
Received: 19 September 2023, Revised: 18 October 2023, Accepted: 16 December 2023, Online: 30 December 2023

DOI: https://dx.doi.org/10.55708/js0212003

Smart Monitoring System for Housing Societies based on Deep
Learning and IoT
Neha Koppikar∗ , Nidhi Koppikar
Department of Data Science MPSTME, SVKMs NMIMS University, Mumbai, India
∗Corresponding author: Neha Koppikar & neha.koppikar@gmail.com

ABSTRACT: Since 2020, people have been getting their body temperatures checked at every public
location, social distancing has become a norm, and it has become essential to know who has been in
contact with whom. Therefore, we needed a system that helped us solve these challenges, especially
in housing societies, as most of the general public stayed home more than ever. Therefore, it has
become essential to safeguard housing societies. There has been a lot of research in building a security
system, but there needs to be more research that targets housing societies as the end users. We have
devised a possible solution, including a facial recognition system with body temperature sensing on a
Raspberry Pi. The best part of our application is the automated data collection page on a web application,
which makes collecting facial images more straightforward and faster. Code for this project can be
found at: https://github.com/NehaKoppikar/Monitoring-System-for-Housing-Societies-using-Deep-
Learning-and-IoT

KEYWORDS Face Recognition, Raspberry Pi, Edge Vision, Body Temperature, Sensors

1. Introduction

The security of housing societies is paramount to all of us.
Currently, security services are provided with the help of
watchmen or security guards. However, mistakes on their
part, intentional or unintended, do happen, and the people
held responsible for such anomalies are either our guardians
(security guards/watchmen) or the housing society’s co-
operation. Technology can assist all the stakeholders in
making security arrangements watertight to a greater extent.
Anomalies due to misjudgment or carelessness consider-
ably affect the residents of the housing society. There can
be thefts and burglaries, and in recent times, this inadver-
tence can act as a catalyst for the spread of the COVID-19
pandemic into our homes. There should be some way to
backtrack if anything goes wrong.

There are a lot of researchers working in this domain
and have built a lot of systems to combat the COVID-19
situation. When writing this research paper, 211 papers ap-
peared when searching for “COVID-19” at arxiv.org. There
are face-recognition attendance systems [1], systems built
on embedded devices for calculating body temperature
[2], and so many other research papers have already been
published on this topic or related topics that we can come
across something new every week if not every day. As
part of recognizing someone, bio-metrics has changed the
attendance world. There was a time when the only way to
acknowledge someone officially was their signature, and a
lot has changed since then. Various security systems have
been built, but no research has been found targeting housing
societies.

We can now automatically store a person in the database
without the person being actively involved. All that is re-
quired from the person is showing up, and the rest is taken
care of. Even though it is possible, there is minimal digital
initiatives taken to augment security guards in housing
societies. This paper targets this gap.

Along with face recognition, checking a person’s body
temperature has become extremely important in the pan-
demic. That is why the three main parts of our solution
involve face recognition, body temperature sensing, and
regularly sending email notifications to a responsible point
of contact.

What makes this paper unique is that even though there
are many research papers with biometrics in a security
system, there was no research that sends automated email
reports to a responsible point of contact in a housing society.

The key contributions of this research are as follows:

• Face-Recognition web application built on streamlit

• Body temperature sensing integrated with face-
recognition

• Face-recognition and body temperature sensing data
stored automatically in a NoSQL database

• Stored data report periodically sent to a responsible
point of contact

• Entire application deployed in Raspberry Pi

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 15

https://dx.doi.org/10.55708/js0212003
https://orcid.org/0000-0002-7785-849X
https://orcid.org/0000-0002-7686-9496
https://github.com/NehaKoppikar/Monitoring-System-for-Housing-Societies-using-Deep-Learning-and-IoT
https://github.com/NehaKoppikar/Monitoring-System-for-Housing-Societies-using-Deep-Learning-and-IoT
http://www.jenrs.com

N Koppikar et al., Smart Monitoring System for Housing Societies

2. Literature Survey

To be able to build our solution, we referred a few research
papers, which include:

1. MaskedFace-Net – A dataset of correctly/incorrectly
masked face images in the context of COVID-19 [3]
This paper is about a dataset built for face-recognition
purposes on masked data. Many face-recognition
systems are made in a way where the face-recognition
algorithm gets triggered once a face is detected, and
many times, the face should be entirely facing the in-
put source (camera). A significant challenge faced by
face-recognition systems was met because faces were
not detected when covered in a mask. Rebuilding a
design as per the requirement needs a vast dataset.
The dataset on which this research paper is based
helps rebuild face-recognition systems on an existing
algorithm, FaceNet [4].
This paper is better because it also addresses the is-
sue of people needing to wear a mask properly. The
dataset is labeled so the person is correctly masked
or incorrectly masked. If incorrectly masked, it also
addresses whether it is due to an uncovered chin,
uncovered nose, or uncovered nose and mouth.

2. Monitoring System Heartbeat and Body Temperature
Using Raspberry Pi.
This paper concerns a wireless sensor network (WSN)
system to monitor body temperature and heartbeat.
The authors of this paper have built this system using
Raspberry Pi and Arduino. They have also created a
user-friendly website.
We have taken inspiration from this paper to build the
body temperature component of our system.

3. Impact of thermal throttling on long-term visual infer-
ence in a cpu-based edge device [5]
This paper is a comparative study on various levels. It
compares multiple Raspberry Pi devices, multiple ver-
sions of operating systems, and different CNN-based
algorithms, with or without a fan. The results are
tested with as many combinations as possible; fans
improve efficiency irrespective of the variety they are
tested on.
We tried to use a fan in our approach as well. The
issue we found was that we could use the camera or
the fan, as the camera came in the way of the fan when
it rotated, affecting the camera’s connection with the
Raspberry Pi board.

4. Smart Security for an Organization based on IoT [6]
This paper concerns a security system to safeguard an
organization from fire and intruders. The researchers
have built an android application, which acts as an
output source in case any anomaly gets detected.

5. Development of Face Recognition on Raspberry Pi for
Security Enhancement of Smart Home System [7]

This paper is about a face-recognition system that
is built for houses. It magnetically locks or unlocks
the door based on the output of the face-recognition
model.
This approach highly inspires our face-recognition
system.

3. Research Design

The research methodology was designed as follows:

3.1. Define Research Problem

Our research problem is to build a security system to store
when a person enters a housing society and their body
temperature. We also wanted to ensure that the data is
collected from the application deployed on an embedded
device.

3.2. Literature Review

After defining the problem statement, we individually re-
viewed similar papers on Google Scholar.

3.3. Architecture Design

We designed the architecture for the application, as shown
in figure 1.

Figure 1: Architecture Design

For body temperature sensing, we designed the architec-
ture as shown in figure 2.

Figure 2: Body Temperature Architecture Design

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 16

http://www.jenrs.com

N Koppikar et al., Smart Monitoring System for Housing Societies

3.4. Data Collection

Data was collected through the web application [8], as
shown in figure 3.

Figure 3: Data Collection

3.5. Building the application

We tried various frameworks and decided to build the ap-
plication on Python Streamlit as it had fewer challenges and
a faster turnaround time.

4. Proposed Work

4.1. Features (and our contributions)

4.1.1. Face-Recognition

We have used Adam Geitgey’s Face Recognition library on
the Streamlit framework. Using the same library, we also
generated face embeddings.

This face-recognition algorithm is a series of several
related problems:

• Identify a face in a video

• Focus on the face, check lighting conditions, and con-
firm if the person is correctly identified

• Pick unique features like eyes, nose, and so on

• Compare unique features with the training dataset

4.1.2. First-time Registration (Data Collection and storage)

We created a directory to store all the images. Every time the
user starts writing their name, a directory gets automatically
created inside the images directory, with the person’s name
being recorded into the system. This process is rapid, and
even a second pause leads to the creation of the directory.
Once the directory is created, ten images are automatically
stored in the system. All the images are collected and stored
in about 3 or 4 seconds.

Only one image is required to create the face encoding
using Adam Geitgey’s library [9]. Despite that, we are going
ahead with this approach so that it gives us and any other
person who wants to build upon this project the freedom to
not only choose one-shot learning-based methods for face
recognition but also try different approaches. The code for
this is private in its complete form.

4.1.3. Body Temperature Sensing on Raspberry Pi

We have connected an infrared sensor with the Raspberry Pi.
This sensor constantly detects the temperature; we can view
it on Raspberry Pi’s command line. The temperatures are in
degrees centigrade. There are Python packages available
to help achieve this. We have used smbus2, PyMLX90614
v.0.0.3, gpiozero, and RPi.GPIO.

4.1.4. Maintaining and Viewing the database

We have created a database using MongoDB to store the
names, dates, and times of new records and anyone who
visits the housing society [10]. The visitor could be a resi-
dent, a frequent visitor, or a nonresident is shown in figure
4.

Figure 4: View Database

4.1.5. Sending Report via Email

We have used the SendGrid API, which is more secure than
the SMTP client python package. The SendGrid API is also
based on the Simple Mail Transfer Protocol (SMTP) prin-
ciple. The difference is that the Python package required
lowering the security of the receiver’s GMail Account. In
contrast, SendGrid authenticates and verifies the sender,
and there is no action required from the receiver to be able
to receive an email [11]. The Sendgrid mail flow is shown
in figure 5.

Figure 5: Sendgrid Mail Flow

The content sent via email is a dataframe generated from
the MongoDB Database that is converted into the Hypertext

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 17

http://www.jenrs.com

N Koppikar et al., Smart Monitoring System for Housing Societies

Markup Language.
The emails are then scheduled using Python’s schedule

package. The notification is shown in figure 6.

Figure 6: Email Notification

4.2. Materials

Software:

1. MongoDB (Database) [12]

2. Python (Programming Language) [13]

3. Streamlit (Web Framework) [14]

4. SendGrid API (Email) [15]

5. Remote Desktop Connection (Connecting Laptop with
Raspberry PI)

Hardware:

1. Raspberry PI 4 Model B (4GB)

2. Raspberry PI 5MP Camera Board Module

3. LED Bulbs (Red, Yellow, Green)

4. 1 kilo ohm resistors

5. Breadboard

6. Infrared Temperature Sensor GY-906 MLX90614

7. Female to Female Wires (Infrared Sensor and Rasp-
berry Pi Connections)

8. Male to Female wires (LEDs and resistors)

9. BIS 3 Amps Charger, USB C Cable

10. Ethernet Cable

4.3. Application walk trough

4.3.1. First-Time Registration

How it works:
This page of the application is responsible for the initial

data collection. This is where the details the following
details are collected:

1. First Name

2. Last Name

3. Images for facial recognition

4. Which category does the person fall under? (Resident,
Non-Resident, Frequenter)

The resulting page is shown in the figure 7.

Figure 7: Registration Page - Screenshot

When anyone starts typing in the "First Name" blank,
the system is ready to make a directory based on the input
collected from the registration page. The person organizing
the records has to be quick in typing as even a second of a
pause leads to the directory being created, and ten images
automatically get clicked and stored in the new directory,
and it gets printed on the screen that ten images have been
collected.

Due to the pause issue, this page also has an "Add row"
button under the category radio option so that the registra-
tion record of names and categories gets correctly stored in
the database. This can also help in removing the directories
that are not required.

Dependencies
Python packages used:

1. Streamlit (streamlit) [14]

2. OpenCV (cv2) [16]

3. Pandas (pandas) [17]

4. Time (time)

5. Datetime (datetime)

6. PyMongo (pymongo) [18]

7. OS (os)

8. Sendrgid API

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 18

http://www.jenrs.com

N Koppikar et al., Smart Monitoring System for Housing Societies

4.3.2. Face-Recognition

How it works
The camera detects a person, compares the faces with

the face embedding [9], and predicts to recognize the person
if it is confident more than 60 percent [19].

As soon as the face is recognized, the name, date, and
time get automatically stored in the database. This is the
other data collection component of the application. The
resulting page is shown in the figure 8

Figure 8: Face Recognition Page - Screenshot

Dependencies
Python Packages used:

1. Streamlit (streamlit) [14]

2. OpenCV (cv2) [16]

3. Face Recognition (face-recognition) [20]

4. Dlib-ml: A Machine Learning Toolkit [21]

5. Pandas (pandas) [17]

6. Numpy (numpy) [22]

7. Pickle (pickle)

8. Datetime (datetime)

9. PyMongo (pymongo) [18]

4.3.3. Viewing Database

Why this feature: At times, the maintainer may want to
see if the application is working correctly or not. This fea-
ture helps check that. The maintainer will remember the
recent entries anyway as the maintainer is most probably a
security who is habituated to keeping track of these things.
The maintainer can view the database and compare it with
their memory. Since the data cannot be edited from the
application, the data is not compromised.

How it works:
All the data stored in the database is accessed as a data

frame and displayed on the screen. The visitor data is shown
in figure 9.

Figure 9: Visitor Database - Screenshot

4.3.4. Sending Emails

Why this feature:
While the application will be used mainly by the security

guards, the society’s secretary is also answerable in the case
of an anomaly. That is why there is a requirement to keep
a check on what is happening, and checking the system
now and then can be inconvenient to both the maintainer of
the application and the secretary. This feature helps solve
this problem by emailing a report to the secretary. For this
purpose, we have used the SendGrid API [15].

How it works:
The database stores all the face-recognition data as a

data frame and this data frame is sent as a report to the
receiver of the email, which is preferably the secretary of
the society. The resulting email is shown figure 10.

Figure 10: Email - Screenshot

Dependencies
Python Packages used:
1. SendGrid (sendgrid) [15]

2. Schedule (schedule)

3. Datetime (datetime)

4. Pandas (pandas) [17]

5. PyMongo (pymongo) [18]

4.3.5. Raspberry Pi

Initial Set up:
1. Install Raspbian OS into SD card

2. Insert the SD card

3. Connect Raspberry Pi to PC [23]

4. Find the IP Address of the Raspberry Pi

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 19

http://www.jenrs.com

N Koppikar et al., Smart Monitoring System for Housing Societies

5. Connect the laptop with the Raspberry Pi remotely
[24]
The above steps are generic.

Important Changes from the web application:

1. The camera is accessed from the laptop using the
OpenCV Python package. The picamera is accessed
from the Raspberry Pi using the imutils [25] python
package.

2. There are dependency issues in installing MongoDB
into Raspberry Pi locally. Alternatively, Ubuntu pro-
vides an unofficial Mongodb package.

Schematic Representation:
The Raspberry Pi Schematic Representation is shown in

the figure 11.

Figure 11: Raspberry Pi Schematic Representation

4.3.6. Body Temperature Sensing

How it works: In this project, we use a contactless Infrared
(IR) Digital Temperature Sensor called MLX90614. This
sensor makes use of IR rays to measure the temperature
of a person or object without any physical contact with it.
The communication between the sensor and Raspberry Pi
4 is established using the I2C protocol [26]. The severity
of the sensed temperature is shown via an LED lighting
system inspired by a traffic signal. The system is connected
to the microcontroller with the help of wires. The working
of the temperature sensing system can be summarized in
the following points:

1. The person or object whose temperature is to be mea-
sured is brought in the range of the temperature sensor.

2. The infrared sensor senses the temperature and re-
turns it to the Raspberry Pi 4.

3. With the help of the LED system, we can identify
a person’s temperature in three categories: Normal,
Borderline, and High.

4. When the temperature sensed is below 37 degrees
centigrade, the Green LED turns ON, indicating Nor-
mal temperature.

5. When the temperature sensed is between 37 degrees
centigrade and 38 degrees centigrade, the Yellow LED
turns ON, indicating Borderline temperature.

6. When the temperature sensed is above 38 degrees
centigrade, the Red LED alone turns ON, indicating
the temperature to be High.

Dependencies:

1. smbus2

2. PyMLX90614 0.0.3

3. gpiozero

4. RPi.GPIO

5. Alternatives considered

5.1. Frameworks

1. Django (Python-Based Web Framework) [27]

2. Flask (Python-Based Web Framework) [27]

3. React (JavaScript-Based Web Framework)

5.2. Database

1. MySQL

2. PostgreSQL

5.3. Sending Emails

Python’s SMTP client can also be used. The primary issue is
that it requires a few settings in our GMail accounts, which
lowers the security level and increases the risk of hacking.

5.4. Accessing Raspberry Pi

We have used Remote Desktop Connection. VNC Viewer
can also be used.

5.5. Challenges Faced

1. Remote Desktop Connection with the Raspberry is
lost after about an hour.

2. Integrating the entire application seamlessly.

3. When we started, we were not well-versed with any
framework, including Flask.

4. The issue that we faced with the flask was that we
were not able to stream the input from the webcam
for the registration page and the face recognition page
at the same time. (Navigation bar used). That is why
we switched to Streamlit.

5.6. Limitations of Proposed System

1. Cannot toggle between the database option when run-
ning the application file. To view the database, the file
has to be run separately.

2. Streamlit Installation into Raspberry Pi was solved by
downgrading the version [23].

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 20

http://www.jenrs.com

N Koppikar et al., Smart Monitoring System for Housing Societies

6. Discussion

Our experiment shows that even though biometrics is es-
sential in a security or monitoring system, what improves it
even more is a email report notification system to be in place.
This project showcases a smart monitoring system that stores
images, fine-tunes a face-recognition model using one-shot
learning, stores the images and personal information of a
person, and sends email reports to a responsible point of
contact daily. The web application also allows viewing the
database that cannot be edited or changed, thereby acting
as a security feature.

There are a few limitations to this research project,
though. A better security design or mechanism can be
built that not only stores and sends data but also alerts the
responsible point of contact in case of an anomaly situation.
This application cannot be scaled up or down quickly as it is
built on-prem. Therefore, making it on a cloud computing
platform could have been a better choice and scope for
future research.

7. Limitation

A few limitations of the application are:

1. The hardware disconnects from the software some-
times.

2. Considering the sensitivity of the data we are using, a
security system to ensure data privacy is not in place.

8. Future Scope

1. Adding the feature to detect mask positioning [6].

2. Make the application more user-friendly

3. The application has to be made spoof-proof as a layer
of security [28].

4. Temperature cannot be backtracked. Figure out how
to backtrack the temperature and link that with the
person into the database efficiently.

5. If this application is deployed on the cloud. It will
help with scaling the application.

6. Face Recognition frameworks like FaceNet and Open-
Face can be used.

7. A system to ensure the security and privacy of the
data in the future.

9. Result and Conclusion

We are glad that the application is working, and we learned
a lot. We learned about frameworks in Python, ways to send
an email, schedule an email, face recognition, and manage
databases, among many others. Though there are a lot of
places where this application can be improved, it should
be a good starting point for someone who wants to work
on this application at a bigger level. In the future, we can

use a better face-recognition algorithm, a cloud computing
platform, or apply action recognition to identify harmful
actions and capture the person’s name for enhanced security.

Acknowledgment We want to thank Mr. Pranav Nerurkar
(https://orcid.org/0000-0002-9100-6437), our research pa-
per mentor for his valuable guidance on how to write a
research paper.

We would also like to thank Mr. Yash Tomar, our Project
Deep Blue Mentor (of Mastek), who brainstormed many
ideas with us.

Declaration of competing interest The authors declare
that they have no known competing financial interests or
personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] D. R.S, “Attendance authentication system using face recognition”,
Journal of Advanced Research in Dynamical and Control Systems, vol. 12,
pp. 1235–1248, 2020, doi:10.5373/JARDCS/V12SP4/20201599.

[2] T. Sollu, Alamsyah, M. Bachtiar, B. Bontong, “Monitoring system
heartbeat and body temperature using raspberry pi”, E3S Web of
Conferences, vol. 73, p. 12003, 2018, doi:10.1051/e3sconf/20187312003.

[3] A. Cabani, K. Hammoudi, H. Benhabiles, M. Melkemi, “Maskedface-
net – a dataset of correctly/incorrectly masked face images in the
context of covid-19”, Smart Health, 2020, doi:https://doi.org/10.1016/
j.smhl.2020.100144.

[4] F. Schroff, D. Kalenichenko, J. Philbin.

[5] T. Benoit-Cattin, D. Velasco-Montero, J. Fernández-Berni, “Impact of
thermal throttling on long-term visual inference in a cpu-based edge
device”, 2020.

[6] M. Saifuzzaman, A. Hossain, N. Nessa, F. Nur, “Smart security for an
organization based on iot”, International Journal of Computer Applica-
tions, vol. 165, pp. 33–38, 2017, doi:10.5120/ĳca2017913982.

[7] T. Gunawan, M. Gani, F. Rahman, M. Kartiwi, “Development of face
recognition on raspberry pi for security enhancement of smart home
system”, Indonesian Journal of Electrical Engineering and Informatics,
vol. 5, pp. 317–325, 2017, doi:10.11591/ĳeei.v5i4.361.

[8] K. Naik, “Deep-learning-face-recognition”, 2020.

[9] A. Geitgey, “Save face encodings”, 2018.

[10] “miscmonggodb raspberry pi installation, unable to locate package
mongodb-org”, .

[11] S. AGNEW, “How to send emails in python with sendgrid,”, 2019.

[12] K. P. R. Eliot Horowitz, Dwight Merriman, “Mongodb”, 2009.

[13] G. Van Rossum, F. L. Drake Jr, Python tutorial, Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands, 1995.

[14] C. K. F. A. J. A. J. R. J. M. N. S. T. R. Ashish Shukla, Charly Wargnier,
“Streamlit - the fastest way to build and share data apps”, 2019.

[15] J. L. Isaac Saldana, T. Jenkins, “Sendgrid”, 2009.

[16] I. Intel Corporation, Willow Garage, “Opencv”, 2000.

[17] W. McKinney, “Pandas”, 2008.

[18] A. Sottile, “Pymongo”, 2017.

[19] Nyahua, “Face recognition from webcam using streamlit”, 2020.

[20] A. Geitgey, “Face recognition”, 2017.

[21] D. E. King, “Dlib-ml: A machine learning toolkit”, Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009.

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 21

http://www.jenrs.com

N Koppikar et al., Smart Monitoring System for Housing Societies

[22] T. Oliphan, “Numpy - the fundamental package for scientific comput-
ing with python.”, 2006.

[23] E. Krupesh, “How to connect raspberry pi to pc (smartphone hotspot,
no lan cable)”, 2019.

[24] educ8s.tv, “Raspberry pi remote desktop connection”, 2019.

[25] “I need this code to use the pi camera and not a webcam”, .

[26] “Mlx90614 non-contact ir temperature sensor”, .

[27] S. W. Adrian Holovaty, “Django (web framework)”, 2005.

[28] S. Kumar, S. Singh, J. Kumar, “A comparative study on face spoof-
ing attacks”, “2017 International Conference on Computing, Com-
munication and Automation (ICCCA)”, pp. 1104–1108, 2017, doi:
10.1109/CCAA.2017.8229961.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

www.jenrs.com Journal of Engineering Research and Sciences, 2(12): 15-22, 2023 22

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

	Introduction
	Literature Survey
	Research Design
	Define Research Problem
	Literature Review
	Architecture Design
	Data Collection
	Building the application

	Proposed Work
	Features (and our contributions)
	Face-Recognition
	First-time Registration (Data Collection and storage)
	Body Temperature Sensing on Raspberry Pi
	Maintaining and Viewing the database
	Sending Report via Email

	Materials
	Application walk trough
	First-Time Registration
	Face-Recognition
	Viewing Database
	Sending Emails
	Raspberry Pi
	Body Temperature Sensing

	Alternatives considered
	Frameworks
	Database
	Sending Emails
	Accessing Raspberry Pi
	Challenges Faced
	Limitations of Proposed System

	Discussion
	Limitation
	Future Scope
	Result and Conclusion

