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ABSTRACT: Software engineering plays an important role in computer science. Novel quantum 
algorithms can efficiently solve software-engineering problems. Not only software engineering but also 
many industries including logistics, finance, genomics, resource allocation, logistics, bioinformatics, 
mobile agents and more have optimization problems. Such problems may have long time solutions. 
Research has been conducted to improve the performance of current solutions and to search for 
optimized solutions. Search-based software engineering (SBSE) uses computational techniques to 
determine optimized solutions in a large search space. There are SBSE problems such as Test Suite 
Minimization (TSM) and Maximum Independent Set (MIS) that require efficient solutions due to its 
important role. A quantum-inspired genetic algorithm had solved the TSM problem with higher 
performance than classical solutions. The quantum-inspired genetic algorithm and quantum algorithm 
showed better performance results than classical solutions. This improvement motivated us to modify 
such algorithms in order to solve the MIS optimization problems. In addition, MIS has crucial 
applications in many domains. It can be applied in software engineering to separate related and 
unrelated requirements, which is of great support for project management. Resources, time, cost, and 
relevance can be updated accordingly. MIS can also be applied in network design, scheduling, resource 
allocation, logistics, bioinformatics, mobile agents, and more. Quantum-inspired genetic algorithm 
combines quantum mechanics concepts and genetic algorithms which enhances search capability and 
provides efficient search mechanism. In this study, a modified quantum-inspired genetic algorithm 
(QIGA) is proposed and implemented to find an optimized solution for the MIS problem. A classical 
genetic algorithm (GA) is implemented and has been tested. A Comparison is conducted to show the 
results of QIGA and GA to measure the performance improvement. Results and its analysis are 
displayed to show QIGA and GA convergence. The proposed algorithm has no prior assumptions. 

KEYWORDS: Quantum-inspired genetic algorithm, Genetic algorithm, Maximum independent set 
problem, Search based software engineering, Software engineering. 

 

1. Introduction and Literature Review  

Search-based software engineering (SBSE) uses 
computational techniques to determine optimized 
solutions for software engineering problems with a large 
and complex search space [1]. It combines software 
engineering concepts with optimization algorithms. It is 
difficult to solve complex software engineering issues 
manually; SBSE considers automation and optimization 
for solving such issues [2].  

SBSE can be applied in many software engineering 
areas. Areas include, but are not limited to, software 
project management, software testing, software defect 
prediction, and automated program repair. Genetic 
Improvement (GI) is a field of SBSE that considers 
evolutionary computing in the automation of updating the 
software source code to best serve its non-functional 
requirements [2]. 

SBSE is used in enterprise application integration 
(EAIs). EAI is a research concern because of the growing 
need for data exchange and the reuse of functionality 
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among applications. Thus, SBSE can be used in different 
phases of the software development lifecycle [3]. It can 
also be used in optimization techniques. It can be used to 
modify software to make it more efficient in terms of 
speed and resource use [4]. Examples of optimization 
problems that can be formulated as a search problem are 
the Test Suite Minimization problem and the Maximum 
Independent Set (MIS) problem [5]. 

The MIS problem is a nondeterministic polynomial 
(NP)-complete problem in which there is no known 
classical 1 1 algorithm that solves the problem efficiently 
[3]. An independent set is a set of vertices in a graph is the 
one in which no two vertices are adjacent. This means that 
if there is a set S of vertices, then for every two vertices in 
S there is no edge connecting them [6].  

In [7], the author studied the maximum independent 
set with mobile myopic luminous robots on a grid network 
whose size is finite but unknown to the robots. It was 
performed under the assumption that robots are 
asynchronous, anonymous, silent, and they execute the 
same distributed algorithm. 

In [8], the authors performed experimental adiabatic 
quantum computation (AQC) of the MIS problem on the 
Rydberg-atom system. They prepare an 11-by-18 array of 
optical tweezers. This lattice is identical to the Union-jack-
like king graph experimented by [8], in which the NP 
completeness of the MIS problem has been addressed. On 
198 optical tweezer traps, atoms are stochastically loaded 
at approximately 50%, and the resulting random graphs 
are used [5].   

In [9], the researchers proposed an optimized solution 
for the k-independent set problem for a graph. It proved 
mathematically that since the number of vertices in the 
independent set of each finite graph is finite, then the 
number of vertices in the k-independent set k has a 
maximum. It explained the mathematical proof with 
neither implementation nor performance measurement. 

In [10], the authors applied automatic generation of 
algorithms to combine basic heuristics for the MIS 
problem. Then the space of generated algorithms is 
traversed by employing genetic programming. An 
algorithm is then selected depending on the 
computational performance of each generated algorithm. 

In [11], the authors studied the maximum-
independent-set problem on unit-disk graphs. They 
carried out numerical studies and assess problem 
hardness, using both exact and heuristic algorithms. They 
also showed that by relaxing the constraints on the 
classical simulated annealing algorithms considered in [8], 
their implementation became competitive with quantum 
algorithms. 

In [8], the authors used Rydberg atom arrays with up 
to 289 qubits in two spatial dimensions to solve the 
maximum-independent-set problem. Quantum 
algorithms for optimization were implemented via global 
atomic excitation using homogeneous laser pulses with a 
time-varying Rabi frequency Ω(t)eiø(t) and detuning Δ(t). 
It was concluded that grover-type algorithms have a 
quadratic speedup greater than the brute-force classical 
search. It was also observed that in the hardest graphs, 
superlinear quantum speedup exists in finding exact 
solutions in the deep-circuit regime and analyzing its 
origins. In [8], the authors investigated whether instances 
with large Hamming distances between the local and 
global optima of independent set sizes |MIS – 1| and 
|MIS| are related to the overlap gap property of the 
solution space. 

In [6], the authors published an algorithm for 
determining the maximum independent set problem 
using a combination of previous algorithms to solve the 
same problem. In this study, the minimum degree 
algorithm (MD) was conducted to solve the MIS problem. 
The MD reached results close to the target results, but 
failed to obtain the exact numbers in almost every graph. 
The density of the graph affected the results, as it 
worsened when the graph was in a higher density degree 
or it had a higher average degree per node. This study also 
implemented the controlled-MD approach, which 
achieved a better efficiency than MD. The controlled-MD 
efficiency is not affected by the graph density, but its 
results are close to the target and not exactly the same. To 
calculate the independent set size, the algorithm counts 
the number of vertices the independent set contains, while 
the maximum independent set is one of the largest 
possible sizes for a given graph. 

The aim of this study is to find an optimized solution 
for the MIS problem. It proposes a modified genetic-
inspired genetic algorithm that considers local and global 
parameters to improve the results. Crossover, mutation, 
interference, and quantum measurements are used to 
accelerate the convergence of the results. The fitness 
function calculated better results than classical GA. 
Results analysis is conducted to illustrate the algorithm 
contribution.   

The remainder of this paper is organized as follows. 
Section 2 introduces the maximum independent set 
problem and the quantum-inspired genetic algorithm, 
along with its operations. In Section 3, the proposed 
algorithm is described. This illustrates the steps and 
operation details. It also displays various operators and 
how they work. In Section 4, the proposed algorithm is 
evaluated and its experimental results are presented. A 
comparison between the results of the proposed algorithm 
and the results of the classical GA solving the MIS problem 
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is also shown in this section. Finally, Section 5 concludes 
the paper. 

2. Background 

2.1. Maximum Independent Set (MIS) Problem 

The MIS is an SBSE problem in software engineering 
and it is an optimization problem in computer science and 
graph theory [12].  Given a connected, undirected graph G 
= (V, E) as the input, where V is the list of vertices and E is 
the list of edges. The algorithm attempts to find the largest 
subset S of V, such that no two vertices in S have an edge 
connecting them.  

For example, Figure 1 shows a given maximum 
independent set problem for graph G with six vertices. 
Table 1 illustrates the representation of Figure 1 in matrix 
form with the vertices listed in the columns and repeated 
in the rows as V1, V2, V3, V4, V5, and V6, where (V1 and 
V2) represent the link between V1 and V2. If the cell value 
is 1, there is an edge connecting the two vertices that 
intersect in that cell. If the cell value is zero, then there is 
no edge between the two vertices intersecting in that cell. 
The solution is the vertex set {V2, V3, V5, V6}, which is not 
difficult to find but becomes more complicated with large 
datasets [13]. 

 
Figure 1: A maximum independent set problem example graph G with 

6 vertices 

Table 1: Example for maximum independent set problem 

Vertices V1 V2 V3 V4 V5 V6 
V1 0 1 1 0 1 1 
V2 1 0 0 1 0 0 
V3 1 0 0 1 0 0 
V4 0 1 1 0 1 1 
V5 1 0 0 1 0 0 
V6 1 0 0 1 0 0 

2.2. Quantum Inspired Genetic Algorithm (QIGA) 

2.2.1. Quantum Basics 

Classical computers perform n operations 
simultaneously using n bits, while quantum computers 

perform 2n operations in n qubits simultaneously [14]. This 
relationship is exponential. Qubits can be in the 
superposition of |0> and |1>, such that α|0> + β|1>, where 
α and β are complex numbers with 

|α2> + |β2> = 1.                       (1) 

Here are some unitary logic gates’ effects (Hadmard gate 
[15]). 

H.|0> = 1
√2
�1 1
1 −1� �

1
0� = 1

√2
�11�.    (2) 

H.|1> = 1
√2
�1 1
1 −1� �

0
1� = 1

√2
� 1
−1�.    (3) 

The X-gate, which is the NOT gate in classical 
computers, can have the following effect [15]: 

X.|0> = 1
√2
�0 1
1 0� �

1
0� = 1

√2
�01� = |1 >.    (4) 

X.|1> = 1
√2
�0 1
1 0� �

0
1� = 1

√2
�10� = |0 >.    (5) 

Basic quantum logic gates are used form quantum 
circuits. 

2.2.2. QIGA Operations 

The Quantum-Inspired Genetic Algorithm (QIGA) 
builds its operations in a qubit concept representation [16].  

2.2.3. Quantum Mutation 

It defines a mutation rate to randomly pick a mutation 
point and change the chromosome value by replacing that 
randomly picked point with another randomly chosen 
point. This is performed as follows [17]: 

P = �
α1 α2 α3…  αq
β1 β2 β3…  βq � .             (6) 

The new chromosome will become: 

P’ = �α′1 α2 α3…  αq
β′1 β2 β3…  βq � ,      (7) 

where  

|α’2> + |β’2> = 1.                     (8) 

2.2.4. Quantum Crossover 

A crossover point is chosen randomly in two different 
chromosomes according to the crossover rate, and the 
operation is applied as follows [18]:  

P1 = �
α1 α2 α3…  αq
β1 β2 β3…  βq � ,             (9) 

P2 = �α′1 α′2 α′3…  α′q
β′1 β′2 β′3…  β′q � .       (10) 

After applying the crossover, the chromosomes will be 
as the following:      

P’1 = �α1 α′2 α′3…  α′q
β1 β′2 β′3…  β′q �  ,                        (11) 

P’2 = �α′1 α2 α3…  αq
β′1 β2 β3…  βq � .                           (12) 
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2.2.5. Interference 

The interference or rotation operator can be applied as 
follows [19]: 

U(ϴ) |ψt> = |ψt+1> = �
cos (𝛳𝛳)αt − sin (𝛳𝛳)βt
sin(𝛳𝛳) αt + cos(𝛳𝛳)βt � .      (13) 

3. The Proposed Technique 

3.1. Problem Representation 

The graph of the MIS problem is composed of nodes, 
and the edges between the nodes link these nodes. If there 
is no edge, the two nodes are not connected. This problem 
is represented in the proposed technique as a table with a 
list of nodes shown in rows and the same nodes shown in 
columns. The intersection between the node in the column 
and the node in the row shows whether there is an edge 
connecting them or not. The 0 value is for the no existing 
edge between the nodes while the 1 value is for the 
existing edge connecting the nodes.  For example, if there 
is a link between two nodes V1 and V2, then the 
intersection of column V1 and row V2 takes a value of “1” 
and similarly the intersection of row V1 and column V2. 
“0” is put otherwise. An example is presented in Table 1. 
This table is then represented in a 2D matrix form. Table 1 
can be represented as follows.    

MIS matrix=  

⎣
⎢
⎢
⎢
⎢
⎡
0 1 1 0 1 1
1 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎤

 .           (14) 

As shown in Figure 2 and Algorithm 1, the algorithm 
first generates or reads the MIS matrix. For each node a 
global α a global β are calculated as using (15) and (16). 
These global α and global β are not updated later on.  Each 
matrix has various tests that use the global α and β. After 
selecting the chromosomes from the MIS matrix, local α 
and local β are calculated for each chromosome in the 
population. Local α and β are calculated using the global 
α and β. They are updated from one generation to another. 
Table 2 shows an example of the global α and global β for 
each row as calculated using (15) and (16). Table 3 gives an 
example of the local α and β for each chromosome in 
population “p” assuming a population size of 3. 

Table 2: Global α and global β example. 

Row Number Global Values 

V1 α1, β1 

V2 α2, β2 

V3 α3, β3 

V4 α4, β4 

V5 α5, β5 

V6 α6, β6 

Table 3: Local α and local β example. 

Chromosome 
Number 

Chromosome(population, 
chromosome, row) 

1 V1 
αp11, βp11 

V3 
αp13, βp13 

V5 
αp15, βp15 

2 V2 
αp22, βp22 

V4 
αp24, βp24 

V5 
αp25, βp25 

3 V3 
αp33, βp33 

V5 
αp35, βp35 

V6 
αp36, βp36 

global_β=�1.0 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝛽𝛽2.               (15) 

global_α=�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.     (16)  

The matrix values are then considered individually in 
each row to calculate sumOfZeros and sumOfAllZeros. 
sumOfZeros is calculated when the intersection is zero 
and the adjacent node is zero, as shown in (17). If the 
intersection is zero, then sumOfAllZeros is calculated, as 
shown in (18). The fitness value can then be calculated, as 
illustrated in (19). 

sumOfZeros = � ((colSize − (k))𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘=0 ∗ (𝑘𝑘 + 1)     (17) 

sumOfAllZeros = � ((colSize − (k))𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘=0                     (18)  

fitnessValue = sumOfZeros / sumofAllZeros * 100  (19) 

4. Experimental Results 

All the experiments are conducted in a laptop with 
Intel® Core™ i7 processor and 64-bit Windows 11 
operating system.   

A summary of the proposed technique is presented in 
the pseudocode of Algorithm 1. Figure 2 shows a 
flowchart for the proposed technique for visual clarity.  
The pseudocode and flowchart illustrates the QIGA 
process as it starts with the MIS matrix itself, then it 
generates the initial population and initializes the 
parameters including the local α and local β. Then a loop 
starts with applying interference operation. The fitness 
function is measured after the interference operation. 
Based on this measurement, parameters are updated and 
a population is selected.  Crossover operation is applied 
on the selected population and then mutation operation is 
performed. The fitness function and the average fitness are 
then calculated. Then it updates the loop counter to go for 
the next iteration. These steps are performed as long as the 
predetermined number of iterations is not yet reached or 
the average fitness is less than 100. When this stopping 
condition becomes false, that means the MIS is solved and 
the algorithm ends. Table 4 lists the Genetic Algorithm 
(GA) parameters used to measure the technique. The 
experiments were performed on 200 × 200 matrices to 
represent a graph of 200 nodes. The experimental results 
were applied to three different types of matrices. The 
sparse that contains 80% of zeros and 20% of ones, the 
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dense that contains 80% of ones and 20% of zeros, and the 
50-50 that contains 50% of zeros and 50% of ones. The 
matrices are formed with randomly chosen values, but 
they follow each matrix type constraint.  

 
Figure 2: Flowchart summarizing the QIGA process. 

Algorithm 1: Pseudocode for the proposed technique 

Read MIS matrix m × n. 
Calculate global α  and global β for each node. 
Calculate sumOfZeros and sumOfAllZeros as shown in 
(17) and (18). 
Choose a population size. 
Generate the initial population. 
Give initial values to the local α and local β. 
While number of iterations is not yet reached OR 
average fitness == 100 do 

Apply interference and measure the fitness results   
using the fitness function in (19). 
Update the local α and local β accordingly. 
Select from the population using Roulette wheel. 
Apply crossover with 90% . 
Apply mutation with a mutation rate 1% 
Measure the fitness results. 
Calculate the average fitness. 
Update loop counter. 
end while 
Print the MIS solution. 

The maximum independent set problem was solved 
using GA and QIGA. Both the algorithms were tested 
using the same parameters. A total of 500 iterations were 
performed ten times to measure the average of the results. 

Table 4: GA Parameters for the proposed technique 

GA Parameter Value 
Population Size 500 
Crossover Single-point 
Crossover Rate %90 
Mutation Rate %1 
Selection Roulette Wheel 
ϴinitial π 
δϴs A random number between 0 and 1 

Figure 3, 4, and 5 show that QIGA achieved faster 
convergence than classical GA in the three matrix types. In 
addition to convergence, the QIGA fitness value results 
were higher than the classical GA results. Figure 3 shows 
the faster convergence and higher fitness values of sparse 
matrices, whereas Figure 4 shows the same successful 
results for balanced matrices. Figure 5 illustrates the 
convergence and results achieved for dense matrices. 

 
Figure 3: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of 

balanced matrixes. 
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Figure 4: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of 

sparse matrixes. 

 
Figure 5: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of 

dense matrixes. 

5. Conclusion and Future Work 

In this paper, a modified quantum-inspired genetic 
algorithm (QIGA) is proposed to solve the maximum 
independent problem, where quantum superposition has 
been used in the encoding of the chromosome to increase 
the size of the search space over approximately the same 
physical space. Quantum gates, such as crossover, 
mutation, and interference gates, have been used to 
achieve better and faster results. The experimental results 
have been shown for sparse, balanced, and dense test 
cases. The results show that QIGA performed faster and 
better than classical GA. It converges more rapidly and it 
achieved higher fitness values. This solution can be used 
in many domains such as software engineering to separate 
related requirements from unrelated requirements, time 
management, cost management, resource management, 
network design, scheduling, resource allocation, logistics, 
bioinformatics, mobile agents, and more [20]. Future work 
will be held on creating more fitness functions to give 
better results. Other problems will be considered to be 
solved using QIGA. Future application to the proposed 
technique can be performed on other domains.  
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