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ABSTRACT: Enterprises with large Java codebases are increasingly facing challenges in maintaining
different versions of Java, mainly during upgrade of legacy Java 8 to modern long-term support (LTS)
versions like Java 17. These concerns are majorly identified in environments where several Java
versions co-exist, such as during incremental migration or version restrictions based on dependencies.
This paper proposes a model for designing and implementing enterprise-grade CI/CD pipelines that
support mixed Java version development using Jenkins. The proposed solution manages build
execution, automated testing, static code analysis, and deployment validation in different Java versions
without depending on container tools like Docker or Kubernetes. A Spring Boot-based enterprise
application case study demonstrates the effectiveness of the approach, showcasing improvements in
automation, developer productivity, and avoiding regression. By following best practices and real-
world constraints, this work contributes a reproducible and extensible solutions to organizations that
are scaling their Java applications.
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1. Introduction

Continuous integration and continuous delivery
(CI/CD) pipelines that can handle complex,
heterogeneous environments are essential for modern
software  development. Maintaining applications
developed on different Java versions is a common
problem for enterprises, especially when switching from
Java 8 —which is no longer receiving public updates—to
more recent Long-Term Support (LTS) versions like Java
11 or Java 17 [1]. This situation frequently occurs in large
Enterprises

components coexist with legacy systems [2].

where microservices or modularized

Significant enhancements over Java 8 are brought
about by Java 17, an LTS release, which includes the Java
Platform Module System (JPMS), improved garbage
collectors (such as G1GC and ZGC), and expressive
language features like records, sealed classes, and pattern
matching [3]. Enterprise application migrations to Java 17
are rarely straightforward and not simple. Teams may
need to support multi-Java environments both during
and after migration because crucial dependencies, like
Spring Framework components, third-party libraries, or

even build tools, may still depend on Java 8 compatibility

[4].

CI/CD pipelines are crucial for facilitating safe and
scalable modernization in these kinds of situations.
Jenkins is a popular open-source automation server that
offers the ability to plan builds, tests, and deployments in
a variety of Java environments. When properly set up, it
can assist with backward compatibility validation, run
unit tests across various Java runtimes, and enforce
security and quality standards with SonarQube,
SpotBugs, and Checkstyle [5].

Although CI/CD is widely used in DevOps culture,
little scholarly research has been done on how pipelines
should be built to accommodate different Java versions in
business settings, especially in non-containerized settings
that do not use Docker and Kubernetes. By offering a
structured Jenkins-based pipeline architecture that
supports applications that have been compiled, tested,
and validated for both Java 8 and Java 17, this paper seeks
to close that gap without adding needless complexity or
infrastructure overhead.
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2. Background and Related Work

Modernizing legacy systems is essential for
maintainability, security, and performance as enterprise
Java applications get bigger and more complex. Because
it introduced lambda expressions and the Stream API,
Java 8, which was released in 2014, gained a lot of traction.
However, it lacks the performance optimizations and
contemporary language features of more recent Long-
Term Support (LTS) releases, such as Java 11 and Java 17
[6]. Organizations are facing mounting pressure to
upgrade their applications to more recent versions that
provide vendor and community support as Java 8's public
updates come to an end [7].

2.1. Java Version Evolution and Migration Challenges

The language and runtime of Java underwent
significant modifications in later iterations. The Java
Platform Module System (JPMS), which was introduced
in Java 9, changed the way applications are loaded and
structured and enforced strict encapsulation [8]. Java 14—
17 greatly increased the expressiveness of the language by
introducing sealed classes, records, pattern matching, and
improved switch expressions [9]. For large-scale
applications, more recent garbage collectors such as
G1GC and ZGC provide better memory management and
shorter pause times [10].

Despite these advantages, switching from Java 8
presents serious compatibility issues, particularly in
business settings. Applications need to be checked for
build system updates, incompatible third-party libraries,
and deprecated or removed APIs. For instance, to support
newer language features, tools such as Maven and Gradle
need plugin and configuration updates. Java version
dependencies in frameworks like Spring and Jersey need
to be properly handled [11]. Transitive dependency
updates may
particularly when third-party libraries stop supporting
older Java versions, according to the authors [12].

unintentionally cause regressions,

2.2. CI/CD in Enterprise Java

Pipelines for continuous delivery (CD) and
continuous integration (CI) are essential for reducing the
risks associated with migration. Jenkins' adaptability,
plugin extensibility, and robust community support help
it maintain its position as a leading CI/CD solution. Using
tools like SonarQube and Checkstyle, it can integrate
quality gates, run automated tests, and coordinate builds
across various Java versions [13]. Because of this, Jenkins
is especially well-suited to handling transitional states
during modernization when applications depend on a
variety of Java versions.

Not all enterprise contexts are prepared for
containers, even though many companies use
containerization tools like Docker and Kubernetes to

separate and scale Java environments. Widespread
adoption of containers may be impeded by resource
limitations, security policies, or legacy system constraints.
Although they require more setup work, Jenkins
pipelines set up on virtual machines or bare-metal servers
provide a good substitute in these situations [14].

2.3. CI/CD for Mixed Java Environments

There aren't many studies that specifically address
CI/CD design for projects with mixed Java versions. In
[15] the authors talk about the difficulties of replacing and
deprecating APIs in enterprise codebases, while In [16]
the authors investigate the modularization issues that
arise when integrating JPMS into legacy Java systems.
Nevertheless, rather than build automation, the focus of
both studies is code-level migration.

Whitepapers and community discussions frequently
suggest utilizing Jenkins agents set up with toolchains for
Java 8 and Java 17 to isolate build jobs based on Java
version. Teams can concurrently compile, test, and
analyze applications in both environments thanks to these
agents. Nevertheless, peer-reviewed literature hardly
ever formalizes or documents this practice.

2.4. Gaps in Existing Research

Most of the literature currently in publication
concentrates on either CI/CD automation or Java
migration separately. Research that methodically
examines CI/CD design patterns that support multiple
Java versions is conspicuously lacking, especially in non-
containerized enterprise settings. Furthermore, practical
limitations like Jenkins integration with SAP-oriented
libraries, legacy dependencies, or backward-compatible
test automation are not considered in the current work.

To fill these gaps, this paper suggests a CI/CD
pipeline architecture based on Jenkins that allows for
mixed Java versions throughout the migration process.
Without the need for container orchestration tools, the
pipeline is made to manage a variety of build scenarios,
execute parallel tests in various environments, and
enforce quality and security standards.

3. Methodology

A thorough methodology for
enterprise-grade CI/CD pipelines for Java applications
moving from Java 8 to Java 17 is presented in this section.
The method is tailored for use in enterprise settings,
especially those that are limited by legacy environments
that do not support containerization. System audit and

implementing

dependency mapping, environment setup, pipeline
architecture design, testing validation, and iterative
refinement are the five main stages of the methodology.
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3.1. System Audit and Dependency Mapping

A comprehensive audit of the current Java

application is the first stage in the modernization process.
The following sub-activities are included in this:

Source Code Audit:
instances of internal or proprietary Java API usage,
look for deprecated or removed APIs, and evaluate
modularity and test coverage.
constructs can be found with the help of tools like
Java Migration Toolkit, jdeps, and jdeprscan.

Review the codebase for

Java 8-specific

Third-Party Library Assessment: Many enterprise
Java applications depend on third-party libraries,
such as Hibernate, Jersey, ActiveMQ, OpenSAML,
and Apache CXF. Maven Dependency Tree and
OWASP Dependency-Check [17] are two tools that
assist in determining compatibility with Java 17 and
identifying outdated dependencies.

Components are classified as high, medium, or low

risk according to their effect on enterprise reliability and
Java 17 compatibility, as shown in Figure 1 and Table 1.
Targeted planning and early mitigation of significant

obstacles are made possible by this risk-based perspective.
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Figure 1: Dependency and Risk Classification Flow

Table 1: Risk Classification of Modernization Components

Compon | Example Risk | Justification
ent Tools Level
Source jdeprscan,jde | High | Deprecated APIs
Code ps Java can break at
Audit Migration runtime or
Toolkit compilation;
internal APIs
may be removed
Internal Api’s | High | These are
unsupported and

may no longer
exist in Java 17
Manual, Static | Medi | Impacts ability to
analysis tools | m adopt JPMS and
confidence in
migration
regression
Third- OWASP High | Namespace
Party Dependency- migration  and
Libraries | Check, Maven unsupported
Dependency Java EE APIs
Tree
Manual, CVE | High Security-critical;
database old versions may
not support Java
17
OWASP Medi | May require log
Dependency- | m framework
Check upgrades but
core features
work
jdeps, Revapi | Medi | Works with Java
m 17 but requires
tuning or module
opens
Maven High | Transitive
Plugin, incompatibility
Dependency can break builds
Tree silently

3.2. Environment Setup with Mixed Java Versions

Support for both Java 8 and Java 17 within the CI/CD

pipeline becomes essential because full migration is

usually not possible in a single step. Jenkins is a popular
automation server that offers mechanisms for managing
multiple JDKs and configuring toolchains.

Toolchain Configuration: Multiple JDKs can be set
up via Jenkins' global tools configuration. Java
versions are mapped to various modules using
Maven's toolchains.xml file.

Agent Isolation: Jenkins agents are set up to classify
builds by Java version, whether they are running on
bare metal or virtual machines. This guarantees
reproducibility  and environmental
contamination.

prevents

Fallback Environment: Virtual machines are used as
a backup configuration in environments where
containerization is not feasible because of security
regulations or infrastructure constraints. Version-
specific configurations and OS-level isolation are
used to maintain these virtual machines.

Fallback Strategy: In the event of breakdowns or
incompatibilities, the pipeline has a fallback plan in
place to guarantee continuation. Jenkins falls back to
VM-based builds
unavailable. With pinned dependency versions, these

if Docker or Kubernetes are
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virtual machines run separate Java 8 and Java 17
environments. This configuration lessens the effect of
ecosystem shifts and maintains reproducible builds.
Modules can continue to build and test on Java 8
when libraries or JDK features block migration, while
others go on to Java 17. This enables incremental
modernization and prevents release delays. In order
avoid deployment conflicts and maintain traceability,
all fallback builds are tagged by version.

This architecture supports gradual refactoring while
maintaining legacy components by enabling dual version
builds using isolated Jenkins agents and JDK toolchains,
as shown in Figure 2.

Jenkins Master

VM VM-based Environment

Jenkins Agent Jenkins Agent
(Java 8) (Java 17)

Y Y
[ JDK 8 ] [ JDK 17 J

Figure 2: Jenkins Agent and JDK Isolation Architecture

Profile separation

Maven
Toolchains.xml

3.3. Pipeline Architecture Design

Conditional branching and per-version
customization are supported by the pipeline's modular

design. The crucial pipeline phases are:

e Build Stage: Compatibility metadata determines
which JDK is used to compile modules. Version-
specific compilation flags are handled by Maven or
Gradle profiles.

o Test Stage: Unit tests are executed using the
appropriate JUnit versions: JUnit 5 for Java 17 code
and JUnit 4 for legacy modules. Parallel job execution
and tagging are used to achieve test segregation.

e Static Code Analysis Stage: There is integration of
tools such as SonarQube, Checkstyle, and PMD [18].
Jenkins pipelines specify quality gates that enforce
style compliance and coverage thresholds.

e Security Scan Stage: Each pipeline iteration is set up
to run vulnerability scanners, OWASP Dependency-
Check and enhanced SpotBugs [17]. Dashboards are
updated with the scan reports so that developers can
take appropriate action.

For traceability, each of these phases supports
customized logging and result archiving. To ensure the
consistency across jobs, Jenkins Shared Libraries are
utilized. The overall Jenkins-based CI/CD pipeline,

illustrating dual-version builds, parallel testing and
integrated quality/security checks, is presented in Figure
3.
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Figure 3: Jenkins CI/CD Pipeline Flow

3.4. Regression Testing and Validation

To make sure that modernization efforts don't
introduce functional discrepancies, validation includes
thorough regression testing:

e Functional Tests: To Verify feature parity run builds
on both Java 8 and Java 17. Backward compatibility
for end-user functions is guaranteed by regression
testing.

e Locale-Sensitive Validation: Java 9+ replaces the
Compact format with CLDR (Common Locale Data
Repository). Locale-mocked test scenarios are used to
validate locale-sensitive modules, such as financial
reporting, sorting, and date formatting [19].

e Performance Benchmarking: Performance metrics
like throughput, memory usage, and GC behavior are
monitored and compared across Java versions using
Java Microbenchmark Harness (JMH).
Configurations of ZGC and G1GC are assessed under
load.

e Quality Gates: If test coverage decreases or if new
critical vulnerabilities are discovered, pipelines are
set up to fail.
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The JUnit plugin and SonarQube dashboards are
used to publish test results to Jenkins so that all teams can
see them.

3.5. Iterative Refinement and Risk Tracking

A feedback loop is essential to the pipeline design
because dependencies, language features, and runtime
behavior are always changing:

e Build Feedback Analysis: To find patterns and
reoccurring problems, build failures are examined.
Reports that are automatically generated assist in

prioritizing issues pertaining to specific Java versions.

e Change Logs and Tickets: Every library upgrade or
refactor has a Jira change ticket attached to it.
Accordingly, risk scores are updated.

e Monitoring Tooling Evolution: Testing tools, JDKs,
and Maven plugins are evolving continuously.
Jenkins refers to plugin compatibility matrices and
performs periodic updates [20].

e Developer Feedback: Developers and testers provide
feedback during weekly retrospectives, which is then
used for improvement of documentation, add
validation scripts, and increase test coverage.

Enterprises can modernize Java applications with the
least amount of risk and the most automation possible by
using this flexible and traceable approach. Using Jenkins-
based pipelines, the methodology guarantees that even
non-containerized systems can safely migrate to Java 17.

3.6. Limitations of the Methodology

The suggested methodology has certain drawbacks
even though it offers a structured and efficient way to
manage Java version transitions in enterprise settings
using Jenkins-based CI/CD pipelines:

e Limited Scalability for Complex Polyglot
Architectures: Only Java-based systems are the focus
of this methodology. This methodology does not
address the additional tooling and coordination
mechanisms needed by enterprises with polyglot
environments (such as those involving Node,js,
Python, or.NET components).

e Manual Overhead in Risk Classification: Manual
evaluation, domain knowledge, and tool output
interpretation are classifying
components into high, medium, or low risk (as shown

necessary  for

in Table 1). This procedure can be challenging and
subjective, especially when dealing with large legacy
codebases that lack adequate documentation.

e No Support for Containerization: Because of
organizational limitations, the solution is designed
for non-containerized environments. The advantages
of container-based orchestration, isolation, and
reproducibility through Docker/Kubernetes are thus

not utilized. Future portability and cloud-native
readiness may be limited by this.

e Dependency Volatility and Ecosystem Lag: The
approach assumes that third-party libraries will
eventually become compatible with Java 17. But some
essential libraries (like outdated JAXB, OpenSAML,
or proprietary SDKs) might not keep up, which could
cause pipeline bottlenecks or require temporary forks
and patches.

e Initial Setup Complexity and Learning Curve:
and CI
orchestration must be understood to configure multi-

Jenkins internals, Maven profiles,
version toolchains, Jenkins agents, shared libraries,
and conditional pipelines. The initial time and
resource commitment may be too much for smaller

teams to handle.

¢ Restricted Capability to Generalize Beyond Jenkins:
Despite its widespread use, the methodology takes
Jenkins to be the CI/CD engine. It would be necessary
pipelines and modify plugin
configurations to port the solution to GitLab CI,
Azure DevOps, or GitHub Actions.

to re-architect

4. Results and Evaluation

An internal enterprise-grade Java application was
chosen as a representative case study in order to validate
the suggested methodology. Using the dual-version
Jenkins pipeline outlined in Section 3, the system was
gradually moved to Java 17 after being initially developed
on Java 8 with Spring Boot 2.x and deployed on Apache
Tomcat.

4.1. Performance Gains

The Java Microbenchmark Harness (JMH) was used
to simulate production-like load conditions and gather
performance benchmarks both before and after the
migration. Table 2 provides a summary of the findings.

Table 2: Performance Metrics — Java 8 vs Java 17

Metric Java 8 Java Improvem
17 ent

Application 5.1 sec 3.5 sec | 31% faster
Startup Time
Heap Memory | 480 MB 390 19% less
Usage (avg) MB
GC Pause Time | 160 ms 44ms | 72.5%
(99th perc.) lower
API  Throughput | 920 1090 18.5% more
(reqg/sec)

4.1.1.  Key Observations

e  Application Startup Time: Java 17's improvements
in class data sharing, more effective classloading,
and tiered compilation optimizations are largely
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responsible for the 31% decrease in startup latency.
This is essential for microservices and CI/CD
environments, where services are regularly restarted
during builds or deployment.

e Heap Memory Usage: The average heap memory
usage decreased by about 19% in Java 17. JIT
compilation optimizations, enhanced object layout,
and improved string deduplication are responsible
for the smaller memory footprint. Additionally,
modules that switched to Java 17 made use of
features like records, which naturally lower memory
usage by avoiding boilerplate code.

e GC Pause Time: A notable 72.5% decrease in GC
pause time at the 99th percentile was observed when
Java 17 switched from Parallel GC (default in Java 8)
to G1GC and optional ZGC. This improvement
enhances system responsiveness and user
experience, particularly during periods of high load.

e API Throughput: Through faster method inlining,
better garbage collection scheduling, and a decrease
in blocking I/O latencies, REST API throughput
increased by 18.5%. Profiling reports showed that
Java 17 had less thread contention and fewer full-GC
invocations.

Performance Metrics — Java 8 vs Java 17
1200

= Java 8
1000 Java 17
800
600
400
200
100
Application Heap Memory GC Pause API
Startup Time Usage (avg) Time (99th per.) Throughput
(reg/sec)
5.1sec 480 MB 43 ms 920

Figure 3: Comparative Performance Benchmark —Java 8 vs Java 17

Figure 3, which contrasts the performance of Java 8
and Java 17 across important metrics, provides a visual
summary of these numerical gains.

4.2. Functional Stability

When  modernizing  enterprise  applications,
functional stability is a crucial component of success,
especially for
internationalization features and are integrated with SAP
backends. A thorough regression testing cycle was
carried out following the migration from Java 8 to Java 17
to verify compliance, prevent feature regressions, and
guarantee backward compatibility.

systems that incorporate

Jenkins-driven test suites were used to run more than
2,000 automated tests in both environments. The core
modules that were tested included:

e REST API response validation: Ensuring that
identical requests executed with the Java 8 and Java
17 runtimes yield consistent endpoint outputs.

e Locale-sensitive UI components:
dates, currencies, and sorting are rendered correctly
across various locale configurations.

Verifying that

The move to CLDR (Common Locale Data Repository)
in Java 9+, which was made the default source for locale
data in Java 17, presented a significant validation
challenge. Dates, currencies, and casing were handled
differently because of this modification, especially in Ul
validation tests. To address these problems and guarantee
alignment with wuser expectations and business
requirements, test normalization scripts were added to
account for locale-sensitive output variations.

Table 3: Regression Test Summary

Category | Java 8 | Java 17 | Observations
Pass Pass
Rate Rate
Unit 100% | 100% Fully compatible;
Tests no syntax or logic
regressions
Integrati | 98.3% | 98.5% Stable JCo and
on Tests OData behavior
maintained
Ul 97.1% | 96.8% Minor locale-
Validatio related
n discrepancies
resolved
4.2.1.  Key Observations

e Unit Tests: In both environments, complete
compatibility was achieved without any issues.
Better test hygiene resulted from the enhanced
compiler diagnostics in Java 17.

Java 17 observed minor
improved thread
management and quicker request processing.

e Integration Tests:

enhancements because of

e UI Validation: A closer look showed that the
slightly lower initial pass rate in Java 17 was caused
by locale format mismatches (e.g., differences in
currency symbols, date separators). The behavior
was in line with Java 8 outputs after normalization
layers were applied. Rendering and frontend logic
were found to be flawless.

These findings show that a smooth upgrade to Java
17 without sacrificing functional reliability is possible
with a carefully thought-out CI/CD pipeline that includes
isolated automated

environments and regression

validation.
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4.3. Code Quality and Security

The switch to Java 17 offered an opportunity to
enhance the security posture and overall code quality in
addition to updating the runtime environment. As part of
the CI/CD pipeline, automated static analysis and focused
dependency remediation were used to achieve this.

SonarQube, SpotBugs, Checkstyle, and OWASP
Dependency-Check were among the tools used for
performing static analysis. To guarantee that each build
was assessed against to an extensive collection of quality

and security metrics, these tools were directly
incorporated into the Jenkins pipeline.

4.3.1.  Key Focus Areas

e Identification and removal of excessively

complicated structures and code smells.

e Evaluation of test coverage patterns as new features
and modules were added during modernization.

with CVEs (Common
Vulnerabilities and Exposures) can be identified

e Libraries known

through dependency risk scanning.

e Refactoring of outdated or deprecated APIs and
removal of error-prone legacy patterns.

Table 4: Code Quality Comparison

Metric Java 8 Java 17 Change
Code Smells 137 44 -67.8%
Critical CVEs 4 0 -100%
Test Coverage 89.6% 93.2% +3.6%

4.3.2.  Key Observations

e Code Smells: After switching to Java 17, a 67.8%
decrease in code smells was noted. The introduction
of modern language features like records, sealed
classes, and switch expressions, which decreased
boilerplate and enhanced code clarity, is primarily
responsible for this. For example, concise record
declarations were used in place of data-carrying
POJOs, improving readability and maintainability.

e Critical CVEs: Four unfixed CVEs were present in the
codebase prior to the migration, two of which were
associated with Log4j 1.x and two of which were
caused by earlier iterations of OpenSAML. These
vulnerable libraries were either patched or swapped
out for maintained alternatives as part of the upgrade
process. All critical CVEs were fixed by utilizing
libraries compatible with Java 17 and conducting

dependency with OWASP

Dependency-Check.

transitive audits

e Test Coverage: Test coverage increased by 3.6% as a
result of the modernization process. To ensure
compatibility, new unit tests were developed for

refactored modules, particularly those updated to use
modern APIs. Furthermore, parameterized and
dynamic tests were made possible by the adoption of
JUnit 5, which increased testing depth and decreased
redundancy.

4.4. Developer Experience

In addition to technical metrics, developer
experience—which is  crucial for  long-term
maintainability and  productivity in  enterprise

environments—was used to evaluate the migration
process and the updated CI/CD pipeline.

Twelve developers who actively took part in the
modernization effort were gather
information on this dimension. The survey covered topics

surveyed to

like collaboration efficiency, language and tooling
preferences, and pipeline usability.

Table 5: Survey Highlights

Question Agreement
(%)

The CI/CD pipeline was easy to use and | 83%

clearly separated Java versions.

Java 17 features improved code | 91%

readability and developer productivity.

Shared Jenkins libraries reduced | 100%

duplication and improved

maintainability.

4.4.1.  Key Observations

e Intuitive and Version-Isolated Pipeline: The
modular Jenkins pipeline, which distinguished
between Java 8 and Java 17 build/test lanes, was well-
received by developers. Teams were able to work on
modernization gradually without interfering with
legacy behavior due to this version isolation, which

also guaranteed confidence during refactoring.

e Java 17 Developer Ergonomics: Because of its
improved language features—like records, sealed
classes, pattern matching, and better switch
expressions—Java 17 was strongly preferred.
Developers identified improved IDE code assistance
(particularly in Intelli] IDEA >2021.2), less boilerplate,
and cleaner business logic as critical elements.
Records made it easier to create domain models and
DTOs, which reduced cognitive load and saved time.

e Impact of Shared Libraries in Jenkins: Pipeline
maintenance effort was significantly reduced as a
result of the implementation of Jenkins Shared
Libraries. Several modules shared common stages
(build, test, scan, and report) that were codified once.
Developers observed fewer configuration bugs,
consistent error handling, and quicker onboarding of
new team members. Additionally, this method made
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pipeline-as-code governance possible, guaranteeing
adherence to enterprise build guidelines.

5. Discussion

Even in environments without Docker/Kubernetes,
the migration strategy confirmed that enterprise Java
version transitions could be managed with CI/CD.
Important observations are covered below.

5.1. Risk-Driven Planning

As previously mentioned in Table 1, the
implementation of risk-based classification was a key
component of the migration's success. Each component of
the modernization process was evaluated for potential
impact, complexity, and criticality to production
workflows rather than being treated as a single,
homogenous task. Phased, parallelized workstreams and
better resource allocation were made possible by this
detailed assessment. The following were the main results
of the risk-driven planning approach:

e Early Mitigation of Critical Issues: OpenSAML and
other high-risk elements were handled up front.
Because the XML parsing logic was closely linked
with Java 8 internals and older versions of
OpenSAML had CVEs that made them incompatible
with more recent JDKs, there were both technical and
security issues. The team reduced downstream
disruptions and increased trust in the upgraded
security stack by separating and upgrading these
early.

e Parallel Execution of Lower-Risk Tasks: Parallel
updates were made to components that were
considered medium or low risk, including Hibernate,
logging frameworks, and certain utility libraries. As a
result, the team was able to advance steadily without
delaying important migration milestones. Hibernate
modules frequently only needed small configuration
adjustments to function with Java 17, freeing up
developers to focus on high-impact projects.

e Reduced Integration Failures:
unanticipated interdependencies
scenarios, traditional "big bang" upgrades frequently
result in integration bottlenecks. On the other hand,
developers were able to test integrations iteratively,

Because  of
and untested

especially around API gateways, by tackling the
riskiest components first. This prevented last-minute
regressions.

e Effective Communication and Planning: Project
managers and QA teams, among other stakeholders,
could easily understand the scope and difficulties of
the migration because of risk classification.
Prioritizing testing and planning concentrated sprints
around high-severity modules were done using the
classification.

e Improved Developer Morale and Confidence: When
changes were divided into smaller, risk-bounded
increments, developers expressed greater confidence.
Because there was significantly less perceived
uncertainty surrounding migration, there were fewer
rollbacks and an increase in sprint velocity.

5.2. Dual-Version Pipelines Are Sustainable

Implementing a dual-version Jenkins pipeline that
supported both Java 8 and Java 17 environments
simultaneously was one of the most significant
architectural decisions made during the modernization.
This method allowed for progressive migration, lowering
risk and guaranteeing business continuity, as opposed to
imposing a full and instantaneous upgrade, which is
rarely possible in highly integrated enterprise systems.

5.3. Key Benefits and Observations:

¢ Concurrent Support for Legacy and Modern Code:
Maven toolchains.xml enabled the build system to
choose the proper Java version for each module, and
Jenkins agents were set up with separate JDK
installations. This allowed teams to gradually
introduce Java 17 features in new or refactored code
while maintaining and improving existing Java 8
modules. Crucially, this dual support made
maintenance easier by eliminating the need for

distinct repositories and branching techniques.

¢ Non-Disruptive Deprecation of Java 8 Components:
Older components could be safely and gradually
deprecated with backward-compatible tests and
build logic. Until their Java 17 counterparts were
thoroughly examined and verified, legacy modules
continued to be used in production. The "all-or-
nothing" upgrade constraint that can paralyze
development teams—particularly in high-risk
enterprise environments like those integrating with
SAML-based identity systems—was avoided as a
result.

e Shared Library Reusability and Maintainability:
Jenkins Shared Libraries were essential for enforcing
pipeline
redundancy. Reusability across Java 8 and Java 17

consistency and cutting down on
jobs was made possible by the abstraction of stages
like static code analysis, security scanning, and
artifact archiving into shared functions. Repetitive
edits across dozens of pipelines were eliminated
when logic updates (such as moving from Checkstyle
8 to 10 or improving OWASP rules) were distributed
centrally.

e Sustainability Over Multiple Release Cycles: Over
six production release cycles (about nine months)
with the dual-version setup in place, the team saw no
regressions caused by the pipeline or build failures
because of version conflicts. Indicating that the
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architecture was not only stable but also able to
accommodate gradual enhancements over time, test
coverage and code quality metrics also showed
consistent improvement during this time.

¢ Enhanced Developer Experience: Without changing
the environment, developers could build and test in
the Java version of their choice. While backward
compatibility made sure legacy teams continued to be
productive, tooling support (such as Intelli] IDEA's
Java 17 features and static analyzers) promoted early
adoption. Teams working on modernization and
legacy maintenance were able to collaborate more
easily thanks to this flexibility.

6. Conclusion and Future Work
6.1. Conclusion

Enterprise Java applications moving from Java 8 to
Java 17 wusing Jenkins-based CI/CD pipelines in
environments without container orchestration platforms
like Docker or Kubernetes can be supported by the risk-
driven, automation-centric framework this study
presented. Maintainability, incremental risk mitigation,
and developer empowerment were given top priority in
this methodology because it acknowledged that many
systems—operate
infrastructure constraints.

enterprise under stringent

System audit, pipeline architecture design, dual-
environment setup,
validation, and iterative refinement were the five main
stages of the suggested methodology. Production stability
was maintained while a gradual migration was made
possible by this methodical approach.

regression and performance

6.2. Key conclusions drawn from the implementation include

e Technically and operationally, dual-version pipelines
are feasible. Java 8 and Java 17 components could be
supported simultaneously because of the Jenkins
configuration with toolchain isolation. This made it
possible to test and develop in parallel, easing the
burden on development teams and preventing
disruptive, all-at-once upgrades.

e Targeted static analysis tools and compatibility
testing were used to successfully upgrade high-risk
components, especially OpenSAML and transitive
dependencies with known vulnerabilities. Reducing
last-minute failures was greatly aided by early risk
classification (Table 1, Figure 1).

e Java 17 offered tangible technical benefits, including:

o 31% faster application startup

o The average memory footprint is reduced by 19%.

o Reduced GC pause times by 72.5%

o An increase in API throughput of about 18.5%,
JVM enhancements, modern language features,
and better memory management techniques
included in newer Java releases (e.g., G1GC, ZGC)
enabled these improvements.

e Developer satisfaction and productivity increased
significantly. When asked why they preferred Java 17,
developers pointed to improved IDE support, the
expressive potential of new features like records and
pattern matching, and less boilerplate. Additionally,
Jenkins Shared Libraries enhanced maintainability
across several repositories and reduced duplication.

e Improved security posture: After migration, all
known CVEs (such as legacy Logi4j
vulnerabilities) were fixed, and code smells were
decreased by almost 70%. Test coverage increased

critical

from 89.6% to 93.2%, indicating that modernization is
crucial for maintainability and risk mitigation in
addition to performance.

The study concludes by offering enterprises a scalable,
risk-aware roadmap for updating modern Java versions
difficulties  of
dependencies and legacy infrastructure. It demonstrates

while  navigating mixed-version
how modern CI/CD techniques can speed up digital
modernization without compromising system integrity,

even in traditional environments.

6.3. Future Work

Although this study offers a solid basis, there are still
a number of directions for further investigation:

e Enhancements to Tooling Automation: Including
Al-powered (like
OpenRewrite and Revapi analyzers) to automatically
identify or refactor code that is incompatible while
conducting audits.

recommendation  engines

e  Multi-Language Integration: Expanding the pipeline
to handle hybrid applications that combine Java with
Kotlin,
compatibility under Java 17

Scala, or Groovy and determining

o Legacy API Adaptation Layer: Designing reusable
shims or compatibility wrappers for deprecated or
removed APIs, particularly for organizations that
cannot yet eliminate legacy modules.

e Performance Monitoring in Production: Ultilizing
tools like Java Flight Recorder (JFR), Prometheus, or
Dynatrace to extend benchmarking beyond JMH-
based lab tests to continuous profiling in production
environments.

e Longitudinal Migration Studies: Measuring long-
term cost savings, technical debt reduction, and
velocity improvements by collecting migration
metrics across several release cycles or departments.
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e Container Readiness Roadmap: A future extension
might specify a phased plan to advance such CI/CD
pipelines toward container-based deployments using
Docker, Kubernetes, or SAP BTP, even though this
study focused on non-containerized systems.

Organizations can  further their
modernization journeys, lower operational risk, and
prepare for future Java LTS releases by focusing on these
future directions.

optimize
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