

www.jenrs.com Journal of Engineering Research and Sciences, 4(8): 24-30, 2025 24

Received: 16 July, 2025, Revised: 05 August, 2025, Accepted: 06 August, 2025, Online: 13 August, 2025

DOI: https://doi.org/10.55708/js0408003

An Optimized Algorithm for Solving the Maximum
Independent Set Problem
Hager Hussein*
Software Engineering Department, College of Computing, Arab Academy for Science and Technology and Maritime Transport, Egypt
*Corresponding author: Hager Hussein, hager.hussein1@aast.edu

ABSTRACT: Software engineering plays an important role in computer science. Novel quantum
algorithms can efficiently solve software-engineering problems. Not only software engineering but also
many industries including logistics, finance, genomics, resource allocation, logistics, bioinformatics,
mobile agents and more have optimization problems. Such problems may have long time solutions.
Research has been conducted to improve the performance of current solutions and to search for
optimized solutions. Search-based software engineering (SBSE) uses computational techniques to
determine optimized solutions in a large search space. There are SBSE problems such as Test Suite
Minimization (TSM) and Maximum Independent Set (MIS) that require efficient solutions due to its
important role. A quantum-inspired genetic algorithm had solved the TSM problem with higher
performance than classical solutions. The quantum-inspired genetic algorithm and quantum algorithm
showed better performance results than classical solutions. This improvement motivated us to modify
such algorithms in order to solve the MIS optimization problems. In addition, MIS has crucial
applications in many domains. It can be applied in software engineering to separate related and
unrelated requirements, which is of great support for project management. Resources, time, cost, and
relevance can be updated accordingly. MIS can also be applied in network design, scheduling, resource
allocation, logistics, bioinformatics, mobile agents, and more. Quantum-inspired genetic algorithm
combines quantum mechanics concepts and genetic algorithms which enhances search capability and
provides efficient search mechanism. In this study, a modified quantum-inspired genetic algorithm
(QIGA) is proposed and implemented to find an optimized solution for the MIS problem. A classical
genetic algorithm (GA) is implemented and has been tested. A Comparison is conducted to show the
results of QIGA and GA to measure the performance improvement. Results and its analysis are
displayed to show QIGA and GA convergence. The proposed algorithm has no prior assumptions.

KEYWORDS: Quantum-inspired genetic algorithm, Genetic algorithm, Maximum independent set
problem, Search based software engineering, Software engineering.

1. Introduction and Literature Review

Search-based software engineering (SBSE) uses
computational techniques to determine optimized
solutions for software engineering problems with a large
and complex search space [1]. It combines software
engineering concepts with optimization algorithms. It is
difficult to solve complex software engineering issues
manually; SBSE considers automation and optimization
for solving such issues [2].

SBSE can be applied in many software engineering
areas. Areas include, but are not limited to, software
project management, software testing, software defect
prediction, and automated program repair. Genetic
Improvement (GI) is a field of SBSE that considers
evolutionary computing in the automation of updating the
software source code to best serve its non-functional
requirements [2].

SBSE is used in enterprise application integration
(EAIs). EAI is a research concern because of the growing
need for data exchange and the reuse of functionality

http://www.jenrs.com/
https://doi.org/10.55708/js0408003
mailto:hager.hussein1@aast.edu
https://orcid.org/0000-0003-2678-8337

 H. Hussein, An Optimized Algorithm for Solving

www.jenrs.com Journal of Engineering Research and Sciences, 4(8): 24-30, 2025 25

among applications. Thus, SBSE can be used in different
phases of the software development lifecycle [3]. It can
also be used in optimization techniques. It can be used to
modify software to make it more efficient in terms of
speed and resource use [4]. Examples of optimization
problems that can be formulated as a search problem are
the Test Suite Minimization problem and the Maximum
Independent Set (MIS) problem [5].

The MIS problem is a nondeterministic polynomial
(NP)-complete problem in which there is no known
classical 1 1 algorithm that solves the problem efficiently
[3]. An independent set is a set of vertices in a graph is the
one in which no two vertices are adjacent. This means that
if there is a set S of vertices, then for every two vertices in
S there is no edge connecting them [6].

In [7], the author studied the maximum independent
set with mobile myopic luminous robots on a grid network
whose size is finite but unknown to the robots. It was
performed under the assumption that robots are
asynchronous, anonymous, silent, and they execute the
same distributed algorithm.

In [8], the authors performed experimental adiabatic
quantum computation (AQC) of the MIS problem on the
Rydberg-atom system. They prepare an 11-by-18 array of
optical tweezers. This lattice is identical to the Union-jack-
like king graph experimented by [8], in which the NP
completeness of the MIS problem has been addressed. On
198 optical tweezer traps, atoms are stochastically loaded
at approximately 50%, and the resulting random graphs
are used [5].

In [9], the researchers proposed an optimized solution
for the k-independent set problem for a graph. It proved
mathematically that since the number of vertices in the
independent set of each finite graph is finite, then the
number of vertices in the k-independent set k has a
maximum. It explained the mathematical proof with
neither implementation nor performance measurement.

In [10], the authors applied automatic generation of
algorithms to combine basic heuristics for the MIS
problem. Then the space of generated algorithms is
traversed by employing genetic programming. An
algorithm is then selected depending on the
computational performance of each generated algorithm.

In [11], the authors studied the maximum-
independent-set problem on unit-disk graphs. They
carried out numerical studies and assess problem
hardness, using both exact and heuristic algorithms. They
also showed that by relaxing the constraints on the
classical simulated annealing algorithms considered in [8],
their implementation became competitive with quantum
algorithms.

In [8], the authors used Rydberg atom arrays with up
to 289 qubits in two spatial dimensions to solve the
maximum-independent-set problem. Quantum
algorithms for optimization were implemented via global
atomic excitation using homogeneous laser pulses with a
time-varying Rabi frequency Ω(t)eiø(t) and detuning Δ(t).
It was concluded that grover-type algorithms have a
quadratic speedup greater than the brute-force classical
search. It was also observed that in the hardest graphs,
superlinear quantum speedup exists in finding exact
solutions in the deep-circuit regime and analyzing its
origins. In [8], the authors investigated whether instances
with large Hamming distances between the local and
global optima of independent set sizes |MIS – 1| and
|MIS| are related to the overlap gap property of the
solution space.

In [6], the authors published an algorithm for
determining the maximum independent set problem
using a combination of previous algorithms to solve the
same problem. In this study, the minimum degree
algorithm (MD) was conducted to solve the MIS problem.
The MD reached results close to the target results, but
failed to obtain the exact numbers in almost every graph.
The density of the graph affected the results, as it
worsened when the graph was in a higher density degree
or it had a higher average degree per node. This study also
implemented the controlled-MD approach, which
achieved a better efficiency than MD. The controlled-MD
efficiency is not affected by the graph density, but its
results are close to the target and not exactly the same. To
calculate the independent set size, the algorithm counts
the number of vertices the independent set contains, while
the maximum independent set is one of the largest
possible sizes for a given graph.

The aim of this study is to find an optimized solution
for the MIS problem. It proposes a modified genetic-
inspired genetic algorithm that considers local and global
parameters to improve the results. Crossover, mutation,
interference, and quantum measurements are used to
accelerate the convergence of the results. The fitness
function calculated better results than classical GA.
Results analysis is conducted to illustrate the algorithm
contribution.

The remainder of this paper is organized as follows.
Section 2 introduces the maximum independent set
problem and the quantum-inspired genetic algorithm,
along with its operations. In Section 3, the proposed
algorithm is described. This illustrates the steps and
operation details. It also displays various operators and
how they work. In Section 4, the proposed algorithm is
evaluated and its experimental results are presented. A
comparison between the results of the proposed algorithm
and the results of the classical GA solving the MIS problem

http://www.jenrs.com/

 H. Hussein, An Optimized Algorithm for Solving

www.jenrs.com Journal of Engineering Research and Sciences, 4(8): 24-30, 2025 26

is also shown in this section. Finally, Section 5 concludes
the paper.

2. Background

2.1. Maximum Independent Set (MIS) Problem

The MIS is an SBSE problem in software engineering
and it is an optimization problem in computer science and
graph theory [12]. Given a connected, undirected graph G
= (V, E) as the input, where V is the list of vertices and E is
the list of edges. The algorithm attempts to find the largest
subset S of V, such that no two vertices in S have an edge
connecting them.

For example, Figure 1 shows a given maximum
independent set problem for graph G with six vertices.
Table 1 illustrates the representation of Figure 1 in matrix
form with the vertices listed in the columns and repeated
in the rows as V1, V2, V3, V4, V5, and V6, where (V1 and
V2) represent the link between V1 and V2. If the cell value
is 1, there is an edge connecting the two vertices that
intersect in that cell. If the cell value is zero, then there is
no edge between the two vertices intersecting in that cell.
The solution is the vertex set {V2, V3, V5, V6}, which is not
difficult to find but becomes more complicated with large
datasets [13].

Figure 1: A maximum independent set problem example graph G with

6 vertices

Table 1: Example for maximum independent set problem

Vertices V1 V2 V3 V4 V5 V6
V1 0 1 1 0 1 1
V2 1 0 0 1 0 0
V3 1 0 0 1 0 0
V4 0 1 1 0 1 1
V5 1 0 0 1 0 0
V6 1 0 0 1 0 0

2.2. Quantum Inspired Genetic Algorithm (QIGA)

2.2.1. Quantum Basics

Classical computers perform n operations
simultaneously using n bits, while quantum computers

perform 2n operations in n qubits simultaneously [14]. This
relationship is exponential. Qubits can be in the
superposition of |0> and |1>, such that α|0> + β|1>, where
α and β are complex numbers with

|α2> + |β2> = 1. (1)

Here are some unitary logic gates’ effects (Hadmard gate
[15]).

H.|0> = 1
√2
�1 1
1 −1� �

1
0� = 1

√2
�11�. (2)

H.|1> = 1
√2
�1 1
1 −1� �

0
1� = 1

√2
� 1
−1�. (3)

The X-gate, which is the NOT gate in classical
computers, can have the following effect [15]:

X.|0> = 1
√2
�0 1
1 0� �

1
0� = 1

√2
�01� = |1 >. (4)

X.|1> = 1
√2
�0 1
1 0� �

0
1� = 1

√2
�10� = |0 >. (5)

Basic quantum logic gates are used form quantum
circuits.

2.2.2. QIGA Operations

The Quantum-Inspired Genetic Algorithm (QIGA)
builds its operations in a qubit concept representation [16].

2.2.3. Quantum Mutation

It defines a mutation rate to randomly pick a mutation
point and change the chromosome value by replacing that
randomly picked point with another randomly chosen
point. This is performed as follows [17]:

P = �
α1 α2 α3… αq
β1 β2 β3… βq � . (6)

The new chromosome will become:

P’ = �α′1 α2 α3… αq
β′1 β2 β3… βq � , (7)

where

|α’2> + |β’2> = 1. (8)

2.2.4. Quantum Crossover

A crossover point is chosen randomly in two different
chromosomes according to the crossover rate, and the
operation is applied as follows [18]:

P1 = �
α1 α2 α3… αq
β1 β2 β3… βq � , (9)

P2 = �α′1 α′2 α′3… α′q
β′1 β′2 β′3… β′q � . (10)

After applying the crossover, the chromosomes will be
as the following:

P’1 = �α1 α′2 α′3… α′q
β1 β′2 β′3… β′q � , (11)

P’2 = �α′1 α2 α3… αq
β′1 β2 β3… βq � . (12)

http://www.jenrs.com/

 H. Hussein, An Optimized Algorithm for Solving

www.jenrs.com Journal of Engineering Research and Sciences, 4(8): 24-30, 2025 27

2.2.5. Interference

The interference or rotation operator can be applied as
follows [19]:

U(ϴ) |ψt> = |ψt+1> = �
cos (𝛳𝛳)αt − sin (𝛳𝛳)βt
sin(𝛳𝛳) αt + cos(𝛳𝛳)βt � . (13)

3. The Proposed Technique

3.1. Problem Representation

The graph of the MIS problem is composed of nodes,
and the edges between the nodes link these nodes. If there
is no edge, the two nodes are not connected. This problem
is represented in the proposed technique as a table with a
list of nodes shown in rows and the same nodes shown in
columns. The intersection between the node in the column
and the node in the row shows whether there is an edge
connecting them or not. The 0 value is for the no existing
edge between the nodes while the 1 value is for the
existing edge connecting the nodes. For example, if there
is a link between two nodes V1 and V2, then the
intersection of column V1 and row V2 takes a value of “1”
and similarly the intersection of row V1 and column V2.
“0” is put otherwise. An example is presented in Table 1.
This table is then represented in a 2D matrix form. Table 1
can be represented as follows.

MIS matrix=

⎣
⎢
⎢
⎢
⎢
⎡
0 1 1 0 1 1
1 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎤

 . (14)

As shown in Figure 2 and Algorithm 1, the algorithm
first generates or reads the MIS matrix. For each node a
global α a global β are calculated as using (15) and (16).
These global α and global β are not updated later on. Each
matrix has various tests that use the global α and β. After
selecting the chromosomes from the MIS matrix, local α
and local β are calculated for each chromosome in the
population. Local α and β are calculated using the global
α and β. They are updated from one generation to another.
Table 2 shows an example of the global α and global β for
each row as calculated using (15) and (16). Table 3 gives an
example of the local α and β for each chromosome in
population “p” assuming a population size of 3.

Table 2: Global α and global β example.

Row Number Global Values

V1 α1, β1

V2 α2, β2

V3 α3, β3

V4 α4, β4

V5 α5, β5

V6 α6, β6

Table 3: Local α and local β example.

Chromosome
Number

Chromosome(population,
chromosome, row)

1 V1
αp11, βp11

V3
αp13, βp13

V5
αp15, βp15

2 V2
αp22, βp22

V4
αp24, βp24

V5
αp25, βp25

3 V3
αp33, βp33

V5
αp35, βp35

V6
αp36, βp36

global_β=�1.0 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝛽𝛽2. (15)

global_α=�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. (16)

The matrix values are then considered individually in
each row to calculate sumOfZeros and sumOfAllZeros.
sumOfZeros is calculated when the intersection is zero
and the adjacent node is zero, as shown in (17). If the
intersection is zero, then sumOfAllZeros is calculated, as
shown in (18). The fitness value can then be calculated, as
illustrated in (19).

sumOfZeros = � ((colSize − (k))𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘=0 ∗ (𝑘𝑘 + 1) (17)

sumOfAllZeros = � ((colSize − (k))𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘=0 (18)

fitnessValue = sumOfZeros / sumofAllZeros * 100 (19)

4. Experimental Results

All the experiments are conducted in a laptop with
Intel® Core™ i7 processor and 64-bit Windows 11
operating system.

A summary of the proposed technique is presented in
the pseudocode of Algorithm 1. Figure 2 shows a
flowchart for the proposed technique for visual clarity.
The pseudocode and flowchart illustrates the QIGA
process as it starts with the MIS matrix itself, then it
generates the initial population and initializes the
parameters including the local α and local β. Then a loop
starts with applying interference operation. The fitness
function is measured after the interference operation.
Based on this measurement, parameters are updated and
a population is selected. Crossover operation is applied
on the selected population and then mutation operation is
performed. The fitness function and the average fitness are
then calculated. Then it updates the loop counter to go for
the next iteration. These steps are performed as long as the
predetermined number of iterations is not yet reached or
the average fitness is less than 100. When this stopping
condition becomes false, that means the MIS is solved and
the algorithm ends. Table 4 lists the Genetic Algorithm
(GA) parameters used to measure the technique. The
experiments were performed on 200 × 200 matrices to
represent a graph of 200 nodes. The experimental results
were applied to three different types of matrices. The
sparse that contains 80% of zeros and 20% of ones, the

http://www.jenrs.com/

 H. Hussein, An Optimized Algorithm for Solving

www.jenrs.com Journal of Engineering Research and Sciences, 4(8): 24-30, 2025 28

dense that contains 80% of ones and 20% of zeros, and the
50-50 that contains 50% of zeros and 50% of ones. The
matrices are formed with randomly chosen values, but
they follow each matrix type constraint.

Figure 2: Flowchart summarizing the QIGA process.

Algorithm 1: Pseudocode for the proposed technique

Read MIS matrix m × n.
Calculate global α and global β for each node.
Calculate sumOfZeros and sumOfAllZeros as shown in
(17) and (18).
Choose a population size.
Generate the initial population.
Give initial values to the local α and local β.
While number of iterations is not yet reached OR
average fitness == 100 do

Apply interference and measure the fitness results
using the fitness function in (19).
Update the local α and local β accordingly.
Select from the population using Roulette wheel.
Apply crossover with 90% .
Apply mutation with a mutation rate 1%
Measure the fitness results.
Calculate the average fitness.
Update loop counter.
end while
Print the MIS solution.

The maximum independent set problem was solved
using GA and QIGA. Both the algorithms were tested
using the same parameters. A total of 500 iterations were
performed ten times to measure the average of the results.

Table 4: GA Parameters for the proposed technique

GA Parameter Value
Population Size 500
Crossover Single-point
Crossover Rate %90
Mutation Rate %1
Selection Roulette Wheel
ϴinitial π
δϴs A random number between 0 and 1

Figure 3, 4, and 5 show that QIGA achieved faster
convergence than classical GA in the three matrix types. In
addition to convergence, the QIGA fitness value results
were higher than the classical GA results. Figure 3 shows
the faster convergence and higher fitness values of sparse
matrices, whereas Figure 4 shows the same successful
results for balanced matrices. Figure 5 illustrates the
convergence and results achieved for dense matrices.

Figure 3: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of

balanced matrixes.

http://www.jenrs.com/

 H. Hussein, An Optimized Algorithm for Solving

www.jenrs.com Journal of Engineering Research and Sciences, 4(8): 24-30, 2025 29

Figure 4: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of

sparse matrixes.

Figure 5: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of

dense matrixes.

5. Conclusion and Future Work

In this paper, a modified quantum-inspired genetic
algorithm (QIGA) is proposed to solve the maximum
independent problem, where quantum superposition has
been used in the encoding of the chromosome to increase
the size of the search space over approximately the same
physical space. Quantum gates, such as crossover,
mutation, and interference gates, have been used to
achieve better and faster results. The experimental results
have been shown for sparse, balanced, and dense test
cases. The results show that QIGA performed faster and
better than classical GA. It converges more rapidly and it
achieved higher fitness values. This solution can be used
in many domains such as software engineering to separate
related requirements from unrelated requirements, time
management, cost management, resource management,
network design, scheduling, resource allocation, logistics,
bioinformatics, mobile agents, and more [20]. Future work
will be held on creating more fitness functions to give
better results. Other problems will be considered to be
solved using QIGA. Future application to the proposed
technique can be performed on other domains.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could
have appeared to influence the work reported in this
paper.

Acknowledgments

The author received no direct funding for this research.

Funding

No financial support for this research.

Availability of data and materials

Data was generated and available upon request.

References

[1] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang,
“Search based software engineering for software product line
engineering,” Sep. 2014, doi: 10.1145/2648511.2648513.

[2] F. Sarro, “Search-Based Software Engineering in the Era of Modern
Software Systems,” IEEE 31st International Requirements
Engineering Conference (RE), 2023.

[3] A. Mazzonetto, R. Z. Frantz, F. Roos-Frantz, C. Molina-Jimenez,
and S. Sawicki, “A Systematic Mapping Study of Search-Based
Software Engineering for Enterprise Application Integration,”

http://www.jenrs.com/
https://doi.org/10.1145/2648511.2648513

 H. Hussein, An Optimized Algorithm for Solving

www.jenrs.com Journal of Engineering Research and Sciences, 4(8): 24-30, 2025 30

International Journal of Software Engineering and Knowledge
Engineering, 2022.

[4] S. Memeti, S. Pllana, A. Binotto, J. Kołodziej, and I. Brandic, “Using
meta-heuristics and machine learning for software optimization of
parallel computing systems: a systematic literature
review,” Computing, vol. 101, no. 8, pp. 893–936, Apr. 2018, doi:
10.1007/s00607-018-0614-9.

[5] K. Kim, M. Kim, J. Park, A. Byun, and J. Ahn, “Quantum computing
dataset of maximum independent set problem on king lattice of
over hundred Rydberg atoms,” Scientific Data, vol. 11, no. 1, Jan.
2024, doi: 10.1038/s41597-024-02926-9.

[6] A. W. Chaudhry, “A New Algorithm for Solving the Maximum
Independent Set Problem,” Australia, May 2019.

[7] S. Kamei and S. Tixeuil, “An Asynchronous Maximum
Independent Set Algorithm By Myopic Luminous Robots On
Grids,” The Computer Journal, vol. 67, no. 1, pp. 57–77, Nov. 2024,
doi: 10.1093/comjnl/bxac158

[8] H. Pichler, S. Wang, L. Zhou, S. Choi, and M. D. Lukin, “Quantum
optimization of maximum independent set using Rydberg atom
arrays,” Science, vol. 376, no. 6598, pp. 1209–1215, Jun. 2022, doi:
10.1126/science.abo6587.

[9] J. Luo and S. Ding, “Solving the k-Independent Sets Problem of
Graphs by Gröbner Bases,” Open Journal of Discrete Mathematics,
vol. 13, no. 03, pp. 86–94, 2023, doi: 10.4236/ojdm.2023.133008.

[10] M. Silva-Muñoz, C. Contreras-Bolton, C. Rey, and V. Parada,
“Automatic generation of a hybrid algorithm for the maximum
independent set problem using genetic programming,” Applied
Soft Computing, vol. 144, pp. 110474–110474, Jun. 2023, doi:
10.1016/j.asoc.2023.110474.

[11] R. S. Andrist et al., “Hardness of the maximum-independent-set
problem on unit-disk graphs and prospects for quantum
speedups,” Physical review research, vol. 5, no. 4, Dec. 2023, doi:
10.1103/physrevresearch.5.043277.

[12] Y. Dong, A. Goldberg, A. Noe, N. Parotsidis, M. Resende, and Q.
Spaen, A Local Search Algorithm for Large Maximum Weight
Independent Set Problems, 30th Annual European Symposium on
Algorithms (ESA 2022), 2022.

[13] Z. Wang, J. Tan, L. Zhu, and W. Huang, “Solving the Maximum
Independent Set Problem based on Molecule Parallel
Supercomputing,” Applied Mathematics & Information Sciences,
vol. 8, no. 5, pp. 2361–2366, Sep. 2014, doi: 10.12785/amis/080531.

[14] S. Hakemi, M. Houshmand, S. A. Hosseini, and X. Zhou, “A
Modified Quantum-Inspired Genetic Algorithm Using
Lengthening Chromosome Size and an Adaptive Look-Up Table to
Avoid Local Optima,” Axioms, vol. 12, no. 10, p. 978, Oct. 2023, doi:
10.3390/axioms12100978.

[15] P. S. Menon and M. Ritwik, “A Comprehensive but not
Complicated Survey on Quantum Computing,” IERI Procedia, vol.
10, pp. 144–152, 2014, doi: 10.1016/j.ieri.2014.09.069.

[16] A. M. Mohammed, N. A. Elhefnawy, M. M. El-Sherbiny, and M. M.
Hadhoud, “Quantum crossover-based quantum genetic algorithm
for solving non-linear programming,” International Conference on
Informatics and Systems, May 2012.

[17] N. Toronto and D. Ventura, “Learning Quantum Operators From
Quantum State Pairs,” IEEE International Conference on
Evolutionary Computation, vol. 3103, pp. 2607–2612, Sep. 2006, doi:
10.1109/cec.2006.1688634.

[18] M. Ridha, “Reversible Logic Synthesis Methodologies with
Application to Quantum Computing,” Springer International
Publishing, 2015. doi: 0.1007/978-3-319-23479-3.

[19] H. Hussein, A. Younes, and W. Abdelmoez, “Quantum-Inspired
Genetic Algorithm for Solving the Test Suite Minimization
Problem,” WSEAS TRANSACTIONS ON COMPUTERS, vol. 19,
pp. 143–155, Aug. 2020, doi: 10.37394/23205.2020.19.20.

[20] A. M. Salman and A. S. Al-Jilawi, “Applications of maximum
independent set,” AIP conference proceedings, Jan. 2022, doi:
10.1063/5.0093375.

Copyright: This article is an open access article
distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-SA) license
(https://creativecommons.org/licenses/by-sa/4.0/).

DR. HAGER HUSSEIN had her PhD
degree in computer science from
Alexandria University in 2021. She
received her MSc degree in software
engineering from CCIT in AASTMT in
2012.

She is an assistant professor at the
Software Engineering Department,

College of Computing and Information Technology
(CCIT), Arab Academy for Science, Technology, and
Maritime Transport (AASTMT). Her research interests
include quantum algorithms and software engineering.

Dr. Hager Hussein had published a research paper with
Cogent Engineering journal in Taylor & Francis group.
She acted as a Scientific Committee member in the 34th
International Conference on Computer Theory and
Applications.

http://www.jenrs.com/
https://doi.org/10.1007/s00607-018-0614-9
https://doi.org/10.1038/s41597-024-02926-9
https://doi.org/10.1093/comjnl/bxac158
https://doi.org/10.1126/science.abo6587
https://doi.org/10.4236/ojdm.2023.133008
https://doi.org/10.1016/j.asoc.2023.110474
https://doi.org/10.1103/physrevresearch.5.043277
https://doi.org/10.12785/amis/080531
https://doi.org/10.3390/axioms12100978
https://doi.org/10.1016/j.ieri.2014.09.069
https://doi.org/10.1109/cec.2006.1688634
https://doi.org/10.1007/978-3-319-23479-3
https://doi.org/10.37394/23205.2020.19.20
https://doi.org/10.1063/5.0093375
https://creativecommons.org/licenses/by-sa/4.0/

	1. Introduction and Literature Review
	2. Background
	2.1. Maximum Independent Set (MIS) Problem
	2.2. Quantum Inspired Genetic Algorithm (QIGA)
	2.2.1. Quantum Basics
	2.2.2. QIGA Operations
	2.2.3. Quantum Mutation
	2.2.4. Quantum Crossover
	2.2.5. Interference

	3. The Proposed Technique
	3.1. Problem Representation

	4. Experimental Results
	5. Conclusion and Future Work
	Declaration of competing interest
	Acknowledgments
	Funding
	Availability of data and materials
	References

