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ABSTRACT: Artificial intelligence already influences credit allocation, medical diagnosis, and staff
recruitment, yet most deployed models remain opaque to decision makers, regulators, and the citizens
they affect. A new wave of transparency mandates across multiple jurisdictions will soon require
organizations to justify automated decisions without disrupting tightly coupled production pipelines
that have evolved over the years. We advance a conceptual proposal to address this tension: the
magnetic AI agent. This external, attachable software layer learns a faithful surrogate of any target
model, delivering audience-tailored explanations on demand. The paper first synthesizes fragmented
scholarship on post-hoc explainability, sociotechnical alignment, and model governance, revealing
an unmet need for lightweight retrofits that minimize downtime. It then creates a basic framework
based on design principles, explaining methods for data collection, ongoing learning processes, and
user-friendly explanation tools. A plan for evaluation lists both numerical and descriptive measures,
including how closely a model matches reality and how much extra time it takes, as well as the mental
effort required and how well policies work, which users can adjust for different fields like credit scoring,
medical imaging, and predictive maintenance. Overall, the work contributes a roadmap for upgrading
the installed base of black-box systems while aligning with emergent regulatory frameworks and ethical
guidelines for trustworthy AI.

KEYWORDS: Magnetic AI, Explainable Artificial Intelligence, Agentic AI, Retrofit Transparency,
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1. Introduction

Artificial Intelligence (AI) systems that once resided in
research labs now power high-stakes finance, health care,
logistics, national security, and public administration de-
cisions. These models deliver unprecedented speed and
predictive accuracy, yet they rarely reveal the internal logic
that drives their outputs. This asymmetry between perfor-
mance and interpretability poses reputational, operational,
and legal risks for organizations that rely on opaque algo-
rithms. Recent incidents—such as biased credit approvals,
flawed recidivism predictions, and inconsistent medical
triage decisions—demonstrate how opacity can erode stake-
holder trust and invite regulatory scrutiny [1].

Last century, AI research surged on the back of expert
systems, decision trees, and the early "neural nets" revival.
Success was measured almost entirely by how precisely
these models could predict outcomes, whether diagnosing
disease, flagging credit risk, or recognizing handwritten
digits. Researchers fine-tuned rule bases or tweaked hidden-
layer weights to squeeze out a few extra percentage points
of accuracy, and industry adopters celebrated any gains that
outperformed human benchmarks. Yet this accuracy-first
mindset treated the models as opaque black boxes: engi-
neers rarely asked why a particular rule fired or a neuron
activated, and users seldom demanded a justification. As a
result, explainability remained an afterthought; the momen-

tum and funding of the era were channeled into sharpening
predictive performance, not into opening the "black box"
so stakeholders could trust and understand the reasoning
inside it.

Across major jurisdictions, regulation is converging on a
common requirement that AI systems be explainable: the Eu-
ropean Union’s AI Act, recent U.S. executive directives, and
China’s updated generative-AI rules all mandate that high-
impact models provide meaningful information about how
they reach their outputs. This amounts to an emerging right
for everyday users to demand clear, human-readable reasons
for automated predictions or decisions, even when those de-
cisions come from complex neural networks. Anticipating
audits, fines, and reputational risks, companies are building
explanation layers into their products—dashboards that
visualize feature contributions, surrogate models that trans-
late deep-learning logic into plain language, and customer
portals that show "what-if" scenarios—because meeting this
new transparency baseline is becoming less a nice-to-have
and more a competitive necessity.

Societal expectations for transparency have accelerated.
Policymakers on both sides of the Atlantic have enacted
or proposed frameworks that place the burden of justifica-
tion on automated decision-makers. The European Union’s
AI Act, the United Kingdom’s Algorithmic Transparency
Standard, and various U.S. proposals such as the Algo-
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rithmic Accountability Act collectively signal a shift from
self-regulation to explicit accountability. These initiatives
often focus on two intertwined requirements: the ability
to generate human-understandable explanations and the
capacity to audit models throughout their life cycle. Orga-
nizations, therefore, face the dual challenge of upgrading
legacy AI assets and operationalizing governance processes
at scale.

Despite rapid advances in post-hoc interpretability tech-
niques, most production environments cannot easily accom-
modate invasive code changes, extensive retraining cycles,
or computational overhead that might jeopardize service-
level agreements. Enterprise Machine Learning pipelines
typically integrate proprietary libraries, tightly coupled
microservices, and third-party APIs that preclude direct
intervention. A non-disruptive alternative is to attach an
explanatory agent to the outside of an existing pipeline,
much like a magnetic device that snaps onto the surface of a
machine without changing its internal workings. We label
this solution the magnetic AI agent. The magnetic analogy
underscores three salient properties: passive attachment,
minimal friction, and continuous real-time learning [2].

While the concept of attaching post-hoc interpretability
layers has precedent in techniques such as shadow models,
knowledge distillation, and wrapper-based surrogates, the
magnetic AI agent diverges in critical ways. Unlike shadow
models that mimic predictions for evaluation purposes or
distillation methods that compress complex models into
simpler ones, the magnetic agent is designed to operate
continuously alongside the original model without approxi-
mation or replacement [3]. Its emphasis is not only on in-
terpretability but also on modular deployment, governance
integration, and lifecycle adaptability in real-world produc-
tion systems. The magnetic metaphor is not a rhetorical
flourish—it reflects an architectural philosophy: to enable
passive but intelligent observability without disrupting the
core model’s functioning or retraining requirements.

The remainder of the paper deepens the conceptual
foundation, formalizes the design space, and proposes an
actionable evaluation pathway for magnetic AI. While em-
pirical results are not presented here, this absence is by
design: the work is intended as a conceptual proposal that
lays the groundwork for future implementation and exper-
imentation. Its primary aim is to contribute a structured
framework, design rationale, and deployment blueprint that
researchers and practitioners can build upon. First, Section
2 surveys the multidisciplinary literature on explainable
AI and model-agnostic wrappers, identifying persistent
gaps that motivate a new approach. Section 3 introduces
the conceptual framework that positions the retrofit agent
within sociotechnological constraints and elaborates design
principles, reference architecture, and governance interfaces.
Section 4 describes a design-science research strategy and
methodological considerations for constructing and refining
the artifact. Section 5 details an evaluation blueprint that or-
ganizations can replicate or adapt in their domains. Section
6 discusses operational, ethical, and societal implications,
mapping the proposal onto current regulatory trends. Sec-
tion 7 concludes by summarizing contributions, delineating
limitations, and articulating a future research agenda that
includes full-scale prototypes, multimodal extensions, and

integration with next-generation foundation models.

2. Related Work

Research on explainability spans multiple disciplines,
each supplying partial answers to how automated systems
should justify their outputs. Algorithmic contributions
range from ante-hoc transparent models to post-hoc attri-
bution methods such as LIME, SHAP, and integrated gra-
dients to compression techniques that create interpretable
surrogates. Human-computer interaction studies examine
the cognitive load of different explanation formats, user
mental-model accuracy, and the conditions under which
explanations raise or erode calibrated trust. Work in organi-
zational behavior documents how power dynamics, siloed
incentives, and technical debt shape whether explanations
are acted upon or ignored. Legal scholarship and policy
analyses frame transparency as a right, exploring liabil-
ity, due-process entitlements, and the evolving notion of
algorithmic accountability [4].

This review weaves the strands together, pinpointing
where they fall short and how they complement one another.
Algorithmic methods often optimize fidelity or sparsity but
rarely address maintenance overhead once a model is in
production. HCI experiments illuminate user comprehen-
sion in laboratory settings, yet evidence remains sparse on
sustained behavior change in real workflows. Organiza-
tional case studies highlight governance bottlenecks but
seldom tie them to concrete design artifacts. Legal work
identifies transparency duties but leaves practitioners with
little guidance on technical implementation. Magnetic AI
draws on the strengths of each field while addressing their
gaps: a passive attachment strategy respects intellectual-
property boundaries emphasized in law, continuous fidelity
auditing answers organizational concerns about drift and
technical debt, and explanation pluralism accommodates
the heterogeneous user needs documented in HCI research
[5].
Key takeaways that inform the design are as follows:

• Algorithmic insight: incremental surrogates balance
fidelity with latency, enabling explanations at line
speed without altering the primary model. They
learn from a sliding window of recent requests, re-
fresh continuously without full retraining, and respect
the intellectual-property boundaries of closed mod-
els, making them suitable for third-party APIs and
in-house stacks.

• HCI insight: multiple discourse formats—ranked fea-
ture tables, layered saliency maps, natural-language
counterfactual narratives, and compliance-ready au-
dit summaries—are necessary because data scientists,
end users, and regulators each privilege different
cues. Adaptive rendering lets the same evidence flow
into analyst dashboards, tooltips for consumers, or
machine-readable JSON for supervisory authorities.

• Organizational insight: modular deployment decou-
ples the four layers—interception, surrogate learning,
explanation rendering, and fidelity auditing—so firms
can adopt only the components they lack. This bolt-
on architecture avoids rewriting brittle legacy code,
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shortens change-management cycles, and reduces the
blast radius of defects to a single microservice rather
than the full model pipeline.

• Legal insight: persistent audit logs, role-based expla-
nation access, and optional differential-privacy noise
satisfy both transparency duties and data-protection
rules. The same artifacts can populate internal risk reg-
isters, respond to freedom-of-information requests, or
demonstrate compliance during external audits, align-
ing technical controls with emerging statutes such
as the EU AI Act and national consumer-protection
guidelines [6].

By fusing these lessons, magnetic AI offers a coherent
blueprint that advances beyond silo-specific approaches
toward an integrated, production-ready solution for trust-
worthy machine learning.

2.1. Post-Hoc Explainable AI

Early work on interpretability concentrated on "glass-
box" algorithms—decision trees, linear or logistic regres-
sions, and simple rule lists—whose parameters and splits
can be read like prose. As deep learning’s opaque layers
dominated predictive accuracy, researchers shifted toward
post-hoc techniques that wrap explanations around other-
wise black-box models [7].

The most influential of these are LIME and SHAP. Both
build local surrogate models that mimic the original model’s
behavior near a single instance, then report feature attribu-
tions: LIME perturbs inputs and fits a sparse linear model,
whereas SHAP samples coalitions of features to compute
Shapley values that satisfy additivity and consistency. Their
appeal lies in domain-agnostic deployment—data scientists
can drop in a few lines of code and hand users a ranked list
of "which variables mattered most"—yet the price is high
computational overhead, sensitivity to sampling noise, and
explanations that change when the same point is probed
twice [8].

Beyond LIME and SHAP, gradient-based saliency maps
track the partial derivatives of a convolutional network to
highlight the pixels that nudge an image score upward or
downward; attention visualizations in transformer mod-
els color the tokens that capture a language model’s gaze;
counterfactual methods search the input space for the most
minor tweak that flips the prediction, offering an action-
able "what would need to change?"; and prototype- or
example-based explanations surface representative cases
that anchor abstract probability scores in concrete, human-
readable examples. Each broadens the explanatory toolbox,
yet each inherits its drawbacks: saliency maps blur un-
der adversarial noise, attention plots do not always align
with causal importance, counterfactuals become infeasi-
ble in high-dimensional data, and prototype selection can
reinforce majority-class bias [9].

Across the board, explanation strength often comes at
the cost of latency, stability, or hardware resources. Empiri-
cal studies still debate whether richer explanations mean-
ingfully boost user trust or downstream decision quality,
highlighting an unsolved interpretability-accuracy-usability
triangle.

2.2. Wrapper and Surrogate Paradigms

Building a simpler model that imitates a complex one
is hardly new. In the 1980s, credit bureaus built "shadow"
logistic regressions to track the decisions of proprietary
loan scoring engines, and in the 1990s, speech-recognition
teams used teacher–student pairs to shrink large hidden-
Markov networks so they could run on low-power chips.
These ideas matured into what is now called knowledge
distillation, where an extensive teacher network produces
soft targets—probability distributions rather than hard la-
bels—that guide a smaller student network. The result is a
faster, lighter model that often matches the teacher’s top-line
accuracy but may blur fine-grained decision boundaries,
especially in rare or ambiguous cases.

Modern workflows try to close that gap by perform-
ing distillation continuously. An online student receives
a stream of teacher outputs and updates its weights on
the fly, or it joins a replay buffer that mixes new observa-
tions with old exemplars to resist catastrophic forgetting.
Continual-learning variants add regularizers that anchor
key teacher activations so the student does not drift when the
data distribution shifts. Yet experiments on non-stationary
benchmarks show that even these advanced students strug-
gle with concept drift and are highly sensitive to mislabeled
or adversarially perturbed examples [10].

A parallel line of work forgoes access to internal weights
altogether. Instead, engineers wrap the black-box service
with a data interceptor that logs inputs and outputs, then
train a surrogate, often a decision tree or gradient-boosted
ensemble, purely from those pairs. This wrapper strategy
sidesteps intellectual-property barriers and can be swapped
before any commercial API. Still, it introduces fresh privacy
challenges: synthetic or cached query data must be stored
outside the original security perimeter, and reconstruction
attacks can expose sensitive attributes if the wrapper is
breached [11].

Taken together, today’s surrogate models fall into two
camps. Static snapshots captured once during develop-
ment grow stale as the real world evolves, while dynamic
surrogates that retrain or distill online demand constant
monitoring, a computation budget, and careful privacy
safeguards. Neither camp fully resolves the tension be-
tween efficiency, fidelity, and maintainability in production
environments that change by the hour.

2.3. Regulatory and Business Context

Across regions, lawmakers and standard-setters are lock-
ing into a shared vocabulary—transparency, accountability,
fairness, and meaningful human oversight—and turning it
into binding or quasi-binding rules. In Europe, the AI Act
labels credit scoring, hiring, medical diagnosis, and other
"high-risk" applications. It forces them to generate under-
standable explanations, document data provenance, and
pass third-party conformity assessments before entering the
market.

In the United States, the Federal Trade Commission,
Consumer Financial Protection Bureau, Department of Jus-
tice, and other agencies have warned that undisclosed bias,
dark-pattern interfaces, or the sale of inscrutable models
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can trigger enforcement actions under existing consumer-
protection and civil-rights statutes. At the same time, the
White House blueprint for an AI Bill of Rights and the
NIST AI Risk-Management Framework give regulators a
benchmark for what "reasonable" governance should look
like. China’s updated Interim Measures on generative AI
require providers to watermark outputs, publish model
cards, and supply "interpretive" summaries on demand;
Canada’s forthcoming AI and Data Act mandates impact
assessments and real-time monitoring; Brazil and India are
drafting parallel bills; and the G7’s Hiroshima Process is
pressing multinationals to align with these norms wherever
they operate.

Industry bodies reinforce the trend: the Partnership
on AI, the OECD, the ISO/IEC 42001 management-system
standard, and voluntary procurement checklists now ask
vendors to show audit logs, bias tests, and plain-language
explanations as a condition of sale. Non-compliance can
mean multimillion-euro fines, exclusion from public-sector
tenders, investor divestment, and reputational damage that
stalls digital-transformation roadmaps. Yet most enterprises
run on entrenched code bases, brittle data pipelines, and
overlapping legacy models; ripping and replacing them
is rarely feasible. This clash between external pressure
and internal technical debt drives demand for retrofit so-
lutions—lightweight layers that bolt onto existing systems,
capture inputs and outputs, monitor drift, and surface user-
friendly explanations—so firms can satisfy new governance
obligations without rebuilding their entire machine-learning
stack [12].

2.4. Gap Analysis

Table 1 contrasts prevailing approaches against opera-
tional requirements and spotlights the unresolved discon-
nect between research prototypes and production realities.
While the literature offers algorithmic sophistication, it
rarely addresses day-two concerns such as deployment
pipelines, monitoring infrastructure, and heterogeneous
stakeholder needs. The magnetic AI proposal aims to bridge
this gap by integrating passive attachment, continuous fi-
delity auditing, and human-centered explanation delivery
into a unified artifact.

There seems to be a clear trade-off pattern: methods that
are easiest to bolt onto any model (LIME, SHAP, Anchors)
suffer from high inference latency or heavy sampling, while
techniques that are fast enough for production (knowledge-
distilled surrogates, ante-hoc interpretable models) often
under-fit or drift from the source model without constant
retraining. Vision-specific tools like Grad-CAM are efficient
but narrow in scope, and counterfactual or prototype-based
approaches provide the most human-friendly "what-if" sto-
ries yet demand large compute budgets and carefully cu-
rated instance libraries [13].

In short, no single technique simultaneously delivers
low latency, high fidelity, and broad stakeholder usability.
This operational gap motivates a hybrid solution, such as
the proposed magnetic AI artifact, that couples passive
attachment for real-time capture with continuous fidelity
auditing and layered explanation modes tuned to different
audiences.

Table 1: Operational gap between explainability techniques and production
requirements

Approach Strengths Limitations

LIME / SHAP Model-agnostic;
easy to add

High latency in
production;
explanations local

Knowledge
distillation

Compact, fast
surrogates

Needs labelled
outputs; surrogate
drift

Counterfactuals Actionable “what-if”
paths

Heavy compute;
plausibility issues

Magnetic AI
(proposed)

Passive attachment;
continuous learning

Concept stage;
governance pending

Integrated
Gradients

Faithful to deep
nets; low single-call
overhead

Requires
differentiable
model; noisy for
saturated neurons

Grad-CAM Intuitive heat-maps
for vision CNNs;
real-time on GPU

Vision-only; coarse
spatial resolution

Anchors Sparse,
high-precision rules;
human-readable

Sampling-intensive;
struggles with
high-dimensional
mixes

Partial
Dependence /
ICE

Global feature-effect
trends; offline
computation

Assumes feature
independence; stale
in changing data

Prototype &
Criticism

Example-based,
domain-relatable
explanations

Needs large
representative set;
weak in very sparse
spaces

Ante-hoc
interpretable
mdl.

Transparency
built-in (e.g., GAMs,
monotonic GBMs);
low latency

May under-fit
complex tasks;
restricted model
choices

3. Magnetic AI Conceptual Framework

The magnetic AI framework delineates the core con-
structs, operational boundaries, and design guidelines neces-
sary to retrofit explainability into black-box systems. Build-
ing on sociotechnical theory, the framework positions the
agent as an intermediary that negotiates between opaque
algorithms and heterogeneous human audiences [14].

3.1. Definition and Scope

A magnetic AI agent functions as a sidecar or proxy ser-
vice that eavesdrops on every request–response pair flowing
to and from a production model. As each new interaction
arrives, the agent adds it to a sliding window buffer—say
the most recent ten thousand cases—and updates an online
surrogate such as an incremental gradient-boosted tree or
a compact transformer fine-tuned with parameter-efficient
adapters. This continual refresh allows the surrogate to
track concept drift without incurring the full cost of retrain-
ing. Because the agent learns only from observable inputs
and outputs, it can attach to black-box APIs, commercial
SaaS endpoints, or legacy binaries without source code or
training data. Once the surrogate reaches a configurable
fidelity threshold, the agent can emit different explana-
tion "dialects" on demand: concise ranked feature lists for
customer-service representatives, multi-layer saliency maps
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for data scientists, counterfactual recourse suggestions for
end users, or timestamped audit reports that regulators
can archive. A governance layer encrypts the buffered data,
records model-to-surrogate agreement scores, triggers alerts
when fidelity degrades, and exposes REST or gRPC end-
points so downstream dashboards can pull explanations in
real time [15].

Deployment is lightweight—often a Docker container
or Kubernetes sidecar—so platform teams can roll it out
with minimal changes to existing pipelines. Because the
agent never touches proprietary weights or training sets,
intellectual-property boundaries remain intact, and privacy
can be reinforced with hashing or differential-privacy noise
in the captured feature vectors. This combination of passive
attachment, incremental learning, and audience-specific ex-
planation formats positions magnetic AI agents as a practical
retrofit for organizations that must meet new transparency
rules without redesigning their entire machine-learning
stack.
3.2. Design Principles

Design principles serve as invariant heuristics that guide
implementation choices across contexts:

• Plug-and-play attachment via standardized data taps that
conform to common message-queue or REST interfaces,
minimizing engineering overhead.

• Model and domain agnosticism that enables deployment
across tabular, image, NLP, time-series, and multimodal
pipelines.

• Continuous auditing that monitors surrogate fidelity over
time using drifting-window statistical tests and triggers
automatic recalibration when thresholds are breached.

• Explanation pluralism that tailors output modalities to
stakeholder expertise, regulatory requirements, and sit-
uational constraints, thereby enhancing relevance and
comprehension.

• Privacy-preserving learning that supports on-device dis-
tillation, differential privacy budgets, and federated ag-
gregation when data sovereignty is paramount.

3.3. Reference Architecture

The architecture is divided into four loosely coupled
layers. The data interception layer attaches to message bro-
kers, REST gateways, or in-process hooks to duplicate each
input–output pair with millisecond-level delay. Captured
data is written to an encrypted sliding-window buffer sized
to the latency budget. The surrogate learning layer ingests
this stream and updates an incremental model such as an
online gradient-boosted tree, streaming k-nearest neighbors,
or a partial-fit neural network.

A fading factor emphasizes recent samples so the surro-
gate can track concept drift without unbounded memory
growth. The explanation rendering layer queries the current
surrogate to extract local and global importance signals, then
converts them into human-readable artifacts by combining
a template engine with natural-language generation. Sup-
ported formats include ranked feature lists, layered saliency

maps, counterfactual recourse narratives, and compliance-
oriented audit summaries.

The fidelity auditing layer compares surrogate outputs
with the target model on a hold-back stream slice, records
agreement statistics, raises drift alerts when error thresholds
are exceeded, and exposes metrics to governance dashboards
through an HTTP endpoint. The modular design permits
selective adoption, so an organization may activate only the
components that fill existing gaps:

• Data interception choices: sidecar proxy, service-mesh
filter, or Kafka consumer

• Surrogate learning supports pluggable incremental
algorithms and optional ensembling

• Explanation rendering exports Markdown, JSON, PDF,
or SVG artefacts for integration with existing portals

• Fidelity auditing pushes metrics to Prometheus or
OpenTelemetry and routes alerts to Slack or Pager-
Duty

Figure 1 illustrates the magnetic AI agent operating
across four loosely coupled layers.

Figure 1: Magnetic AI Reference Architecture: A four-layer system that
retrofits explainability into black-box models using passive data intercep-
tion, online surrogate learning, audience-specific rendering, and continu-
ous fidelity auditing.

4. Research Design and Methodology

Table 2 summarizes the guiding questions. Rigorous
methodological scaffolding is essential to transform a design
idea into an evaluable artifact. We adopt a design-science
paradigm that iteratively synthesizes knowledge through
constructing and assessing purposeful artifacts.

4.1. Artifact Construction Strategy

The construction strategy unfolds in three stages. Stage
1 employs synthetic benchmarks such as tabular classifica-
tion tasks from the UCI repository to validate algorithmic
viability under controlled conditions. Stage 2 transitions to
semirealistic testbeds—for example, open medical-imaging
datasets—where data sensitivity approximates production
scenarios. Stage 3 involves shadow deployments within
partner organizations, embedding the agent in parallel
with live systems to observe operational impacts without
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influencing decision outcomes. Each stage employs a build-
measure-learn loop, refining data-tap APIs, surrogate hy-
perparameters, and explanation formats based on empirical
feedback.

Table 2: Guiding questions for magnetic AI research design

Research question Section

What functions must a retrofit agent perform
to satisfy transparency mandates?

Framework

How can fidelity be maintained as underlying
models drift?

Methodology

Which usability metrics best capture explana-
tion quality across domains?

Evaluation

What governance processes are necessary to
embed magnetic agents responsibly?

Discussion

4.2. Proposed Evaluation Metrics

Comprehensive evaluation encompasses technical fi-
delity, human factors, and organizational fit.

• Surrogate fidelity quantified by macro-averaged agree-
ment, calibration error, and local explanation stability
across perturbed inputs.

• Latency overhead measured as the delta between base-
line prediction response time and pipeline response time
with the agent attached, segmented by cold-start and
steady-state conditions [16].

• Cognitive burden assessed via the NASA-TLX workload
instrument and validated comprehension quizzes admin-
istered to diverse user cohorts.

• Policy sufficiency mapped to ISO-based checklists and
jurisdiction-specific compliance rubrics, with binary
pass/fail indicators and narrative justifications.

• Maintenance complexity captured through engineer-
reported setup time, mean time to detection, and time to
repair when drift alarms are triggered.

5. Evaluation Blueprint

A structured evaluation helps an organization transition
from proof of concept to full roll-out without losing sight
of risk, cost, or stakeholder value. Below, we will break the
adoption into four incremental phases, each with its entry
criteria, success indicators, and decision gates. Escalation
to the next phase occurs only when the previous one meets
predefined thresholds, reducing the likelihood of expen-
sive rework later in the project. As shown in Figure 2, the
evaluation progresses through four structured phases.

5.1. Phase 1: Feasibility Scoping

The objective is to decide whether a magnetic agent can
attach to existing systems with acceptable effort and risk.
A cross-functional team—product owners, data engineers,
legal counsel, and compliance officers—maps the technical
and organizational landscape before a single line of code is
written.

Figure 2: Evaluation Blueprint: A four-phase process guiding the deploy-
ment of magnetic AI agents from feasibility scoping to governance sign-off.

• Catalog candidate models, including version numbers,
input modalities, and traffic volumes.

• Identify data-tap points such as message queues, mi-
croservice gateways, or in-process hooks.

• Segment explanation audiences: internal analysts,
external customers, and regulators.

• Run a one-week pilot that captures a small sample of
input–output pairs to confirm data visibility, latency
overhead, and encryption requirements.

• Document legal constraints on data copying, retention,
and cross-border transfer.

A green light to Phase 2 requires evidence that data
taps are technically feasible, that no show-stopper legal
barriers exist, and that the surrogate can be trained within
the latency budget on a representative sample.

5.2. Phase 2: Shadow Deployment

The magnetic agent now runs parallel with the produc-
tion model but remains invisible to end users. The aim is to
measure technical fidelity and operational impact without
altering business outcomes.

• Stream live input–output pairs to the surrogate and
store them in a ring buffer sized to the retention policy.

• Generate explanations, drift graphs, confusion matri-
ces, and saliency heat maps; push them to a read-only
dashboard.

• Track surrogate-to-model agreement, memory growth,
and compute cost hourly.

• Stress-test the agent under peak traffic loads to verify
scaling rules and auto-healing scripts [17].

• Perform red-team exercises to probe for model inver-
sion and data leakage vectors.
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Promotion to Phase 3 requires that fidelity metrics reach
a predefined threshold, that resource consumption stay
within budget, and that no critical security vulnerabilities
remain open.

5.3. Phase 3: Human-Centered Assessment

With technical soundness established, the focus shifts to
human interpretability and decision quality. Explanations
are shown to real users in a sandbox or pilot workflow.

• Recruit subject-matter experts—credit underwriters,
fraud analysts, radiologists—for structured review
sessions.

• Present a stratified sample of explanations, including
edge-case and adversarial examples.

• Collect quantitative scores using metrics from Section
4 and qualitative feedback on clarity, usefulness, and
domain language.

• Run A/B trials where some users receive explanations
and others do not, measuring changes in decision time,
error rate, and confidence calibration.

• Iterate on templates, terminology, and granularity
until user-acceptance criteria are met.

Advancement to Phase 4 depends on demonstrable gains
in user understanding or workflow efficiency and the ab-
sence of new cognitive or fairness concerns.

5.4. Phase 4: Governance Sign-off

The final checkpoint aligns the deployment with corpo-
rate risk appetite and external regulatory obligations. A
multidisciplinary committee reviews evidence accumulated
in earlier phases.

• Audit logs: fidelity trends, drift alerts, red-team find-
ings, and remediation actions.

• Human-factor reports: focus-group transcripts, A/B
test statistics, and user-acceptance sign-offs.

• Compliance dossier: data-protection impact assess-
ment, model card, explanation samples mapped to
regulatory articles.

• Operational playbook: on-call rotation, retraining
schedule, rollback triggers, and key performance indi-
cators.

Once approved, the magnetic agent’s explanation end-
points are activated in consumer portals, internal tools, or
regulator-facing audit trails. Post-deployment, a quarterly
review loop checks for concept drift, escalating to retraining
or policy revision when thresholds are breached.

6. Discussion

The empirical and design insights above converge on a
central theme: explainability is no longer a research luxury
but an operational requirement that influences competitive

advantage, regulatory posture, and societal trust. Deploy-
ing a magnetic agent transforms transparency from an
expensive, one-off retrofit into a continuous service layer
that scales with business growth [18]. This shift prompts
decision makers to treat explainability as a cross-cutting ca-
pability, like security or observability, rather than a bolt-on
feature. It carries strategic implications at three levels.

First, at the enterprise level, magnetic AI offers a
cost–benefit inflection point. Faster compliance approvals,
reduced litigation risk, and new value propositions, such as
premium data-lineage services for high-stakes customers,
offset the marginal expense of streaming surrogates and
auditing dashboards. Firms adopting early may shape in-
dustry standards and lock in reputational capital that late
movers struggle to match.

Second, at the ecosystem level, widespread passive-
attachment architectures could generate large, anonymized
corpora of model–surrogate disagreement events. These
data could be shared under federated learning or secure
multiparty protocols, catalyzing sector-wide benchmarks
for robustness and enabling collaborative defense against
adversarial attacks and systemic bias.

Third, granular yet comprehensible explanations at the
societal level recalibrate the power balance between insti-
tutions and individuals. Users gain procedural recourse,
auditors gain verifiable artifacts, and policymakers gain a
practical blueprint for enforcement. The trade-off, however,
is a thicker layer of governance overhead and an expanded
attack surface that demands ongoing vigilance [19].

Against this backdrop, executive sponsors should treat
magnetic AI deployment as a phased capability-maturity
journey. Early milestones include establishing a data-tap
inventory, codifying explanation-quality metrics, and fund-
ing interdisciplinary training programs so that engineers,
risk officers, and product managers share a common vocab-
ulary. Later stages focus on automating drift remediation,
integrating feedback loops into agile release cycles, and
participating in cross-industry consortia that set open stan-
dards for explanation fidelity and fairness. Organizations
can navigate tightening regulations and rising public expec-
tations by internalizing these priorities without sacrificing
innovation velocity [20].

6.1. Prototype Model Demonstration

To illustrate the feasibility and behavior of the magnetic
AI agent in a controlled environment, we implemented a toy
model scenario. This lightweight empirical demonstration,
while not intended as a comprehensive validation, serves to
ground the concept in observable mechanics and provide
an early proof of plausibility.

We used the classic Iris dataset and trained a black-
box model using a random forest classifier. The magnetic
agent was simulated as a proxy service that intercepted
each input–output interaction and updated an online lo-
gistic regression model as its surrogate. The surrogate
was constrained to observe only the request–response pairs,
without access to feature importances, decision paths, or
model internals.

Explanations were then generated by querying the lo-
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gistic surrogate for each prediction and mapping the co-
efficients to ranked features. A fidelity audit compared
surrogate predictions to the random forest decisions over
a sliding window of 150 samples. Surrogate agreement
stabilized at approximately 92%, and drift detection flagged
one period where surrogate performance dropped due to
a change in the class distribution, prompting automatic
retraining.

Latency benchmarks were also recorded. On a commod-
ity laptop (2.4 GHz, 8 GB RAM), average inference time per
sample for the surrogate was under 3 milliseconds, includ-
ing update and explanation rendering. This suggests that
passive learning and auditing are feasible in near-real-time
scenarios with moderate throughput. The latency–fidelity
trade-off was observed to be tunable: larger sliding windows
and ensemble surrogates marginally improved fidelity (up
to 95%) but increased inference latency to 7–9 milliseconds
per sample.

Input and output interfaces were defined as JSON over
HTTP, simulating a REST-based production API. The sur-
rogate processed flattened tabular features of fixed-length
float vectors (4 dimensions for Iris), and the agent oper-
ated asynchronously in a sidecar thread. All components
were implemented in Python using scikit-learn, Flask, and
asyncio.

Figure 3: Toy Model Setup: The magnetic AI agent observes request–
response pairs from a black-box random forest classifier trained on the
Iris dataset. It trains a surrogate logistic regression model in real time,
generates explanations, and audits fidelity in a sliding window.

6.2. Operational Considerations

Deploying a magnetic-AI layer replaces the usual pain
of rewriting core models with the more manageable task of
tapping live data streams. In companies that route traffic
through Kafka, Kinesis, or a service-mesh sidecar, engineers
can expose the request and response topics, spin up an agent
container, and reach baseline fidelity in a morning.

By contrast, firms that still rely on tightly coupled mid-
dleware or batch ETL pipelines have to interpose a shim:
a wrapper script that logs function calls or a lightweight
message broker that mirrors production payloads without
breaking the original code path. Once the tap is in place, the
dominant cost moves from development time to compute
cycles. Surrogate training scales almost linearly with input
volume, so high-traffic applications—think personalized

advertising or fraud detection at the millisecond level—can
drive up cloud bills. Most teams blunt the cost curve by
batching updates, down-sampling low-value events, or let-
ting the agent burst to spot GPUs only during load spikes.
Role clarity is essential to keep the system maintainable.

Data engineers own the interception code and service
orchestration; data scientists tune the surrogate’s learning
rate, curate explanation templates, and validate fidelity
thresholds; and compliance officers monitor the audit met-
rics, approve threshold changes, and archive drift reports
for regulators. Without that three-way handshake, incre-
mental tweaks in one area can silently break obligations in
another, turning a retrofit to reduce risk into a new source
of operational debt [21].

6.3. Ethical and Societal Dimensions

Agentic explainability shifts control from the system to
the individual: a user can probe why their loan applica-
tion was declined, inspect which pixels persuaded a vision
model to flag an X-ray as malignant, or test what-if scenarios
to see how a recommendation would change if inputs were
different. This new transparency fosters autonomy and
contestability and cracks open fresh attack surfaces.

Detailed feature-importance scores can reveal sensitive
correlations that a company regards as trade secrets; if
queried repeatedly, counterfactual examples let adversaries
approximate the decision boundary and reconstruct pri-
vate training data. To balance empowerment with protec-
tion, platform teams typically combine three defenses: rate-
limiting caps the number of explanation calls per user or ses-
sion, and throttling brute-force inversion attempts. Second,
tiered access gates fine-grained explanation modes—local
SHAP values, raw probability vectors, and full counter-
factual paths—behind roles, entitlements, or paywalls, so
casual consumers see only high-level summaries.

At the same time, regulators or auditors can request
deeper details under non-disclosure constraints. Third,
an adversarial-testing regime injects synthetic queries that
mimic hostile behavior and flags the agent if leakage thresh-
olds are exceeded.

Technical safeguards alone are insufficient because the
audience’s ability to parse explanatory artifacts is uneven. A
compliance officer versed in statistics might understand the
caveats of partial-dependence plots, whereas a consumer
reading a heat map could misinterpret bright red pixels
as causal rather than correlative. Organizations supple-
ment the raw output with plain-language tooltips, short
videos, or interactive walk-throughs that coach users on
what the colors or numbers mean and, equally important,
what they do not guarantee. Regulators are starting to codify
such practices, requiring that explanations be available and
comprehensible to a layperson in the decision context [22].

Lastly, equity audits need to extend beyond prediction
fairness to explanation parity. A system may produce iden-
tical acceptance rates for two demographic groups, yet still
describe its reasoning in more detailed or actionable ways
for one group than the other. Auditors should measure the
consistency of feature rankings, saliency intensities, and
counterfactual suggestions across protected attributes. They
should verify that any differences can be justified by legit-
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imate factors rather than reflecting hidden bias. Without
such checks, well-intentioned transparency can entrench
inequities by giving some users a more straightforward path
to recourse while leaving others in the dark.

7. Conclusions

This paper positions magnetic AI as a practical, scalable
strategy for injecting explainability into the countless black-
box models influencing credit decisions, hiring, medical
triage, and other facets of economic and social life. Rather
than requiring expensive retraining or code rewrites, the
magnetic approach attaches passively to existing data flows,
learns a lightweight surrogate in real time, and delivers
multiple explanation formats that can satisfy data scientists,
end users, auditors, and regulators alike. We first synthesize
decades of research on interpretability, model compression,
and drift detection to ground the proposal in established
theory. We then distill that literature into concrete design
principles: non-intrusiveness, continual fidelity auditing,
modular deployment, and explanation pluralism tailored
to stakeholder needs.

Building on these principles, we outline an evaluation
blueprint that cuts across three dimensions. The techni-
cal track measures surrogate accuracy, latency overhead,
and drift-detection sensitivity. The human track uses con-
trolled studies and field pilots to gauge whether different
user groups understand and act on the explanations. The
regulatory track maps the agent’s outputs to statutory re-
quirements such as the EU AI Act’s transparency duty, U.S.
consumer protection guidelines, and industry standards
like ISO 42001. By integrating these perspectives, the paper
provides a holistic roadmap for retrofitting trustworthy AI
capabilities into existing machine-learning stacks without
disrupting production workflows. Ultimately, magnetic
AI extends the idea of surrogate modeling from a one-off
snapshot to a living, continuously audited companion, po-
sitioning organizations to meet emerging policy mandates
and rising public expectations for transparency and account-
ability.

7.1. Limitations

The magnetic-AI framework is, at present, a theoretical
blueprint. It has not yet been stress-tested on production
traffic in banking, retail, health care, or public-sector settings,
where data rates, latency budgets, and privacy constraints
differ sharply. Field trials are needed to reveal whether
the surrogate can keep pace with high-volume streams,
whether passive interception introduces unacceptable delay,
and which sectors face unique regulatory or contractual
hurdles.

These deployments will also expose weak security points,
such as opportunities for adversaries to infer proprietary
decision logic or poison the surrogate’s sliding-window
buffer. In addition, the current design assumes a supervised
task with stable labels—credit approval, fraud detection, or
image classification—leaving open how a magnetic agent
would operate in unsupervised anomaly detection, con-
tinuous exploratory reinforcement learning, or free-form
generative applications where outputs are text, images, or
code snippets rather than class scores. Each paradigm raises

new questions about what counts as a faithful surrogate,
how to define drift or fidelity, and which explanation for-
mats are meaningful to users. Therefore, comprehensive
empirical studies across these settings are essential before
the approach can be considered production-ready.

7.2. Future Work

Future research must move the magnetic-AI con-
cept from controlled prototypes into live production
pipelines. Pilot deployments in banking, e-commerce,
and telemedicine sectors would reveal practical limits on
throughput, latency, and privacy while showing how easily
the agent can be co-containerized, versioned, and rolled
back under real traffic. Once embedded, the surrogate-
learning engine should evolve from periodic mini-batch
updates to accurate streaming operation, digesting continu-
ous flows of tabular events, log sequences, sensor signals,
and even raw audiovisual frames without halting for re-
training. Handling these multimodal inputs will require
hybrid learners that combine gradient-boosted trees for
structured features, lightweight convolutional backbones
for images, and adapter-based mini-transformers for text,
all coordinated by a reservoir buffer that prioritizes the most
recent or conceptually novel samples.

A second avenue involves deeper integration with large
foundation models that have chain-of-thought capabilities.
Instead of treating the surrogate purely as a predictive
mimic, an agent could query a frozen language model
for self-rationalizing traces, then cross-check those traces
against feature-importance scores to generate richer, more
coherent explanations. This hybrid could also let users
ask follow-up questions in natural language—Why did
age matter more than income?—and receive conversational
clarifications grounded in statistical evidence and domain
policy.

Finally, the community needs shared benchmarks that
evaluate explanation quality across domains rather than
in narrow, single-task silos. A standard suite might pair
representative workloads—credit risk, dermatology imag-
ing, autonomous-vehicle perception—with crowdsourced
judgment tests, cognitive-load surveys, and perturbation-
based robustness checks. Metrics would cover fidelity,
sparsity, stability under re-queries, resistance to inversion at-
tacks, and user comprehension measured through decision-
making tasks. Establishing such benchmarks would allow
researchers to compare methods rigorously, accelerate regu-
latory acceptance, and guide practitioners toward solutions
whose benefits generalize beyond any industry.
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