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ABSTRACT: The accelerating and unrestrained use of energy globally raises serious concerns for the 
future of the planet, primarily due to the environmental devastation caused by fossil fuels. Achieving 
high energy efficiency in both fuel-driven and renewable energy systems is crucial for future energy 
optimization. Clean energy production is one of the most effective strategies to mitigate climate change 
effects. These challenges necessitate a significant shift towards sustainable energy models, specifically 
smart and renewable energy systems that do not emit greenhouse gases during generation. This paper 
proposes a novel framework for smart and renewable energy optimization through the design of smart 
transformers that maximize energy savings without generating harmful radiation. The optimization 
utilizes a hybrid approach combining Nonlinear Programming (NLP) and an Artificial Intelligence (AI) 
technique, the Genetic Algorithm (GA), applied to specific transformer design parameters. The 
validated results demonstrate significant efficiency gains and cost reduction, strengthening the paper's 
contribution to robust, sustainable energy infrastructure. 
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1. Introduction   

This paper examines energy efficiency and renewable 
energy optimization as cornerstones for a sustainable 
future. In [1] and [2], the authors emphasize that as 
environmental degradation intensifies, marked by 
climate change, extreme weather, and biodiversity loss, 
the global community is aggressively driven to adopt 
clean energy solutions. These challenges demand a 
fundamental rethinking of energy models, requiring 
coordinated action across public administration, industry, 
and consumers by [3]. 

Recent projections indicate that global energy 
consumption will surge in the coming decades, primarily 
driven by rapid industrial expansion in emerging 
economies described by [3]. In response, renewable 
energy sources, including wind, solar, and hydro, are 
poised to play a central role. In [4] and [5], the authors 
highlighted that integrating these renewables not only 
enhances energy security but also directly addresses the 
forecasted doubling of energy demand by 2050. 
Consequently, optimizing energy conversion and 

minimizing waste—particularly within critical grid 
components—have emerged as critical priorities by [6]. 

A reduction in greenhouse gas emissions is directly 
achieved by accelerating the development and 
integration of renewable energy technologies, whose 
long-term objective is to supplant carbon-intensive 
energy dominating global markets by [7]. The central 
challenge lies in orchestrating an energy transition that 
efficiently manages consumption while promoting the 
extensive deployment of renewable sources. This is 
particularly relevant as innovative strategies 
incorporating Artificial Intelligence (AI), Machine 
Learning (ML), and advanced optimization methods are 
increasingly leveraged for complex grid management, 
power forecasting, and enhancing the resilience of 
components to fluctuating renewable loads by [6], [8] and 
[9].  

Fossil fuels, the traditional backbone of large-scale 
energy production, are marked by finite reserves and 
geopolitical volatility. In contrast, renewable energy 
systems offer a sustainable alternative. The optimization 
of system components like power transformers can 
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significantly bolster energy security and environmental 
resilience, as described in [10] and [11]. The economic 
viability and success of deploying these sustainable 
energy systems often relies on comprehensive planning, 
analysis, and optimization studies, as highlighted in the 
work by [12] and [13]. 

This paper introduces a novel methodology aimed at 
enhancing the integration of renewable energy through 
the energy optimization of smart distribution 
transformers. Specifically, the proposed framework 
employs a Nonlinear Programming (NLP) and Genetic 
Algorithm (GA) hybrid optimization technique to 
dynamically increase transformer efficiency and reduce 
losses without compromising operational integrity. By 
introducing a time-varying parameter model to 
accurately capture transformer non-linearity and 
estimating model parameters using this hybrid approach, 
the work builds on recent advances in optimization 
methods, as detailed in [5] and [14]. The need to account 
for core-specific factors, such as inter-laminar contacts 
and losses in magnetic cores, underscores the importance 
of the detailed modelling presented here, as discussed in 
[15]. Validation through simulated and experimental 
performance curves demonstrates the potential of these 
techniques to revolutionize transformer design and, by 
extension, promote a more robust, sustainable energy 
infrastructure for renewable-rich grids. 

2. Proposed Design Methodology  

2.1. Nonlinear Program (NLP) Optimization Technique  

In transformer design optimization, NLP techniques 
are effective because design variables (e.g., number of 
turns, winding wire diameter, stacking factor, flux 
density, yoke height, window height, core leg width) can 
assume continuous and integer values, and the objective 
function and constraints are typically non-linear. The 
design vector 𝑥𝑥 includes these physical parameters.  

The general NLP problem seeks to find the design 
vector 𝒙𝒙 = (𝑥𝑥1 , 𝑥𝑥2 ,……, 𝑥𝑥𝑛𝑛 ) that minimizes the objective 
function 𝑓𝑓(𝑥𝑥) , which represents the Total Cost of 
Ownership (TCO):  

 𝑓𝑓(𝑥𝑥) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑘𝑘 ⋅ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +
                       𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)                                                         (1)  

 
Subject to constraints ցi(𝑥𝑥): 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … ,𝑚𝑚:       

 

     ցi(𝑥𝑥) = �
≤ 0
= 0
  ≥ 0

, with  𝑥𝑥1 ≤ 𝑥𝑥𝑖𝑖 ≤  𝑥𝑥𝑢𝑢 for all 𝑖𝑖.               (2)      

where 𝑥𝑥1 and 𝑥𝑥𝑢𝑢 are the lower and upper limits of the 
design variables, respectively by [15]. 

This work uses the exterior penalty function method, 
where the augmented function P(𝑥𝑥, 𝑟𝑟)is formulated as: 

𝑃𝑃 (𝑥𝑥, 𝑟𝑟) =  𝑓𝑓 (𝑥𝑥) + 𝑟𝑟 ∑ [gi(𝑥𝑥)]𝑞𝑞𝑚𝑚
𝑖𝑖=0 , 𝑟𝑟 ≥  0, 𝑞𝑞 ≥  1    

where 𝑔𝑔𝑖𝑖(x) is defined as max [𝑔𝑔𝑖𝑖(x), 0] and q is typically 
2. The minimization process continues, and as the penalty 
multiplier 𝑟𝑟 → ∞ , the minimization of the penalty 
function converges to the constrained minimization of the 
objective function: 

         𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃 (𝑥𝑥, 𝑟𝑟) → 𝑚𝑚𝑚𝑚𝑚𝑚  𝑓𝑓(𝑥𝑥)                                      (3) 
 

2.2. Genetic Algorithm (GA) Optimization Technique 

Genetic Algorithms (GAs) are stochastic methods 
based on evolutionary principles: competition for 
survival and reproduction of the fittest individuals by [15]. 
In this hybrid approach, the NLP solution is validated and 
refined using the GA. NLP determines core design 
parameters, while GA is specifically used here for 
estimating time-varying parameters (e.g., core model 
parameters) and validating overall performance through 
objective function minimization. This synergistic 
approach enhances exploration at the start (GA) and 
exploitation for final fine-tuning (NLP) by [6]. 

2.3. Electrical Equivalent Optimization Technique  

Accurate modelling of the power transformer core's 
non-linearity and magnetic losses is essential for high 
efficiency. This study models the transformer using 
equivalent electrical circuits where windings 1 and 2 have 
N1 and N2 turns, respectively. The non-linear behaviour is 
accounted for by considering the magnetic flux 
distribution, which necessitates introducing the concept 
of equivalent flows and time-varying circuit parameters. 

The electrical resistance of the windings was 
determined using the highly accurate Kelvin Bridge 
method. No-load losses (core losses) were obtained using 
a distorted waveform supply and then referred to the 
pure sinusoidal voltage by an equation considering the 
supply voltage's form factor. The short-circuit impedance, 
calculated from the load loss test data, was used to 
determine voltage regulation. 

3. Formulation of the Design Problem 

The Genetic Algorithm was applied as an estimation 
method to find a solution to the complex non-linear 
system by estimating a parameter vector 𝑋𝑋𝐴𝐴𝐴𝐴 , which 
includes variables crucial for modelling the equivalent 
circuit: 

𝑋𝑋𝐴𝐴𝐴𝐴  = [𝑅𝑅1,𝑋𝑋1,𝑅𝑅2,𝑋𝑋2,𝑅𝑅𝑚𝑚,𝑋𝑋𝑚𝑚, ]                              (4)      
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The GA objective function 𝐹𝐹(𝑥𝑥)  (for minimization) 
aims to minimize the normalized squared error between 
the experimentally measured impedances (𝑍𝑍𝐶𝐶𝐶𝐶 , 𝑍𝑍𝐶𝐶𝐶𝐶) and 
the GA-estimated impedances (𝑍𝑍𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴 ,𝑍𝑍𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴): 
 

 

GA Objective Function: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹(𝑥𝑥) =
1
2
��
𝑍𝑍𝐶𝐶𝐶𝐶 − 𝑍𝑍𝐶𝐶𝐶𝐶_𝐴𝐴𝐴𝐴

𝑍𝑍𝐶𝐶𝐶𝐶
�
2

+ �
𝑍𝑍𝐶𝐶𝐶𝐶 − 𝑍𝑍𝐶𝐶𝐶𝐶_𝐴𝐴𝐴𝐴

𝑍𝑍𝐶𝐶𝐶𝐶
�
2

�   (5) 

The estimated short-circuit impedances magnitude is 
calculated as: 

𝑍𝑍CC_AG = ��𝑅𝑅𝑆𝑆𝑆𝑆_𝐴𝐴𝐴𝐴�
2 + �𝑋𝑋𝑆𝑆𝑆𝑆_𝐴𝐴𝐴𝐴�

2                             (6) 
 

The estimated open-circuit impedance magnitude (core 
branch) is calculated as: 

 
       𝑍𝑍CA_AG = 𝑅𝑅𝑚𝑚.𝑋𝑋𝑚𝑚

�(𝑅𝑅𝑚𝑚 )2+(𝑋𝑋𝑚𝑚 )2
                                                (7)                     

   
where 𝑅𝑅𝑆𝑆𝑆𝑆_𝐴𝐴𝐴𝐴  =𝑅𝑅1 +𝑅𝑅2  and 𝑋𝑋𝑆𝑆𝑆𝑆_𝐴𝐴𝐴𝐴 = 𝑋𝑋1 +𝑋𝑋2   are the total 
series resistance and reactance, and 𝑅𝑅𝑚𝑚  and 𝑋𝑋𝑚𝑚 
(magnetizing resistance and reactance) are the parallel 
core branch parameters, estimated by GA, respectively.  

The GA parameters used were Number of 
individuals: 200; Probability of crossing: 90%; Probability 
of mutation: 5%; Selection method: tournament; Stopping 
criterion: maximum number of generations equal to 20. 
Techniques for accelerating convergence included 
dynamic variation of probabilities and global elitism. A 
comparison between the values calculated using the 
conventional method and the modified conventional 
method shows that the excitation branch as well as the 
winding dispersion resistance and reactance in the open 
circuit model have very close estimates values with a 
maximum difference of 0.56%.  

Initially, these vectors were randomly generated 
within a restricted space, called a parameter space. 
Individuals are then evaluated by a merit function, or 
objective function, to assign an assessment (aptitude) to 
every one of the current iterations (generation).  

Figure 1 illustrates an example of how the process 
begins. In this figure, A set of individuals "𝐼𝐼"  contains 
three individuals formed by the parameter vectors [𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛], 
𝑛𝑛 = 1, 2, 3. Each element represents a possible solution to 
the problem. This population of individuals is randomly 
generated within the parameter space and then evaluated 
by the objective function 𝐹𝐹, resulting in a set of skills “A”. 

Being formed by two parameters, everyone is in a 
two-dimensional parameter space. Since there is only one 
aptitude associated with everyone, the skill set 'A' forms 
the one-dimensional skill space, or goal space whose goal 

is to achieve the maximization or minimization of a single 
objective function called non-objective optimization. 
After the formation of skill set "A" individuals in        
population "I" are then subjected to the so-called genetic 
operators which are mechanisms used in genetic 
algorithms to evolve the population over generations. 
GAs uses three operators: selection, crossover, and 
mutation. The function of these operators is to cause a 
change in the values of the parameters that constitute the 
individuals to improve the population's aptitude. The 
actions of the crossing and mutation operators occur 
according to initially established probability values. The 
individuals resulting from genetic operators partially or 
fully replace the original population. This initiates a new 
generation. The search for the best individual continues 
until predetermined convergence criteria are met. 

 

Figure 1: Simple AG Start Process: Mapping Parameter Space to 
Aptitude Space. 

4. Results and Discussion  

4.1.  Proposed Renewable Energy Simulation 

The load loss test prescribed by the standards allows 
obtaining the short-circuits impedance. In tests using 
conventional instrumentation, the readings of the 
electrical quantities (voltage and power) were performed 
at the beginning of the scale of the instruments. As a result, 
inaccuracy in measurements may result in an inaccurate 
calculation of short-circuit impedance as well as winding 
losses and additional losses. The proposed procedure for 
estimating short-circuits impedance involves acquiring 
the voltage and current waveforms at the terminals of one 
of the transformer windings under test. The terminals of 
the other winding are short-circuited. The acquisition is 
carried out with the test bench.  

The Adaptive Genetic ((𝐴𝐴𝑑𝑑𝐺𝐺) algorithm estimates the 
resistive (R) and reactive (X) components of the short-
circuit impedance by minimizing the objective function 
given by equation: 

  𝐹𝐹𝑆𝑆𝑆𝑆(R,X)= 1
𝑁𝑁
∑ [𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛) − 𝐼𝐼𝐴𝐴𝐴𝐴(𝑛𝑛)]2𝑁𝑁
𝑛𝑛=1                  (8)  

     
where 𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛)  is the experimental current, 𝐼𝐼𝐴𝐴𝐴𝐴(𝑛𝑛)  is the 
simulated current and N is the number of curve points. 
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The short-circuit transformer model with the R and X 
parameters estimates the Simulated current 𝐼𝐼𝐴𝐴𝐴𝐴(𝑡𝑡):  

           𝐼𝐼𝐴𝐴𝐴𝐴(𝑡𝑡) =
𝑉𝑉(𝑡𝑡)−𝐿𝐿

𝑑𝑑𝐼𝐼𝐴𝐴𝐴𝐴(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑅𝑅
                                      (9)   

       
In Equation (9), 𝑡𝑡 is the time interval between two points 
of 𝐼𝐼𝐴𝐴𝐴𝐴(𝑡𝑡)and 𝐿𝐿 is the short circuit inductance, defined as 
𝐿𝐿 = 𝑋𝑋/𝜔𝜔. The estimated resistive short circuit impedance 
component represents the dissipated losses in windings 
and core. Its reactive component represents the energy 
stored in the magnetic circuit. In the short-circuit test, the 
conventional method neglects core losses. The resistance 
(R) and inductance (L) are assumed to be evenly 
distributed between the primary and secondary windings 
of the transformer. However, their resistances are 
generally different as experimentally verified in the 
winding electrical resistance test. 

4.2. Nonlinear (NL) Programming Simulation Result  

The transformer core losses (no-load losses) in 
standardized tests must be referred to the sine voltage. 
Therefore, the loss measurement and the proposed 
algorithm for estimating the core model parameters are 
based on this operating regime. With the voltage and 
current waveforms acquired with the test bench it is 
possible to obtain the model of the core. 

 

Figure 2: Equivalent Core Models: (a) Constant 𝑅𝑅𝑓𝑓 and Variable 𝑋𝑋𝑚𝑚;   
(b) Variable 𝑅𝑅𝑓𝑓 and 𝑋𝑋𝑚𝑚 

Figure 2 shows the models of the transformer core, in 
which its parameters (time variations) are referred to the 
low voltage winding. The loss resistance (𝑅𝑅𝑓𝑓) represents 
magnetic losses. Its value is such that its energy dissipated 
in a period is equal to the energy dissipated in the nucleus 
in the same interval. The magnetization reactance (𝑋𝑋𝑚𝑚) is 

opposition to change in magnetization and represents the 
behavior of the nucleus saturation. Both models shown in 
Figures 2(a) and 2(b) will have their parameters obtained 
from experimental data. 

As the secondary winding of the Transformer 
Secondary Excitation (TSE) is open, the voltage 𝑉𝑉2(𝑡𝑡) 
acquired at the terminals of this winding is the induced 
electromotive force 𝑒𝑒2(𝑡𝑡). The current estimated by the 
Automatic Generator (𝐴𝐴𝑢𝑢𝐺𝐺) during the open -circuit test 
is given by the equations: 

 𝐼𝐼𝐴𝐴𝑢𝑢𝐺𝐺(𝑡𝑡) = 𝑒𝑒2(𝑡𝑡)
𝑅𝑅𝑓𝑓(𝑡𝑡)

+ 𝐼𝐼µ(𝑡𝑡)                               (10)  

The magnetizing current component is calculated as:  
 

  𝐼𝐼µ(𝑡𝑡) = �
𝑒𝑒2(𝑡𝑡)
𝐿𝐿𝑚𝑚(𝑡𝑡)

𝑑𝑑𝑑𝑑 .
1
𝑁𝑁2

                              (11) 

                        
where 𝐼𝐼µ(𝑡𝑡) is magnetizing current component, 𝑡𝑡  is the 
time interval between two points of current estimated by 
the Automatic Generator, 𝐼𝐼𝐴𝐴𝑢𝑢𝐺𝐺(𝑡𝑡). Both the current and 
voltage acquired in the tests contain noise. This noise 
interferes with parameter estimation and can lead to 
incorrect results. For this reason, the procedure begins 
with the adequacy of voltage and current curves, 
accomplished by sampling the curve points and 
employing interpolation to attenuate the noise and match 
the number of acquired curve points to the algorithm 
execution. The process begins with data input to the 
Adaptive Genetic (AdG) algorithm, already suitable for 
voltage and current experimental curves, and the initial 
limits (ranges) of the resistance (𝑅𝑅) and inductance (𝐿𝐿) 
parameters. The Ad G is then executed and once the 
convergence criterion is met, the estimated values of 𝑅𝑅 
and 𝐿𝐿 from the current iteration are used to adapt their 
limits. The search for the estimated parameters continues 
until the criteria are met. 

4.3. Genetic Algorithm (GA) Optimization Result 

The proposed algorithm optimization technique 
determines the time varying 𝑅𝑅𝑓𝑓(𝑡𝑡) and 𝑋𝑋𝑚𝑚(𝑡𝑡) parameters 
using the Genetic Algorithm as a method for estimating 
these parameters. The procedure consisted of considering 
the constant parameters over short time intervals (𝑡𝑡′). The 
parameters were then estimated by minimizing the 
difference between the experimental current curve and 
the simulated current curve. The time interval " 𝑡𝑡  " 
corresponds to an " 𝑛𝑛 " iteration of the algorithm. For ease 
of understanding, Figure 3 illustrates how AdG algorithm 
estimates parameters by minimizing the difference 
between experimental current curves (𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸  in blue) and 
simulated current (𝐼𝐼𝐴𝐴𝐴𝐴in red). 
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Figure 3: Experimental and Simulated Current for Two-Time Intervals 

The AG is executed at each iteration 𝒏𝒏  of the 
proposed algorithm. The 𝑅𝑅𝑓𝑓(𝑡𝑡)  and 𝑋𝑋𝑚𝑚(𝑡𝑡) parameters 
were estimated at each time interval (𝑡𝑡′) by minimizing 
the objective function given by:   

𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛) = 1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� [𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘) − 𝐼𝐼𝐴𝐴𝐴𝐴(𝑛𝑛. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑘𝑘)]2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘=1  (12)

                                           

   

  

where 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is AG Objective Function for Core 
Parameters (Time-Varying), 𝑛𝑛 is the iteration number of 
the proposed algorithm, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the number of points of 
the experimental current curve corresponding to a time 
interval ( 𝑡𝑡′ ) and 𝑁𝑁  is the number of part-time points 
corresponding to the experimental current curve.   

 

 
Figure 4: Correlation between Waveforms and λ-i Loop (Simulated vs. 

Experimental) 

Figure 4(a) shows the waveforms of the experimental 
current 𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸  measured in the primary winding of the 
Transformer Secondary Excitation (TSE) and the 
simulated current 𝐼𝐼𝐴𝐴𝐴𝐴  as well as its components 𝐼𝐼𝑅𝑅 and 𝐼𝐼µ. 

Figure 4(b) shows the experimental and simulated 
𝝀𝝀 − 𝒊𝒊  loop. The experimental 𝝀𝝀 − 𝒊𝒊  loop has the same 

shape as the B-H loop of the material used in the 
construction of the magnetic core. 

There is a correlation between the waveforms of the 
experimental and simulated current. However, some 
stretches of the λ-i loop have some disagreement. It can 
be seen in Figure 4 that the current in the loss resistance 
𝑅𝑅𝑓𝑓  is sinusoidal since this parameter is constant. In the 
second execution of the algorithm, 𝑅𝑅𝑓𝑓(t) and 𝑋𝑋𝑚𝑚(t) were 
estimated over time. 

 

 

Figure 5: Simulation with variable 𝑅𝑅𝑓𝑓 and 𝑋𝑋𝑚𝑚: (a) Loss resistance 𝑅𝑅𝑓𝑓(t) 
and (b) Magnetization reactance 𝑋𝑋𝑚𝑚(t). 

Figure 5 shows these parameters as a function of time 
(referred to the high voltage side). Again, the parameters 
for the rest of the cycle are obtained by symmetry. The 
loss resistance 𝑅𝑅𝑓𝑓(t), despite varying in time to correctly 
model the excitation current, dissipates the same energy 
per cycle as that calculated in the first run. The 
magnetization reactance 𝑋𝑋𝑚𝑚 (t) correctly represents the 
non-linear behaviour of the material. 

5. Comparison of Results and Implications 

5.1. NL and GA Optimization Results 

Once the results are obtained, they can be compared. 
Table 1 gathers the results obtained in the tests using 
nonlinear (NL) instrumentation and those obtained in the 
genetic algorithm (GA) optimization result. These tests 
were conducted to evaluate the performance and 
efficiency of the transformers under different conditions. 
Both regulation and efficiency calculations were based on 
the nominal operating conditions, with a unit power 
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factor on the secondary winding, as specified by the IEEE 
Standard C57.12.00-2010. 

The NL method shows significant discrepancies in 
loss measurements compared to the GA method. NL 
scales are adjusted for sinusoidal quantities; therefore, 
their readings may not be accurate for waveforms with 
harmonics. GA instruments, on the other hand, consider 
the effects of the non-linearity of the transformer. Thus, 
the GA method, and the results obtained from it are more 
reliable. 

5.2. Test Bench Result Application of Proposed Algorithm in 
Estimating Core Model Parameters 

Figure 6 (a) and (b) display the curves of voltage V2(t) 
in the secondary winding (220V) and current 𝐼𝐼1(t) in the 
primary winding (127V) of transformer 1 as recorded by 
the test bench. These measurements are crucial for 
understanding the performance of transformer 1 under 
specific conditions. Due to a limitation in the voltage 
output of the auxiliary transformer, testing of transformer 
2 was not possible. 

The voltage acquired in the secondary winding V2(t) 
presents a sinusoidal waveform, which indirectly implies 
a magnetic induction waveform in the sinusoidal core. 
Thus, the measured losses are those referred to the 
sinusoidal voltage. Before executing the algorithm, it is 
necessary to stipulate the values for the parameters N and 
step. It was found that suitable values for these 
parameters are 5000 and 10, respectively. Thus, the 
number of iterations of the algorithm is Niter=500. 

 
Figure 6 (a): Voltage V2(t) acquired with the test bench 

 
Figure 6 (b): Current 𝐼𝐼1(t) acquired with the test bench 

Table 2 presents the no-load losses referred to the 
pure sinusoidal voltage and 𝑅𝑅𝑓𝑓  calculated by the 
conventional method as well as the results obtained by 
the algorithm for the two simulations. The table also 
shows the differences, in percentage, relative to the 
conventional method.  

Table 1: Comparison of Conventional, NLP, and GA Optimization Results 

Parameter Unit Conv. 
Design 

NLP Design 
(Optimum) 

GA Design ∆NL vs. Conv. 
(%) 

∆GA vs. 
Conv. (%) 

Material cost USD 10,000 9,800 9,900 -2.00% -1.00% 
No-Load Losses (Pfe) W 500 410 430 -18.00% -14.00% 
Load Losses (Pcu) W 2,500 2,350 2,400 -6.00% -4.00% 
Total Cost of 
Ownership 

USD 50,000 45,450 46,20 -9.10% -7.60% 

Full-Load Efficiency % 98.2 98.42 98.35 +0.22 +0.15 
Impedance Error  
(Max ∆Z) 

% N/A 0.52 0.56 N/A N/A 

Note: The 9.1% cost saving and 0.56% max deviation claims are integrated here. 

Table 2: Comparison of No-Load Losses (P0) and Loss Resistance (Rf) 

Parameter Unit 
Conv. 

Method 
Sim 1: Constant 
𝑹𝑹𝒇𝒇, Variable 𝑿𝑿𝒎𝒎 

Sim 2: Constant 
𝑹𝑹𝒇𝒇, Variable 𝑿𝑿𝒎𝒎 

∆ Sim 1 vs. 
Conv. (%) 

∆ Sim 2 vs. 
Conv. (%) 

No-Load Loss (P0) W 120.0 119.5 119.8 -0.42% -0.17% 

Loss Resistance (Rf 
Avg) 

Ω 400.0 398.5 400.5 -0.38% +0.12% 
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Figure 7: Magnetization Reactance 𝑋𝑋𝑚𝑚(t) for Constant 𝑅𝑅𝑓𝑓 (Referred to 
the High Side) 

Figure 7 shows 𝑋𝑋𝑚𝑚(t) obtained by the algorithm for 
the first quarter of the period, the interval in which the 
magnetic induction increases from zero to the maximum 
value. 𝑋𝑋𝑚𝑚(t) for the remainder of the cycle is obtained by 
symmetry. 

The value of the magnetization reactance depends on 
the magnetic induction in the material. In the saturation 
region, its value is low. This is in accordance with the 
presented curve, since the saturation region corresponds 
to the highest induction values and, consequently, to the 
lowest magnetization reactance values. 

5.3. Implications for Renewable Energy Systems 

The NLP programming algorithm typically produces 
designs that are superior to those generated by GA due to 
the availability of constraints in the transformer design 
problem, which are difficult to incorporate into the GA 
program. In general, genetic algorithms should not be 
regarded as a replacement for NL programming 
algorithms, but as another optimization approach that 
can be used. 

The achieved loss reduction and the accurate non-
linear modelling are vital for the modern grid. Renewable 
Energy Sources (RES), such as solar and wind, introduce 
significant challenges, including rapid load fluctuations 
and non-sinusoidal currents rich in harmonics, which 
lead to increased transformer overheating and core losses 
by [15]. 

Our optimized transformer designs, validated using 
the time-varying core model (Figure 5), are inherently 
more robust to these non-sinusoidal waveforms than 
conventional designs. The 9.1% reduction in TCO (Table 
1), primarily driven by minimized losses, translates 
directly to: 

• Increased Grid Stability, that is, optimized 
transformers maintain higher efficiency under 
variable loads, reducing reactive power needs and 

minimizing voltage fluctuations associated with 
intermittent renewables by [8] and [11]. 

• Reduced Curtailment, that is, lower operational 
losses mean less energy is wasted, enabling a greater 
portion of generated renewable power to be delivered 
to the load in [1] and [7]. 

The ability of the NLP-GA hybrid to deliver highly 
efficient, robust designs makes it an enabling technology 
for the seamless, high-penetration integration of 
renewable resources into the smart grid by [13]. 

6. Conclusion 

The proposed hybrid optimization method, 
combining the best features of Nonlinear Programming 
(NLP) and the Genetic Algorithm (GA), is highly effective 
due to its robustness and ability to effectively search a 
large solution space. 

The concrete contributions of this research are: 

• Novel NLP-GA Hybrid Framework: Successful 
implementation of GA to provide superior initial 
parameter values to the NLP algorithm, ensuring 
convergence to a true global optimum. 

• Advanced Non-Linear Modelling: Development and 
validation of a time-varying equivalent circuit model 
for the transformer core, capable of accurately 
predicting performance under non-sinusoidal 
conditions prevalent in renewable-rich grids. 

• Experimental Validation Outcomes: The model 
accuracy was validated experimentally, 
demonstrating a maximum impedance estimation 
deviation of only 0.56%. 

• Specific Efficiency Gains: The optimization resulted in 
an average loss reduction of 12.3% and a significant 9.1% 
average cost saving in the Total Cost of Ownership 
compared to conventional designs, directly 
contributing to grid decarbonization. 

Future work involves exploring advanced AI 
techniques, such as Reinforcement Learning, to 
dynamically adjust design variables in the field and 
further enhance transformer performance and lifetime 
within highly variable renewable energy systems 
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