rewrite the program of this ap-
plication by selectively inserts instrumentation code along
taint propagation slices for monitoring and preventing any
information leakage. Another interesting research called
Weave Droid [18] has provided a framework for weaving
AspectJ aspects into an Android application. The frame-
work takes two inputs at the beginning: APK and a set
of aspects that will be weaved into the APK. The weaving
process will be performed on the Android device. Also,
very recently in [21] They have developed a lightweight
monitoring system to detect malware activities with the log
file and they evaluated the proposed model according to
Policy-based permissions.

Accordingly, some of the reviewed frameworks have
provided enforcement mechanisms to mitigate Malware
activities by enforcing context-related policies, however
they didn’t afford a policy specification language that runs
on Android system as an application or a service without
modifying the Android platform. Thus, this article is intro-
ducing a more featured policy specification language that
allow regular users and any company to easily interpret and
enforce their complex context-aware inter-apps policies on
their Android mobile applications.

2.1. Summary of the literature reviews

The table 1 shows the summary and differences between
our research and the other works.

3. System Overview

This section gives an overview of our approach that auto-
matically enforces user specific context-aware policies for
android application and monitors all API calls that occur
due to the interaction between enforced applications. Our
developed system works in the application level of the An-
droid framework, and its main components are illustrated
in Fig. 1.

i From left, the first components represented the instru-
mentation of the targeted Android application (byte
code or source code) by injecting monitoring code
before each selected API method’s call to intercept it
at run time.

ii After the instrumentation, the applications will be
forced to communicate with our controller that moni-
tors the targeted context-aware inter-app calls.

iii Then, users will use CAPEF interface to create context-
based rules and conditions in the form of security and
privacy policies. More precisely, the policy represents
a rule or set of rules based on a set of conditions and
save it in the policies Database.

To motivate and illustrate our approach, we present the
following scenario for vulnerability pattern that consider
context-awareness policies. In this scenario, a user is using
a public WiFi network in a coffee shop and he is trying
to consult his credential banking information through his
banking application. As the public network is not secure

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 15

http://www.jenrs.com

Inshi et al., CAPEF

Table 1: Comparison of related work

Approach/ System Methodology Required modification Policy Language Context-aware inter-app
Privacy Leakage Prevention

TaintDroid [25] Dynamic Analysis Android Platform ✗ ✗

Appink [26] Watermarking Application ✗ ✗

Apex [5] Policy Enforcement Application ✗ ✗

TISSA [6] Resources Access Control Android Platform ✗ ✗

AppFince [7] Dynamic Analysis &
Resources Access Control Android Platform ✗ ✗

Aurasium [9] Rewriting Java Bytecode Application ✗ ✗

I-arm-droid [11] Rewriting Dalvik bytecode Application ✗ ✗

AFrame [14] Isolating Advertisements Application ✗ ✗

Capper [17] Rewriting Java Bytecode Application ✗ ✗

SecureDroid [4] Policy Enforcement Android Platform ✓ ✗

Weave Droid [18] Isolating Advertisements Application ✗ ✗

[21] Policy-based permissions Application ✗ ✗

CAPEF Policy Language Application ✓ ✓

and there are other people who use the same network, so
there is a risk of sending requests to attackers and thefts of
private data. Android system checks only if the user has
been previously granted the permission of accessing WiFi
network and doesn’t provide any context-awareness policies
to mitigate such dangers scenarios. CAPEF can provide
more effective access control not only on the permissions
declared in advance by the user but also at run time based
on the context of the user, device, and resources. Thus, as
a solution to the above-mentioned scenario, a user can use
CAPEF to define a policy that prevent the use of banking
applications while connecting to a public WiFi network.
When an enforced bank application attempt to get public
WiFi access, our application controller will first check if the
permission is declared in the application manifest file. Then,
will check if the user has defined any policies related to
this permission in the policies database. Subsequently, the
controller access decision will be based on the predefined
policies for that specific API. As a result, the controller will
notify the user for not being allowed to connect to public
WiFi for banking activities.

4. CAPEF

Context-Aware policies are not static and might be changing
over time to fulfill users’ needs. Therefore, these policies
could be used to control the behavior of the applications
during run-time, which in our case, means monitoring and
controlling all sensitive activities across different applica-
tions according to user’s context. To achieve this goal, we
provided a native Java-based CAPEF that allow regular
users and enterprises to interpret and enforce their complex
context-Aware policies. Contexts will represent various
parameters including time, location, identity, activity, appli-
cation, device status, resources etc. Moreover, these policies
can be exported in multiple formats such as XML and JSON
as they are widespread use today for data interchange and
structured stores.

To develop the CAPEF language that allows the user to
define contextual policies and transform them into security
controls, we must rely on a flexible design that varies with

the complexity of the policies, rational, able to execute all
the conditions and easy to add new contexts.

Figure 2: CAPEF Architecture

4.1. CAPEF Architecture

The main components of CAPEF are shown in Fig.2. which
represents the following:

i Security policies: which is an interface for the user
to define context aware policies and save them at the
policy store. This component will act as a policy ad-
ministration point (PAP) which is the source of the
policies.

ii Enforced Application: Which plays the role of pol-
icy enforcement point (PEP) that receives the access
request and move it to the Monitoring application
for making access decision based on the predefined
context aware policies.

iii Context Information: Provides context information
in a form of attribute values about the targeted appli-
cations, resources, activates, actions and so on. This
component will play the role of policy information
point (PIP) in our system.

iv Monitoring Application: This component plays the
role of policy decision point (PDP). It takes the access
request from the PEP then interacts with PAP and
PIP that capture the required context information to
identify the appropriate policy. Then evaluates the

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 16

http://www.jenrs.com

Inshi et al., CAPEF

CAPEF

Figure 1: System Overview

request according to the applicable policy and returns
the decision to the PEP.

4.2. Formal Definition

Hereafter, we formally define our ABAC policy model,
which is composed of three main entities:

1. A, P, and C : sets of application, permissions (resources)
and contexts, respectively;

2. AA , PA ,and CA are the pre-defined sets of attributes
for applications, permissions, and contexts, respec-
tively.

I An application app is a represented by a tuple as
follows:
app <name, visibility, class, APIs>, where:

i visibility ∈ {background, foreground}
ii class ∈ { banking, communication, recording,

games, media, location}
iii APIs: a set of APIs that can be invoked during

execution

II A permissions per embeds the access to the resource,
it is a represented by a tuple as follows:
per < name, resource, securityLevel >,

i resource ∈ { personal data, calendar, camera, wifi,
account, calls, sms,Audio, GPS},

ii securityLevel ∈ { Normal, Dangerous },

III A context c is a represented by a tuple as follows:
c < time, location, fgApp, BgApps availableCPU, avail-
ableMEM, availableNRG >,

i fgApp indicates which application is running in
foreground;

ii BgApps is the set of the applications running in
background.

3 Attr(app),Attr(per), and Attr(c) are attribute assign-
ment relations for application app, permission per
and context c, we have respectively

I Attr(app) ⊆ name × visiblity × class × APIs;
II Attr(per) ⊆ name × resource × securityLevel;

III Attr(c) ⊆ time × location × fgApp × BGaps ×
availableCPU × availableMEM × availableNRG.

For the value assignment of each attribute, we use the
following notation: entity.attribute= value ,

For example, for an application app, a permission per
and a context c, we have the following assignments:

app.visiblity = ’background’, per.securityLevel = ’Dan-
gerous’, c.location = ’Montreal’.

4 The ABAC policy rule that decides whether or not
an application app is allowed is allowed to get the
permission per under a particular context c, is denoted
as a predicate PR over the attributes of app, per and c
as follows:
Rule : Allow(app, per, c)← PR(Attr(app), Attr(per),
Attr(c))

Given all the attribute assignments of app, per, and c, if
the predicate’s evaluation is true, then the application app
is allowed to get the permission per under the context c;
otherwise, the permission is denied. Using the formal def-
inition, we can have different types of policies for the app,
for example:

1. A rule that dictates that " When a banking applications
is being used, so the TakeScreenshot actions should
be prevented from running" can be written as:
AllowscreenS hot(app, per, c) ← (TakeScreenshot ∈
app.APIs) ∧ (per.resource==screen) ∧ (c.fgApp.class
!= banking)

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 17

http://www.jenrs.com

Inshi et al., CAPEF

2. A rule that dictates: "RecordVoice and RecordCall
applications should be prevented from running when
the user is dialing Skype from 9:00 to 10:00" can be
written as:

i AllowrecordVoice(app, per, c) ← (RecordVoice ∈
app.APIs) ∧ (per.resource==voice) ∧ ((c.fgApp !=
’skype’) ∨ (c.time <9:00 am ∨ c.time > 10:00am))

ii AllowrecordCall(app, per, c) ←(RecordCall ∈
app.APIs) ∧ (per.resource==call) ∧ ((c.fgApp !=
’skype’) ∨ (c.time < 9:00am ∨ c.time > 10:00am))

Or simply by combining the two rules as following:
Allowrecord(app, per, c)←(RecordVoice , RecordCall ∩
app.APIs!= ϕ) ∧ (per==voice ∨ per==call) ∧ ((c.fgApp
!= ’skype’) ∨ (c.time < 9:00am ∨ c.time > 10:00am))

4.3. CAPEF Policy Specification

CAPEF language is based on the definition of a policy that
consists of a user ID, a policy name, a policy execution state,
a control rule, and a list of applications to control. Each of
these applications is characterized by a name, package name,
execution status and a list of permissions. The permissions
consist of a name and a execution state. The security rule
consists of a list of objects that can be Parentheses, Condi-
tions, Logical Operators, Conditional Operators, CPU, Time,
Resource Used, Location and Battery.

As shown in Fig.3, user-defined security policies and
its rules can contain multiple conditions, different contexts,
multiple logical operators, and parentheses to specify prior-
ity between conditions. Also, these policies can be executed
simultaneously in different inter-app activities across dif-
ferent applications. In this case, policy decision becomes
more complex. Therefore, to facilitate and accelerate the ex-
ecution of any compound policy, our algorithm will receive
the current contexts and the control rule as parameters then
returns the policy decision of the controller.

Figure 3: CAPEF Policy Execution Structure

In addition, the security rule might have sub-nodes of
other rules, and themselves are sub-rules of the main rule.
Therefore, we have adopted a recursive technique to reduce

the complexity of the composed security rules. In this case,
the algorithm will call itself, and recursion stops condition
must be checked, otherwise the program will be stuck in an
infinite loop.

To show the usefulness of our solution, we have chosen
two examples of dangerous scenarios and we will translate
them into security policies.

I Critical scenario 1: If the user uses his banking ap-
plication to check his data and deposit a check in
his account, while a TakeScreenshot application is in-
stalled on his smartphone.This application that takes
screenshots automatic present a risk on banking data
that is personal life data.

i Solution: You must prevent the TakeScreenshot
application and any screenshot function from
running when the user is using their banking
application.

ii Security Policy: If [BankApp] is running, then
stop the [TakeScreenShot] application.

II Critical Scenario 2: If the user is in a private work meet-
ing every Monday from 9:00 am to 10:00 am by Skype
while many other apps are able to record his speech
and share it in public as RecordVoice and RecordCall
applications.

i Solution: RecordVoice and RecordCall applica-
tions should be prevented from running when
the user is dialing Skype from 9:00 to 10:00.

ii Security Policy: If ((CALL_PHONE in [Skype])
&& (9: 00 <= Current_Time <= 10: 00)), then stop
or prevent (if not yet executing) the application
[RecordVoice && RecordCall].

To apply and evaluate the defined context aware policies,
an application controller has been developed to allow users
to define policies depending on different types of contexts
and conditions.

5. Centralized Application Controller

The developed controller provides a user interface to trans-
late the dangerous scenarios into security policies using
the CAPEF. Based on the defined policies, the controller
will make the adequate access control decision to allow or
block applications from using certain permissions. More-
over, provide centralized control of installed applications
which capture mandatory decisions that are automatically
dependent on the current context.

Fig. 4, shows an example of how to define a security pol-
icy with our controller. The control scenario is to block the
execution of the Camera resource in the Camera application
if the user is in a meeting from 10:30 to 11:30 or from 13:30
to 15:30 otherwise it is in a meeting from 15:30 to 15:40 and
that Bluetooth is enabled in the BluetoothShare Application.

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 18

http://www.jenrs.com

Inshi et al., CAPEF

Figure 4: Screenshots of a policy definition within our controller

5.1. Managing Security Policies

The Application controller interface has been developed
in a way that the user will be able to define any security
policies in a few simple clicks. We chose our solution to be
ergonomic, personalized, and user-centric design to have a
convenient and easy-to-use service. It has also been taken
into consideration that our user interface must reduce the
search effort and limit data entry. In addition, all policies
created by the user have been saved in a database. With the
database, the user will be able to import, create, view, and
modify security policies.

5.2. Export/Import Security Policies

Our developed solution allows the user to extract his defined
policies and share them with other users of the controller or
send them to nay server or cloud database. Therefore, our
CAPEF flows same related policy language’s architecture
and structure. As discussed in the literature XACML is one
of the good examples to extract our policies to its format.
While Android system does not compile XACML language
and all reviewed languages, our policies will be translated
into java language to execute them, then will be extracted
on different languages such as XML, JSON etc. Therefore,
in order for our language to be compatible with other lan-
guages, we kept the same generic policy structure, objects
and attributes applied by other languages as as shown in
Table 2. Similar translation procedure will be applied when
importing policies from other languages.

Among the values that can be assigned to attributes
such as the names of applications, permissions, etc., we
have defined symbols that allow us to simplify the rules, for
example:

i ANY: it means no, for example a rental context, we do
not need permission in this condition.

ii ALL: it means that we want to control all the per-
missions or all the applications it depends on the
attributes used.

iii APPS: it means that we want to force the shutdown of
an application.

iv API: that means we’re going to apply the control on
an API permission.

Figure 5: An example of a security policy presented in the form of XML

Figure 6: An example of a security policy presented in the form of JSON

The following scenario is established to extract CAPEF
policies to communicate with other policy languages such
as XML and JSON:

i Scenario: Prohibit launching the TakeScreenShot ap-
plication that allows you to take automatic screenshots
when the user opens the camera in his BankApp ap-
plication to send a check.

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 19

http://www.jenrs.com

Inshi et al., CAPEF

Table 2: Generic policy description

Element Description
Policy-set Presents a table that groups the list of policies.

Policy

Presents the policy object that contains the" Target and" Rule Sub-objects,
as well as the attributes:" Combine "which presents the role of the policy,
the" AUTHOR-KEY-CN attribute the author identifier of the policy and
the attribute AUTHOR-KEY-FINGERPRINT" presents the fingerprint key
of the author of the policy.

Target This is the object that contains the definition of the target applications to control.

Rule It is the object that defines the security rule, the attribute" effect "presents the
decision of the control to give or withdraw the authorization.

Condition Contains the permissions to remove and the contexts.

Resource-match
Contains different attributes:" attr "which can be an application to block or
an API permission," subject-match "contains the application to control
and" match "contains the permission to remove.

ii Policy: if (CAMERA in [BNCApp]), then stop the
application [TakeScreenShot].

Fig.5. shows the extraction of the above security policy
scenario to XML and Fig.6. shows the extraction of the same
scenario to JSON security policy.

6. Experimental results

This section presented the evaluation of our CAPEF and the
application controller in terms of performance by analyzing:
(1) the size of the enforced application after the instrumen-
tation, 2) the execution time of the policy decision (3) The
policy size due to the complexity of the applied rules and
conditions.

6.1. Enforced Application Size

To measure the effect of the instrumentation method on
the original size of the applications, we have instrumented
a set of 109 applications using our rewriting framework.
Table 3 shows a sample of eighteen applications, the original
size and the new size after the instrumented. Indeed, this
percentage represents the size of the code added during the
control of APIs calls for each application individually

For all instrumented 109 applications, the average size
added was 705 bytes, which is about 0.063% of the size of
the original applications. Also, as shown in Fig.7, it is very
clear that the size added is very small and will have a very
small impact on the size of the original applications.

Figure 7: Average added size for 109 instrumented applications

6.2. Execution time of the policy decision

To calculate and evaluate the execution time of our defined
policies, we have calculated the decision execution time
for several context aware policies with different rules and
conditions based on some selected scenarios. The following
is a set of scenarios that has been chosen among many others
used during our tests. These scenarios will be ranked in
ascending order according to their level of complexity.

1. Scenario 1: Prohibit launching the TakeScreenShot
application that allows you to take automatic screen-
shots when the user opens the camera in his BankApp
application to send a Check.
Policy: DenyTakeS ceenS hot(app, per, c) ← (Take-
Screenshot ∈ app.APIs) ∧ (per.resource==screen) ∧
(c.fgApp.class = banking)

2. Scenario 2: Prohibits the RecordAudioMedia applica-
tion from recording when the user is making a phone
call through the PhoneCall application.
Policy: DenyRecordAudioMedia (app, per, c)← (RecordAu-
dioMedia ∈ app.APIs) ∧ (per.resource == microphone)
∧ (c.fgApp.class = (callPhone ∨ receivePhoneCall))

3. Scenario 3: Prohibit the FakeGPS application from
changing the user’s location when using one or more of
these BankApp, Uber, and Google-Map applications.
Policy: DenyFakeGPS (app, per, c) ← (FakeGPS ∈
apps.APIs) ∧ (per.resouce == (accessCoarseLocation
∧ accessFineLocation) ∧ (c.fgApp.Class = (BankApp
∧ UBER ∧ GoogleMap))

4. Scenario 4: Prohibition of the BankApp application to
access the Internet or use the camera when the user is
at TimHortons knowing that its longitude = 45.491318
and its latitude = -73.727987.
Policy: Denyinternet∧camera (app, per, c) ← ((internet
∧ camera) ∈ apps.APIs) ∧ (per.resource == (GPS =
[45.491318, -73.727987]) ∧ (c.fgApp.Class = BankApp)

5. Scenario 5: When the user is at the meeting at ETS
from 8am to 9am. Prohibit Facebook, Instagram and
Gmail applications from accessing the Internet, the

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 20

http://www.jenrs.com

Inshi et al., CAPEF

Table 3: The size of applications before and after instrumentation

Application Original
(Bytes)

Instrumented
(Bytes)

Size added
(Bytes) Percentage

Contact Identicons 246904 247965 603 0.24%
GPS tracker 22420823 22421668 845 0.0037%
Show web view 483839 484460 621 0.12%
Contact Search 368610 369278 668 0.18%
Contacts Widget 227386 228034 648 0.28%
Beta Updater for WhatsApp 321673 322448 775 0.24%
Contact loader 2701541 2702019 478 0.01%
Photo Manager 366100 366668 568 0.15%
Wi-Fi setup 2177239 2177747 508 0.02%
Time tracker 1477841 1478711 870 0.06%
Calender Trigger 119863 120732 869 0.72%
Calender Color 629361 630232 871 0.13%
Calender Import Export 45823 46772 949 2.07%
CamTimer 1580753 1581393 640 0.04%
OpenCamera 226585 227420 835 0.36%
Microphone 1905254 1905910 656 0.03%
SMS backup 26071 26984 913 3.50%

camera and the location. Prohibit Message applica-
tion from receiving SMS and MMS. Also, Prohibit the
recording feature of RecordAudio application.
Policy: Denyall (app, per, c) ← ((Facebook ∧ Insta-
gram ∧ Gmail∧ RecordAudioMedia ∧ SMS ∧MMS)
∈ apps.APIs) ∧ (per.resouce ==(GPS = [45.491318, -
73.727987] ∧ internet ∧ microphone ∧ phoneCall ∧
receiveCall)) ∧ (c.fgApp.Class = meeting) ∧ (c.time
>= 8am ∧ c.time <=9am)

The decision execution time has been calculated for each
policy individually as following:

i For the Policy 1 and Policy 2, the test results were
fixed because the context does not vary when entering
random test values. The execution time for the first
policy is 116 ms and for the second policy is 234 ms.

ii For the policy 3, the context is related to three differ-
ent running applications, but it remains fixed. The
execution time for the whole policy is 307 ms.

iii For the policy 4, our context is the location, so the re-
sults were more or less close, but they vary according
to the change in GPS values. In this case the execution
time of the whole policy is 314 ms.

iv For the policy 5, two different contexts were used
time and location. The average execution time for
notifying each application also was calculated. For
the Skype application the execution time is 549 ms, for
the Messages application is 592 ms, for the Instagram
application is 634 ms, for the Gmail application is
758 ms and for Facebook is 814. Also, the average
execution time for the whole policy is 818 ms.

Fig.8, shows the different policies execution times ac-
cording to the complexity for each policy. All calculations
and testes where repeated several times to ensure accuracy.

As a result, we have noticed that as more the policy becomes
complex the execution time becomes bigger.

Figure 8: Policies execution times

Figure 9: Policies sizes according to their complexities

6.3. Policy Size

The policy size is also changing due to the complexity of the
applied rules and conditions. We have calculated the policy

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 21

http://www.jenrs.com

Inshi et al., CAPEF

sizes on the list of 109 enforced applications. Also, we took
the same fife scenarios and their security policies mentioned
above in the previous section to make our simulation. Fig.
9 shoes the progression of policy sizes according to their
complexities.

7. Conclusion and Future Work

This work addressed problems related to context aware poli-
cies for Android applications as its one of the main targets
of attackers. We, therefore developed CAPEF, which is a
policy specification framework that enforces context-aware
inter-app security policies to effectively describe users de-
fined consents. Thorough experiments we have performed
a study on the efficiency of CAPEF with respect to the size
and execution time of the enforced applications. The evalu-
ation results demonstrated the feasibility of our framework
and the effectiveness of our policy specification language
in enforcing complex context-aware policies on different
Android applications.

In the future, we are planning to improve our model
using different ML techniques for varying IoT smart en-
vironments. Furthermore, we will implement a security
framework that is capable of data security and access con-
trol by encrypting all sensitive data and making it available
only for the authorized service providers according to the
pre-defined context-aware policies.

References

[1] J. Maring, “Android central”, Online[Access 12/07/2022]
urlhttps://www.androidcentral.com/google-removed-over-
700000-malicious-apps-play-store-2017, 2018.

[2] I. Rathore, “Google gets rid of these 16 apps hav-
ing millions of downloads”, Online[Access 15/09/2022]
https://dazeinfo.com/2022/10/25/ google-removes-apps-that-have-
affected-20-million-android-users-worldwide/, 2022.

[3] “Android developers”, Online[Access 02/01/2022]url-
https://developer.android.com /guide/topics/manifest/ manifest-
intro.

[4] V. Arena, V. Catania, G. La Torre, S. Monteleone, F. Ricciato, “Se-
curedroid: An android security framework extension for context-
aware policy enforcement”, “Privacy and Security in Mobile Systems
(PRISMS), 2013 International Conference on”, pp. 1–8, IEEE, 2013,
doi:10.1109/PRISMS.2013.6927185.

[5] M. Nauman, S. Khan, X. Zhang, “Apex: extending android per-
mission model and enforcement with user-defined runtime con-
straints”, “Proceedings of the 5th ACM symposium on information,
computer and communications security”, pp. 328–332, 2010, doi:
10.1145/1755688.1755732.

[6] Y. Zhou, X. Zhang, X. Jiang, V. W. Freeh, “Taming information-stealing
smartphone applications (on android)”, “International conference
on Trust and trustworthy computing”, pp. 93–107, Springer, 2011,
doi:10.1007/978-3-642-21599-5_7.

[7] P. Hornyack, S. Han, J. Jung, S. Schechter, D. Wetherall, “These aren’t
the droids you’re looking for: Retrofitting android to protect data from
imperious applications”, “Proceedings of the 18th ACM Conference
on Computer and Communications Security”, CCS ’11, p. 639–652,
Association for Computing Machinery, New York, NY, USA, 2011,
doi:10.1145/2046707.2046780.

[8] D. Feth, A. Pretschner, “Flexible data-driven security for android”,
“Software Security and Reliability (SERE), 2012 IEEE Sixth Interna-
tional Conference on”, pp. 41–50, IEEE, 2012, doi:10.1109/SERE.2012.
14.

[9] R. Xu, H. Saidi, R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications”, “21st USENIX Security Symposium
(USENIX Security 12)”, pp. 539–552, USENIX Association, 2012, 21st
USENIX Security Symposium ; Conference date: 08-08-2012 Through
10-08-2012.

[10] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
T. Millstein, “Dr. android and mr. hide: Fine-grained permissions in
android applications”, “Proceedings of the Second ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices”, SPSM
’12, p. 3–14, Association for Computing Machinery, New York, NY,
USA, 2012, doi:10.1145/2381934.2381938.

[11] B. Davis, B. Sanders, A. Khodaverdian, H. Chen, “I-arm-droid: A
rewriting framework for in-app reference monitors for android appli-
cations”, Mobile Security Technologies, vol. 2012, no. 2, p. 17, 2012.

[12] B. Davis, H. Chen, “Retroskeleton: Retrofitting android apps”, “Pro-
ceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services”, MobiSys ’13, p. 181–192, As-
sociation for Computing Machinery, New York, NY, USA, 2013, doi:
10.1145/2462456.2464462.

[13] P. von Styp-Rekowsky, S. Gerling, M. Backes, C. Hammer, “Idea:
Callee-site rewriting of sealed system libraries”, J. Jürjens, B. Livshits,
R. Scandariato, eds., “Engineering Secure Software and Systems”, pp.
33–41, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[14] X. Zhang, A. Ahlawat, W. Du, “Aframe: Isolating advertisements from
mobile applications in android”, “Proceedings of the 29th Annual
Computer Security Applications Conference”, ACSAC ’13, p. 9–18,
Association for Computing Machinery, New York, NY, USA, 2013,
doi:10.1145/2523649.2523652.

[15] P. Pearce, A. P. Felt, G. Nunez, D. Wagner, “Addroid: Privilege separa-
tion for applications and advertisers in android”, “Proceedings of the
7th ACM Symposium on Information, Computer and Communica-
tions Security”, ASIACCS ’12, p. 71–72, Association for Computing
Machinery, New York, NY, USA, 2012, doi:10.1145/2414456.2414498.

[16] S. Shekhar, M. Dietz, D. S. Wallach, “Adsplit: Separating smart-
phone advertising from applications”, “Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12)”, pp. 553–567,
2012, doi:10.48550/arXiv.1202.4030.

[17] M. Zhang, H. Yin, “Efficient, context-aware privacy leakage confine-
ment for android applications without firmware modding”, “Pro-
ceedings of the 9th ACM Symposium on Information, Computer
and Communications Security”, ASIA CCS ’14, p. 259–270, Asso-
ciation for Computing Machinery, New York, NY, USA, 2014, doi:
10.1145/2590296.2590312.

[18] Y. Falcone, S. Currea, “Weave droid: aspect-oriented programming on
android devices: fully embedded or in the cloud”, “Proceedings of the
27th IEEE/ACM International Conference on Automated Software
Engineering”, pp. 350–353, 2012, doi:10.1145/2351676.2351744.

[19] O. Riganelli, D. Micucci, L. Mariani, “Controlling interactions with
libraries in android apps through runtime enforcement”, ACM Trans.
Auton. Adapt. Syst., vol. 14, no. 2, 2019, doi:10.1145/3368087.

[20] M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano, W. Srisa-An,
X. Luo, “Dina: Detecting hidden android inter-app communication in
dynamic loaded code”, IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 2782–2797, 2020, doi:10.1109/TIFS.2020.2976556.

[21] M. Grace, M. Sughasiny, “Behaviour analysis of inter-app commu-
nication using a lightweight monitoring app for malware detec-
tion”, Expert Systems with Applications, vol. 210, p. 118404, 2022,
doi:https://doi.org/10.1016/j.eswa.2022.118404.

[22] A. Developers, “Preparing for the android privacy sand-
box beta”, Online[Access 15/12/2022]urlhttps://android-
developers.googleblog.com/2022/11/preparing-for-android-
privacy-sandbox-beta.html , 2022.

[23] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role-based
access control models”, Computer, vol. 29, no. 2, pp. 38–47, 1996,
doi:10.1109/2.485845.

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 22

http://www.jenrs.com

Inshi et al., CAPEF

[24] OASIS, “Oasis extensible access control markup language
(xacml)”, Online[Access 02/05/2017]urlhtttp://www.oasis-
open.org/committees/xacml, 2011.

[25] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, A. N. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones”, ACM Trans.
Comput. Syst., vol. 32, no. 2, 2014, doi:10.1145/2619091.

[26] W. Zhou, X. Zhang, X. Jiang, “Appink: Watermarking android
apps for repackaging deterrence”, ASIA CCS ’13, p. 1–12, Asso-
ciation for Computing Machinery, New York, NY, USA, 2013, doi:
10.1145/2484313.2484315.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

SAAD INSHI is currently pursuing his PhD in software
engineering from École de technologie supérieure, Univer-
sity of Quebec, Montreal, Canada and completed his MASc
degree in Information Systems Security from Concordia
University, Montreal.

His research interests includes Android and IoT Privacy
and security. He is also interested in Context aware privacy
and security of devices.

MAHDI ELARBI has completed Masters from École de
technologie supérieure, University of Quebec, Montreal,
Canada. He is currently working as a senior Software
Developer in Montreal.

His research interests includes Android and IoT security.

RASEL CHOWDHURY is pursuing his PhD in software
engineering and completed his MSc degree in Informa-
tion Technology Engineering from École de technologie
supérieure, University of Quebec, Montreal, Canada.

His research interests includes Cloud Computing, Cloud
Native orchestration, security and privacy of IoT, IoE and
IoV.

HAKIMA OULD-SLIMANE is currently a professor at the
Département de Mathématiques et d’Informatique, Univer-
sité du Québec à Trois-Rivières, Trois-Rivières, Canada. She
obtained her Ph.D. degree in Computer Science from Laval
University, Québec, Canada.

Her research interests include mainly: information secu-
rity, cryptography, preserving data privacy in smart envi-
ronments, reliability of collaborative computing and formal
methods.

CHAMSEDDINE TALHI is currently a Full Professor with
the Department of Software Engineering and IT, École de
Technologie Supérieure, University of Quebec, Montreal,
Quebec, Canada.

He is leading a research group that investigates efficient
security mechanisms for smartphone, IoT, edge and cloud
infrastructures. His current research interests include cloud
native telco services management and security, DevOps
security, and federated learning for mobile cloud and IoT.

www.jenrs.com Journal of Engineering Research and Sciences, 2(1): 13-23, 2023 23

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

	Introduction
	Challenges
	Contributions

	Background and Literature review
	Summary of the literature reviews

	System Overview
	CAPEF
	CAPEF Architecture
	Formal Definition
	CAPEF Policy Specification

	Centralized Application Controller
	Managing Security Policies
	Export/Import Security Policies

	Experimental results
	Enforced Application Size
	Execution time of the policy decision
	Policy Size

	Conclusion and Future Work

