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ABSTRACT: We investigated whether post-hoc calibration improves the trustworthiness of heart-
disease risk predictions beyond discrimination metrics. Using a Kaggle heart-disease dataset (n =
1,025), we created a stratified 70/30 train-test split and evaluated six classifiers, Logistic Regression,
Support Vector Machine, k-Nearest Neighbors, Naive Bayes, Random Forest, and XGBoost.
Discrimination was quantified by stratified 5-fold cross-validation with thresholds chosen by Youden's
] inside the training folds. We assessed probability quality before and after Platt scaling, isotonic
regression, and temperature scaling using Brier score, Expected Calibration Error with equal-width
and equal-frequency binning, Log Loss, reliability diagrams with Wilson intervals, and Spiegelhalter’s
Z and p. Uncertainty was reported with bootstrap 95% confidence intervals, and calibrated versus
uncalibrated states were compared with paired permutation tests on fold-matched deltas.

Isotonic regression delivered the most consistent improvements in probability quality for Random
Forest, XGBoost, Logistic Regression, and Naive Bayes, lowering Brier, ECE, and Log Loss while
preserving AUC ROC in cross-validation. Support Vector Machine and k-Nearest Neighbors were best
left uncalibrated on these metrics. Temperature scaling altered discrimination and often increased Log
Loss in this structured dataset. Sensitivity analysis showed that equal-frequency ECE was
systematically smaller than equal-width ECE across model-calibration pairs, while preserving the
qualitative ranking of methods. Reliability diagrams built from out-of-fold predictions aligned with
the numeric metrics, and Spiegelhalter’s statistics moved toward values consistent with better absolute
calibration for the models that benefited from isotonic regression. The study provides a reproducible,
leakage-controlled workflow for evaluating and selecting calibration strategies in structured clinical
feature data.

KEYWORDS: Heart disease prediction, Machine learning, Probability calibration, Isotonic regression,
Platt scaling, Temperature scaling, Uncertainty quantification, Expected calibration error (ECE), Brier
score, Log loss, Spiegelhalter’s test, Reliability diagram, Post hoc calibration.

1. Introduction was responsible for an estimated 19.8 million deaths in
2022 [1]. However, early and accurate prediction plays a
1.1. Background C . .
significant role in the prevention of adverse results and
Heart disease continues to be the major leading  reduction in healthcare costs. Machine learning (ML)

cause of death globally. It was recorded that heart disease =~ models are increasingly adopted for diagnostic and
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prognostic tasks in cardiology due to their ability to
uncover complex patterns in large clinical datasets [2].

Early ML research on heart disease cohorts primarily
focused on classification accuracy, with studies routinely
reporting performance above 97% using supervised
classifiers [3]. These models have the capacity to learn
non-linear  relationships and  high-dimensional
interactions between contributing factors such as age,
cholesterol, blood pressure, and electrocardiogram
results. For example, algorithms such as Random Forest
and Gradient Boosting have demonstrated superior
subtle

cardiovascular abnormalities compared to traditional

performance to identify indicators  of
rule-based systems [4]. This makes them powerful

techniques for risk stratification and preventive care.

However, there could be possibility that the models
often provide high predictive performance, while
probabilistic outputs can be poorly calibrated. That is, the
confidence scores they assign do not always align with
actual probabilities of disease presence [5]. In high-stakes
domains such as healthcare system, well-calibrated
predictions are more important to guide the appropriate
treatment decisions and manage clinical risks efficiently.
Miscalibrated models may lead to overconfident or
underconfident decisions, ultimately compromising
patient safety [6]. This has prompted a growing interest
in uncertainty quantification and post hoc calibration
which

probabilities without retraining the original model [7].

methods, can adjust the model's output
The importance of these methods has increased in
response to an increasing demand for transparent and
trustworthy Al systems in clinical settings, particularly

with the rise of explainable Al initiatives [8].

Furthermore, recent research has proven that visual
tools such as reliability diagrams and calibration metrics
such as Expected Calibration Error (ECE), Brier score, and
log loss are important in evaluating how well a model is
calibrated [9]. While accuracy and AUROC (Area Under
the Receiver Operating Characteristic curve) remain
popular metrics for model evaluation, they are
insufficient for assessing how well a model estimates
uncertainty. These metrics provide both quantitative and
visual representations of uncertainty and prediction
quality, which are vital for gaining the confidence of

clinical stakeholders.
1.2. Motivation and Problem Statement

One of the major challenges faced by the medical
health sector is the inability to detect early stages of

problems related to the heart. When making decisions in
the clinical sector, uncalibrated predictions may be
misleading. For example, if a model predicts that a patient
has a 90% chance of developing heart disease, clinicians
must trust that this probability truly reflects clinical
reality, otherwise this could lead to incorrect decisions
and poor outcomes for the patient.

In many studies, calibration and uncertainty

quantification in medical AI systems are often
overlooked, leading to a gap between predictive
performance and clinical trust [6]. However, this paper
addresses that gap by evaluating the calibration of several

popular classifiers using post hoc techniques.
1.3. Scope and Contributions

This study aims to evaluate and compare uncertainty
estimation of heart disease prediction models. The
research is guided by the following questions:

1. How do post-hoc calibration methods (Platt scaling,
temperature scaling and isotonic regression) affect
the uncertainty, calibration quality, and prediction
confidence of machine learning models for heart
disease classification?

2. What are the baseline levels of calibration and
uncertainty (ECE, Brier score, log loss, sharpness,
Spiegelhalter’s Z-score) for heart disease prediction
before and after post-hoc calibration?

3. How does each model (e.g., Random Forest, XGBoost,
SVM, KNN and Naive Bayes) perform in terms of
probability calibration for heart disease before and
after applying post hoc calibration?

Below, we delineate the contributions of this work in
light of the research questions above. We conduct a
systematic, model-agnostic evaluation of post-hoc
calibration for heart-disease prediction, quantifying how
Platt (sigmoid) and isotonic mapping alter probability
quality without retraining the base models. Beyond
headline discrimination metrics, we emphasize clinically
relevant probability fidelity, calibration, sharpness, and
statistical goodness-of-fit. This study makes four (4)

contributions, summarized as follows:

1. A side-by-side pre/post analysis of six machine

learning classifiers using reliability diagrams plus
ECE,
sharpness to provide complementary views of

Brier, log loss, Spiegelhalter's Z/p, and

probability quality for heart disease prediction.
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2. Empirical demonstration that isotonic calibration
most consistently improves probability estimates,
whereas Platt and temperature scaling helps some
models but can worsen others.

3. Despite perfect test-set discrimination for some
model, reliability diagrams reveal overconfidence
pre-calibration, demonstrating why discrimination
alone is insufficient for clinical use.

4. Analysis of variance in predicted probabilities shows
calibration-induced smoothing and overconfidence
correction, clarifying confidence reliability trade-offs

relevant to clinical interpretation.
1.4. Related Works

1.4.1. Machine Learning in Heart Disease Prediction:
Calibration and Reliability Considerations

Machine learning (ML) techniques have been widely
applied to predict cardiovascular disease outcomes,
typically using patient risk factor data to classify the
presence or risk of heart disease. For example, in heart
disease prediction using supervised machine learning
algorithms: Performance analysis and comparison, [10]
evaluated several classifiers (KNN, decision tree, random
forest, etc.) on a Kaggle heart disease dataset. They
reported perfect performance with random forests
achieving 100% accuracy (along with 100% sensitivity and
specificity).
accuracy and did not include any probability calibration

However, their evaluation emphasized
or uncertainty quantification. Similarly, [11] evaluation of
Heart Disease Prediction Using Machine Learning
Methods with Elastic Net Feature Selection compared
logistic regression (LR), KNN, SVM, random forest (RF),
AdaBoost, network (ANN), and
multilayer perceptron on the Kaggle dataset used in this

artificial neural
study. They found RF to attain ~99% accuracy and
AdaBoost ~94% on the full feature set and observed SVM
performing best after SMOTE class-balancing and feature
selection. Like [10], this study focused on accuracy
improvements and other discrimination metrics, with no

model calibration applied.

Another work by [12], they also utilized the Kaggle
dataset we explored. They evaluated a wide range of
classifiers including RF, decision tree (DT), gradient
boosting (GBM), KNN, AdaBoost, LR, ANN, QDA, LDA,
SVM and reported extremely high accuracy for ensemble
methods. In fact, their RF model reached 100% training
accuracy (and ~99% under cross-validation). Despite
reporting precision, recall, F1-score, and ROC-AUC for

each model, this work too did not report any calibration
metrics or uncertainty estimates; the focus remained on
discrimination performance.

Beyond the popular Kaggle/UCI datasets, researchers
have explored ML on other heart disease cohorts. For
instance, [13] in A Machine Learning Model for Detection
of Coronary Artery Disease applied ML to the Z-Alizadeh
(303 patients
cardiovascular center). They employed six algorithms
(DT, deep neural network, LR, RF, SVM, and XGBoost) to
predict coronary artery disease (CAD). After Pearson-

Sani dataset from Tehran's Rajaei

correlation feature selection, the best results were
achieved by SVM and LR, each attaining 95.45% accuracy
with 95.91% sensitivity, 91.66% specificity, F1~0.969, and
AUROC =0.98. Notably, although this study achieved
excellent discrimination, it did not incorporate any post-
hoc probability calibration or uncertainty analysis, the
evaluation centered on accuracy and ROC curves alone.

In [14], the authors took a different approach by
leveraging larger, real-world data. In an interpretable
LightGBM model for predicting coronary heart disease:
Enhancing clinical decision-making with machine
learning, they trained a LightGBM model on a U.S. CDC
survey dataset (BRFSS 2015) and validated on two
external cohorts (the Framingham Heart Study and the Z-
Alizadeh Sani data). The LightGBM achieved about 90.6%
accuracy (AUROC ~81.1%) on the BRESS training set,
with slightly lower performance on Framingham (85%
accuracy, ~67% AUROC) and Z-Alizadeh (80% accuracy).
While [14] prioritized model interpretability (using SHAP
values) and reported standard metrics like accuracy,
precision, recall, and AUROC, they did not report any
calibration-specific metrics (e.g. no ECE, Brier score, or
reliability diagrams), nor did they apply Platt scaling or
isotonic regression in their pipeline. Several recent studies
have pushed accuracy to very high levels by combining
datasets or using advanced ensembles, yet still largely
ignore calibration. In [15], the authors proposed a hybrid
approach for predicting heart disease using machine
learning and an explainable AI method, where they
combined a private hospital dataset with a public one and
used feature selection plus ensemble methods. Their best
model (an XGBoost classifier on a selected feature subset
SE-2) achieved 97.57% accuracy with 96.61% sensitivity,
90.48% specificity, 95.00% precision, F1=92.68%, and 98%
AUROC. Despite this impressive performance, no
probability calibration was mentioned; the study’s
contributions focused on maximizing accuracy and
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explaining feature impacts (via SHAP) rather than
assessing prediction uncertainty.

Using a clinical and biometric dataset (n=571) with a
man-in-the-loop paradigm for assessing coronary artery
disease, [16] compared standard ML classifiers; best
accuracy reached =83% with expert input, but the work
emphasized explainability over probabilistic calibration.
To address the need for diverse and comprehensive
research, we conducted a lightweight systematic review

and surveyed a range of peer reviewed studies on ML for
heart disease prediction in the last 5-10 years with focus
on a minimum of 5,000 cohort patients built into the
experimental setup. Table 1 summarizes key studies,
including their data sources, ML approaches, and
whether model calibration was evaluated (and how).
Each study is cited with its year and reference number
(e.g., 2025 [17] means the study was published in 2025 and
is reference [17] in the reference list).

Table 1: Recent ML-based heart disease prediction studies (2017-2025) - Summary of data, methods, and calibration evaluation. (Calibration metrics:

HL = Hosmer-Lemeshow test; ECE = Expected Calibration Error; O/E = observed-to-expected ratio; Brier = Brier score.)

Year | Data (Population /| ML Approach & Key Results Calibration (Evaluation &
[Ref] | Dataset) Metrics)
2025 |Japanese Suita cohort | Risk models (LR, RF, SVM, XGB, LGBM) | Yes - Calibration curves and O/E
[17] (n=7,260; ~15-year follow- | for 10 year CHD; RF best (AUC ~0.73); | ratios; RF ~1:1 calibration.
up; ages 30-84). SHAP identified key factors.
2025 | NHANES (USA; ~37,000). | PSO ANN - particle swarm optimized | No - Calibration not reported.
[18] neural net; ~97% accuracy; surpassed LR
(~95.8%); feature selection + SMOTE.
2024 | Simulated big dataset + | AttGRU HMSI deep model; ~95.4% | No - Calibration not reported.
[19] UCL accuracy; emphasis on big data
processing and feature selection.
2023 | UK Biobank (n~473,000; 10 | AutoPrognosis AutoML; AUC =0.76; 10 [ Yes - Brier ~0.057 (good
[20] year follow up). key predictors discovered. calibration).
2023 China EHR (Ningbo; | XGBoost vs Cox; C index 0.792 vs 0.781. Yes - HL x2? =0.6, p=0.75 in men;
[21] n=215,744; 5 year follow non significant HL  (good
up). calibration).
2023 | Stanford ECG datasets; | SEER CNN using resting ECG; 5 yr CV | No - Calibration not reported.
[22] external validation at 2 | mortality AUC ~0.80 - 0.83; ASCVD AUC
hospitals. ~0.67; reclassified ~16% low risk to higher
risk with true events.
2022 | China hypertension cohort | Ensemble (avg RF/XGB/DNN); AUC [ No - Calibration not reported.
[23] (n=143,043). 0.760 vs LR 0.737.
2021 | Korea NHIS (n=223k) + | ML vs risk scores for 5 yr CVD; simple | Yes - HL x? baseline 171 vs 15-86
[24] external cohorts. NN improved C stat (0.751 vs 0.741). for ML (p>0.05). Brier ~0.031 - 0.032
(good calibration).
2021 | NCDR Chest Pain MI |In hospital mortality after MI | Yes - Calibration slope ~1.0 in
[25] registry (USA; n=755,402; | ensemble/XGBoost/NN VS logistic; | validation; Brier components &
derivation 564k; validation | similar AUC (~0.89). recalibration tables reported.
190k).
2021 | Faisalabad Institute + | Feature importance with 10 ML [ No - Calibration not reported.
[26] Framingham +  South | algorithms; XAI focus.
African Hearth dataset &
UCI (Cleveland n=303).
2020 | Eastern China high risk | Random Forest; AUC ~0.787 vsrisk charts | Yes - HL x?=10.31, p=0.24 (good
[27] screening (n=25,231; 3 year | =0.714. calibration).
follow up).
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2019 | UK Biobank subset | AutoPrognosis ensemble; AUC ~0.774 vs | Yes - Pipeline includes calibration
[28] (n=423,604; 5-year follow- | Framingham =~0.724; +368 cases identified. | (e.g., Platt scaling [sigmoid]); good
up). agreement of predicted vs
observed risk.
2017 | UK CPRD primary care | Classic ML vs ACC/AHA score; NN best [ No - Calibration not reported.
[29] (n=378,256; 10 year follow | (AUC =0.764) vs 0.728;, improved
up; 24,970 events). identification.

1.4.2. Gaps in Research

Despite abundant work on ML-based heart disease
prediction, there are clear gaps in the literature regarding
probability calibration and uncertainty quantification.
First, most studies prioritize discriminative performance
(accuracy, F1, AUROC, etc.) and devote little or no
attention to how well the predicted probabilities reflect
true risk. As shown above, prior works seldom report
calibration metrics like ECE or Brier score, nor do they
plot reliability diagrams. For example, none of the 10+
studies reviewed applied calibration methods such as
Platt scaling or isotonic regression to their classifiers,
except for only one study [28]. This indicates a lack of
focus on calibration quality, an important aspect if these
models are to be used in clinical decision-making where
calibrated risk predictions are crucial.

Second, there is a lack of unified evaluation across
multiple models and calibration techniques. Prior
research typically evaluates a set of ML models on a
dataset (as in comparative studies) but stops at reporting
raw performance metrics. No study to date has
systematically taken multiple classification models for
heart disease and evaluated them before and after post-
hoc calibration. This means it remains unclear how
different algorithms (e.g. an SVM vs. a random forest)
compare in terms of probability calibration (not just
classification accuracy), and whether simple calibration
methods can significantly improve their reliability.
Furthermore, the interplay between model uncertainty
(e.g. variance in predictions) and calibration has not been
explored in this domain. Third, most heart disease
prediction papers do not report uncertainty metrics or
advanced calibration statistics. Metrics such as the Brier
score (which combines calibration and refinement), the
ECE (Expected Calibration Error), or even more domain-
specific checks like Spiegelhalter’s Z-test for calibration,
are virtually absent from prior studies. Sharpness (the
concentration of predictive distributions) and other
uncertainty measures are also not discussed. This leaves
a research gap in understanding how confident we can be

in these model predictions and where they might be over
or under-confident. For instance, none of the reviewed
studies provide reliability diagrams to visually inspect
calibration; as a result, a model claiming 95% accuracy
might still make

poorly calibrated predictions

(overestimating or underestimating risk).

To the best of our knowledge, no prior work has
offered a comprehensive evaluation of pre and post-
calibration metrics across multiple models on the specific
Kaggle heart disease dataset (1,025 records) used in this
study. While several papers have used this or similar data
for model comparison, none have examined calibration
changes (ECE, log-loss, Brier, sharpness, Spiegelhalter’s
Z-test,
calibration methods (Platt scaling, isotonic regression). In

calibration curves) resulting from post-hoc
short, existing studies have left a critical question
unanswered: if we calibrate our heart disease prediction
models, do their confidence estimates become more
trustworthy, and how does this vary by model?
Addressing this gap is the focus of our work. We provide
a thorough assessment of multiple classifiers before and
after calibration, using a suite of calibration and
uncertainty metrics not previously applied in this context,
thereby advancing the evaluation criteria for heart
disease ML models beyond conventional accuracy-based

measures.
2. Materials and Methods

2.1. Research Methodology Overview

This study employs a structured machine learning
workflow to predict heart disease risk based on clinical
and demographic variables. As outlined in Figure 1, the
process begins with the heart disease dataset, followed by
data preprocessing, model selection and training,
performance evaluation, and post-hoc calibration. Three
(3) calibration techniques (i.e Platt Scaling, Isotonic
Regression and Temperature scaling) are applied to refine

probabilistic outputs, with effectiveness assessed.
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Figure 1: Workflow Diagram for Heart Disease Prediction and
Calibration Pipeline

2.2. Description of the Dataset

The Heart Disease dataset used in this study was
sourced from Kaggle. It was originally sourced by
merging data from four medical centers Cleveland,
Hungary, Switzerland and VA Long Beach, bringing the

sample size to 1,025 records, including 713 males (69.6%)
and 312 females (30.4%), ages ranging between 29 - 77
years (median age ~56). The dataset contains 14 variables
encompassing demographic, clinical and diagnostic test
features. Descriptions of the dataset are outlined in Table
2.

The dataset was inspected for missing values and
none was identified. The target variable (heart disease)
was approximately balanced, with 51.3% of records
labelled Presence of Disease and 48.7% labelled absence
of Disease as shown in Figure 2. The target was binarised
as heart disease =1 and absence =0, retained as an integer.
Any re-coding of the target labels was not required for the
present analysis.

Heart Disease Distribution

600 -
526 (51.3%)
450 4 499 (48.7%)
=
3 300 4
150 4
0 T T
Disease No Disease

HeartDisease

Figure 2: Heart disease distribution

Table 2: Data description for heart disease dataset

Feature Description Data Type | Values/Range
Age (Years) Age of the patient Integer 29-77
sex Sex (1 = male, 0 = female) Categorical | 0,1
cp Chest pain type Categorical | 1: typical angina, 2: atypical angina, 3: non-
anginal pain, 4: asymptomatic
trestbps(mmHg) | Resting  blood  pressure (on | Integer 94-200
admission to the hospital)
chol(mmol/L) Serum cholesterol Integer 126-564
Fbs (mmol/L) Fasting blood sugar > 120 mg/dl (1 = | Categorical | 0,1
true, 0 = false)
restecg Resting electrocardiographic results | Categorical | 0: normal, 1: ST-T abnormality, 2: left
ventricular hypertrophy
thalach Maximum heart rate achieved Integer 71-202
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exang Exercise induced angina (1 =yes, 0= | Categorical | 0, 1
no)
oldpeak ST depression induced by exercise | Real 0.0-6.2
relative to rest
slope Slope of the peak exercise ST | Categorical | 1: upsloping, 2: flat, 3: downsloping
segment
ca Number of major vessels (0-3) | Integer 0-3
colored by fluoroscopy
thal Thalassemia test result Categorical | 3: normal, 6: fixed defect, 7: reversible
defect
num Presence of heart disease (target: 0 = | Categorical | 0,1, 2, 3,4
no, 1-4 = disease)

2.3. Data Preprocessing

In this study, the dataset was separated into 13
predictors (i.e patient risk factors) and the 1 outcome
feature (i.e the presence or risk of heart disease).
Predictors were further divided into two groups:
numerical features (e.g Age, RestingBP, Cholesterol) and
categorical features (e.g ChestPainType, RestingECG,
Thalassemia, Sex). We scale numerical features using a
RobustScaler approach, which centres values around the
median and spreads them according to the interquartile
range. This method was selected due to it being less
sensitive to outliers and skewness [30]. For categorical
features, a One-Hot Encoding approach was applied,
converting each category into binary (0/1) variables. This
ensured that all categories were represented in a machine-
readable format.

To prevent information leakage, all preprocessing
steps were fit on training data only and were
implemented inside the model pipelines. Within each
cross-validation fold, imputation, scaling, and encoding
were learned on the fold’s training split and then applied
to the corresponding validation split. The same rule was
followed for the final 70/30 train-test split, where
transformers were fit on the 70% training partition and
then applied to the held-out 30% test set. Where missing
values occurred, numerics were imputed by the median
and categoricals by the most frequent level before scaling
or encoding. The outcome remained binary as integers
throughout the workflow.

2.4. Model Selection

In this work, we benchmark six models (spanning
linear, non-linear and ensemble model architectures) to
classify patients based on the presence or absence of heart
disease. The selected models include Logistic Regression
(LR), Support Vector Machines (SVM), Random Forest
(RF), Extreme Gradient Boosting (XGBoost), K-Nearest
Neighbors (KNN), and Naive Bayes (NB). Using training
(70%) and testing (30%) sets, we trained each model on
the preprocessed training data and evaluated it on the
held-out test data.

Logistic Regression (LR): Logistic Regression is a
supervised machine learning model well-suited for
binary classification, such as determining the presence or
absence of heart disease. LR calculates the probability of
a class (e.g., disease or no disease) by applying a sigmoid
function to a weighted sum of predictor variables. Its
strengths include simplicity, efficiency, and the ability to
interpret coefficients as odds ratios, which is valuable in
clinical settings for understanding feature importance
and risk factors. Logistic Regression has a proven track
record in medical research for risk stratification and is
easily calibrated for probability estimation [31].

Support Vector Machines (SVM):

Machines are powerful, supervised classification models

Support Vector

that work by finding the optimal hyperplane that
separates classes in the feature space. SVMs excel at
handling high-dimensional data and can model nonlinear
relationships through kernel tricks, making them highly
effective for complex medical datasets. Their ability to
maximize the margin between classes reduces the
likelihood of misclassification, which is especially useful
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when distinguishing subtle differences between patients
with and without heart disease. SVMs are known for their
robustness in real-world clinical prediction tasks [32].

Random Forest (RF): Random Forest is an ensemble
algorithm that builds multiple decision trees during
training and aggregates their outputs via majority voting
for classification. It is especially effective at capturing
nonlinear relationships and interactions among risk
factors in heart disease prediction. The ensemble nature
of RF mitigates overfitting and variance, providing more
reliable and stable predictions on diverse patient
populations. Its embedded feature importance scores
help clinicians identify key predictors of heart disease,
further supporting its use in healthcare analytics [33].

Extreme Gradient Boosting (XGBoost): XGBoost is a
gradient boosting framework that creates a series of weak
learners (usually decision trees) and optimizes them
sequentially. It is renowned for combining high
predictive accuracy with speed and efficiency, making it
a top performer in medical classification challenges.
XGBoost handles missing data gracefully and is robust to
outliers, both of which are common in clinical datasets. Its
sophisticated ~ regularization = techniques  reduce
overfitting, and its model interpretability tools are
advantageous for validating results in heart disease risk

prediction [34].

K-Nearest Neighbors (KNN): K-Nearest Neighbors is
a non-parametric classification method that predicts the
class of a sample based on the majority class among its k
closest neighbors in feature space. KNN is intuitive, easy
to implement, and doesn’t assume data distribution,
making it suitable for heterogeneous clinical datasets.
KNN is effective at leveraging local patterns, which can
help identify at-risk heart disease patients by matching
them to previously observed cases. However, it can be
sensitive to feature scaling and less efficient with
extensive datasets [35].

Naive Bayes (NB): Naive Bayes is a probabilistic
classification algorithm that applies Bayes’ theorem,
assuming feature independence. Its simplicity and
computational efficiency make it attractive for medical
tasks with many categorical variables. Despite its “naive”
independence assumption, NB often performs
surprisingly well for heart disease prediction because it
can handle missing values, is robust with noisy data, and

quickly estimates posterior probabilities. This makes it

valuable for real-time risk assessment and decision
support in clinical environments [36].

2.5. Model Tuning Strategy

In this study, GridSearchCV was used as the primary
hyperparameter-tuning strategy due to its structured and
reproducible approach [37], [38]. GridSearchCV works by
exhaustively evaluating all possible combinations of
predefined hyperparameters for a given algorithm [37],
[38]. For each candidate configuration, the model is
trained and validated using 5-fold cross-validation,
ensuring stable performance estimates; this setup is
widely recommended for clinical prediction models and
has been applied to heart-disease prediction tasks [39],
[40]. This is particularly important in healthcare datasets
such as heart disease prediction, where sample sizes may
be limited and class distributions may be imbalanced [40],
[41]. By systematically exploring the parameter space,
GridSearchCV helps identify the configuration that yields
an appropriate balance between accuracy and
generalisation performance [37], [38], [39]. In our heart-
disease model, we used GridSearchCV to improve the
stability of probability outputs before applying post-hoc
calibration techniques. Table 3 summarises the parameter
grid and chosen parameters for each model trained in this

experiment.
2.6. Cross-validated discrimination

To measure discrimination outside one held-out test
split, we used stratified 5-fold cross-validation on the 70%
training set. In every outer fold, the full preprocessing
pipeline and the classifier were fitted only on that fold’s
training partition, then applied to the corresponding
validation partition. This guards against information
leakage from scaling or encoding into validation data.

Threshold-dependent metrics used a single, data-
driven cutpoint per model based on Youden’s ] index. For
a given threshold ton predicted probabilities,
J(t) = Sensitivity(t) + Specificity (t) - 1 and the selected cut
point is t = arg max t J(t), [42]. Within each outer-fold
training partition we ran an inner 5-fold CV to estimate t
using only the inner validation predictions, then fixed t
and applied it to the outer-fold validation data to
compute Accuracy and F1. AUC ROC was computed
from continuous scores and did not use a threshold.
Using ] focuses the operating point where both sensitivity
and specificity are jointly maximized in the training data,
a practice with well-studied statistical properties for
cutpoint selection [43].
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Table 3: Hyperparameter Grids and Selected Best Settings by Model

Model Parameter grid Best parameter
K-Nearest Minkowski p: 1, 2; Number of neighbors: 3, 5, 7, 9; | Minkowski p: 1, Number of neighbors: 9;
Neighbors Weights: uniform, distance Weights: distance

Random Forest

log2

Number of trees: 200, 300, 400; Max depth: None, 5,
10; Min samples per leaf: 1, 2, 4; Max features: sqrt,

Number of trees: 200; Max depth: None;
Max features: sqrt; Min samples per leaf: 1

XGBoost

sample by tree: 0.8, 1.0

Number of trees: 200, 300; Learning rate: 0.03, 0.05,
0.1; Max depth: 3, 4, 5; Subsample: 0.8, 1.0; Column

Number of trees: 200; Learning rate: 0.05;
Max depth: 4; Subsample: 1.0; Column
sample by tree: 0.8

Support Vector

Kernel: rbf, linear; Regularization strength (C): 0.1, 1,

Kernel: rbf; Regularization strength (C): 10;

Machine 10; Gamma: scale, auto Gamma: scale
Logistic Regularization strength (C): 0.1, 1, 10; Solver: lbfgs, | Regularization strength (C): 10; Solver:
Regression liblinear; Class weight: None, balanced Ibfgs; Class weight: None

Naive Bayes Variance smoothing: 1e-09, 1e-08, 1e-07

Variance smoothing: 1e-07

This nested procedure helps control overfitting and
preserves statistical validity. The threshold is chosen
strictly inside the training portion of each outer fold,
never on the outer validation or test data, which avoids
optimistic bias and the circularity that arises when model
selection and error estimation are performed on the same
data [44]. When comparing uncalibrated and calibrated
variants, the identical t learned within the outer-fold
training data was applied to both sets of probabilities for
that fold. This preserves a paired design, reduces variance
in fold differences and maintains the validity of
subsequent significance testing based on matched
resamples [45].

2.7. Model Performance Metrics

We evaluated classification performance using
Accuracy, ROC-AUC, Precision, Recall, and F1-score. Let
TP, FP, TN, and FN denote true positives, false positives,
true negatives, and false negatives, respectively.

TP+TN

TP+FP+TN+FN
share of correctly classified cases in the test set. In clinical

Accuracy. Defined as ( ), accuracy reflects the

screening contexts where disease prevalence may be low
accuracy depends on the decision threshold and can mask
deficiencies under class imbalance, yielding seemingly
strong performance while missing many positive cases
[46].

ROC-AUC. The receiver-operating-characteristic area
summarizes discrimination across all thresholds; it equals
the probability that a randomly selected positive receives
a higher score than a randomly selected negative and
ranges from 0.5 (no discrimination) to 1.0 (perfect). ROC-
AUC is broadly used in clinical prediction for its
threshold-agnostic view of separability, though it does
not reflect calibration or the clinical costs of specific error

types [47].

TP
TP+FP
positive alerts are among patients flagged as having heart

Precision. Given by ( ), quantifies how reliable

disease, the fraction truly positive. As thresholds are
lowered to capture more cases, precision typically
decreases, illustrating the trade-off clinicians face

between false alarms and case finding [48].

T
TP+EN
truly diseased patients the model detects (sensitivity).

Recall. Defined as (—P), measures the proportion of

Raising recall generally requires a lower threshold, which
increases false positives and reduces precision; selecting
an operating point should therefore reflect clinical
consequences and disease prevalence [49].

. Precision x Recall
Fl-score. The harmonic mean (—) ,
Precision+Recall

provides a single summary when both missed cases and
false alarms matter. F1 is commonly reported in
imbalanced biomedical tasks, though its interpretation
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should be complemented by other metrics given known
limitations under skewed prevalence [50].

These metrics establish a consistent baseline for cross-
model comparison and inform our subsequent calibration
and uncertainty quantification analysis.

2.8. Post-Hoc Calibration and Evaluation
2.8.1. Selected Calibration Techniques

Post-hoc calibration refers to techniques applied after
model training that map raw scores to probabilities
without changing the underlying classifier. In clinical
settings where decisions hinge on risk estimates, these
procedures use a held-out calibration set to fit a simple,
typically monotonic mapping so that predicted
probabilities better match observed event rates [9], [51],
[52]. In this study, calibration was fit strictly on training-
only validation data inside cross-validation and applied
to the corresponding validation folds, then to the held-out
test split, which avoids information leakage and
optimistic bias as recommended in prior work [5], [7], [9],

[51].

In clinical text or imaging pipelines for heart-disease
prediction, this is attractive, one can retain the trained
model and its operating characteristics, then calibrate its
outputs to yield probabilities that are more trustworthy
for downstream decision thresholds, alerts, or shared
decision-making [51], [52]. For this study, we applied
three post-hoc calibration methods, Platt scaling, isotonic
regression, and temperature scaling, to adjust model
outputs into well-calibrated probabilities [5], [7].

1) Platt scaling works by fitting a smooth S-shaped
sigmoid curve to the model’s scores using a separate
validation set, so that predicted probabilities better
match actual outcomes. This method is simple and
efficient but assumes that the relationship between
scores and probabilities follows a logistic pattern [9],
[53]. In our pipeline, the sigmoid mapping was
learned on training-only validation folds and then
applied to their matched validation sets.

2) Isotonic regression is a more flexible, non-parametric
method that does not assume any specific shape.
Instead, it fits a step-like monotonic curve that can
adapt to complex patterns in the data [54]. While this
flexibility can better capture irregular relationships, it
can also lead to overfitting if the validation dataset is
small, hence our use of cross-validated, training-only
fits to mitigate instability [5], [7], [51].

3) Temperature scaling applies a single global
temperature T > 0 to sharpen or soften probabilities
via pr = o (logit(p)/T). We estimated T on training-
only out-of-fold predictions by minimizing negative
log loss, then applied the learned T to the
corresponding validation folds and the held-out test
split. Temperature scaling is lightweight and widely
used to correct overconfident scores without altering

class ranking [5].

In practice, Platt scaling is most useful when a
sigmoid relationship is expected, isotonic regression is
preferred when the calibration pattern is unknown or
more complex [9], and temperature scaling provides a
simple, global adjustment of confidence that can be
effective when miscalibration is primarily due to score
overconfidence rather than shape distortions [5]. Using all
three methods provides a robust calibration toolbox,
ensuring reliable probability estimates across different
models, while our training-only fitting approach
addresses concerns about leakage and preserves valid
evaluation.

2.8.2. Model Uncertainty Quantification and Calibration
Evaluation Metrics

In this study, we measure the uncertainty of the
models using these key calibration evaluation metrics:
Reliability diagram, Brier Score, Expected Calibration
Error (ECE), Log Loss and Sharpness. A combination of
these metrics provides a holistic understanding of each
model's effectiveness in quantifying model uncertainty.

Reliability diagram, calibration plot. A reliability
diagram visualizes how predicted probabilities align with
observed event rates by plotting, across confidence bins,
the empirical outcome frequency against the mean
predicted probability. A perfectly calibrated model traces
the 45-degree diagonal line, while systematic deviations
reveal over or under-confidence [9]. Reliability diagrams
are standard in forecast verification and machine-
learning calibration, and they provide a visual check of
probability accuracy while preserving discrimination.
Practical caveats include sensitivity to binning and
sample size, and the fact that the plot alone does not
indicate how many samples fall into each bin, often
addressed by adding a companion confidence histogram
[5], [55], [56]. We experiment with two binning strategies
(i.e equal-width bins and equal-frequency bins). A
rolling-mean curve over the predicted probabilities was
added to stabilise visual trends without changing the bin
statistics.
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Brier Score - The Brier Score measures the mean
squared difference between predicted probabilities and
the actual binary outcomes. Unlike accuracy which
reduces predictions to “yes/no” and ignores the
uncertainty behind probability values the Brier Score
penalizes poorly calibrated or overly confident
predictions. This makes it more informative for model
uncertainty quantification, especially in clinical settings
were knowing the probability of heart disease (and not
just a binary label) aids risk discussions and decision-
making. Lower Brier Scores indicate better calibrated and
more reliable probability forecasts, a key aspect of clinical

utility [57].

Expected Calibration Error (ECE). ECE summarizes
how closely a model’s predicted probabilities match the
observed frequencies of outcomes. It divides predictions
into probability bins and measures the mismatch between
average predicted probability and the actual outcome rate
in each bin. In heart disease prediction, ECE helps verify
if model confidence reflects real-world risks, ensuring
patients with a predicted 70% heart disease risk, for
example, actually face that risk. Lower ECE values
indicate better calibrated models, which is crucial for
trusted clinical decision support [5]. In this work, we
report two ECE variants to assess robustness to binning:

equal-width bins with K = 10 and equal-frequency bins
with K = 10; the latter balances counts per bin and often
yields more stable estimates on modest sample sizes [5],
[56].

Log Loss - Log Loss (or cross-entropy loss) evaluates
the uncertainty of probabilistic outputs by heavily
penalizing confident but incorrect predictions. Log Loss
is sensitive to how far predicted probabilities diverge
from the actual class, providing a continuous measure of
model reliability. For heart disease prediction, low Log
Loss means the model rarely makes wildly overconfident
errors, safer, clinical

promoting uncertainty-aware

interpretation [58].

Sharpness (variance of predicted probabilities) -
Sharpness measures the spread or concentration of
predicted probabilities, independent of whether they’re
correct. High sharpness means the model often predicts
risks near 0 or 1, indicating confident, decisive forecasts.
For heart disease prediction, greater sharpness is
desirable only if paired with good calibration confident
predictions should be correct. Thus, sharpness reveals
how much intrinsic uncertainty the model expresses,
helping physicians judge whether predictions are
actionable or too vague for clinical use [55].

Table 4: Pipeline decisions for Baseline Classification Performance & Calibration - summary of experiment setup, evaluation choices, and

preprocessing decisions

Component

Description

Test Split

30% of dataset (~306 instances), stratified by target class

Cross-Validation

5-fold StratifiedKFold with shufflingpercent

Scaling RobustScaler for numeric variables
Encoding OneHotEncoder for nominal categorical fields
Models Logistic Regression, SVM, Random Forest, XGBoost, KNN, Naive Bayes

Development Environment

Google Colab

Python libraries

Sklearn, matplotlib, scipy, numpy, pandas, seaborn

Model Evaluation Metrics

Accuracy, ROC-AUC, Precision, Recall, and F1 Score

Uncertainty Quantification
Metrics

Brier Score, Expected Calibration Error (ECE), Log Loss, Spiegelhalter’s Z-score & p-
value, Sharpness, Reliability diagram

Train/test split ratio

70% training: 30% testing
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2.9. Confidence intervals and statistical tests

Confidence intervals. For test-set discrimination
metrics, we computed 95% bootstrap percentile intervals
with 2,000 resamples, using stratified resampling to
preserve class balance and skipping resamples with a
single class for AUROC [59]. For cross-validated
then

bootstrapped across the out-of-fold units to obtain fold-

summaries we formed per-fold estimates,
aware 95% intervals for Brier score, ECE, Log Loss, and
sharpness. For reliability diagrams we reported Wilson
95% intervals for bin-wise observed event rates to

stabilize proportions in modest bin counts [60].

Spiegelhalter’s Z-score & p-value - Spiegelhalter’s Z-
score tests overall calibration by comparing predicted
probabilities to actual outcomes, normalized by their
variance. A non-significant p-value suggests the model is
well-calibrated; otherwise, the probabilistic forecasts may
This
calibration test is especially important in health

be systematically over or under-confident.
applications, assuring clinicians that model probabilities
are statistically valid reflections of true outcome chances
[61].

Permutation p-tests on fold-matched deltas. To
compare calibrated to uncalibrated states we used paired
permutation tests on fold-matched differences, for
example A = metricel - metricuncal. Within each model, we
repeatedly flipped the signs of fold-level deltas to
generate the null distribution that the median delta equals

zero, using 10,000 permutations, two sided. We report the
observed delta, its bootstrap 95% interval, and the
corresponding permutation p-value, which answers
whether the improvement is larger than expected by
chance under the paired design [62], [63].

Wilcoxon signed-rank tests. For the equal-width
versus equal-frequency ECE comparison, we also report
paired Wilcoxon signed-rank tests on fold-matched
differences, alongside bootstrap intervals for the median
delta, to summarize direction and robustness of the
binning effect without distributional assumptions [64].

3. Baseline model performance

Six classifiers were trained and evaluated on the held-
out test set. Table 5 reports Accuracy, F1, and ROC AUC
with 95% bootstrap confidence intervals alongside
precision and recall. Four models achieved very high
with KNN, Random Forest,
XGBoost, and SVM, each reaching high test scores. For
example, KNN achieved 99.0% Accuracy, 99.0% F1, and
100.0% ROC AUC, while Random Forest, XGBoost, and
SVM were in the 97.1% to 99.6% range across these
metrics. Logistic Regression was lower, with 86.0%
Accuracy, 86.6% F1, and 94.3% ROC AUC. Naive Bayes
was lowest, with 80.2% Accuracy, 77.8% F1, and 88.4%
ROC AUC. Confidence intervals are tight for the top four
models, as shown in Figures 3 to 5 and wider for Logistic

scores across metrics,

Regression and Naive Bayes, indicating greater sampling
uncertainty for the latter pair.

Table 5: Performance metrics of baseline classification models (before calibration) with 95% confidence interval (CI) bootstrap

(number of boots = 2,000)

F1 95% CI|ROC ROC AUC 95%
Accuracy | Accuracy 95% CI | F1 (Lower - | AUC CI (Lower - | Precision | Recall
Model | (%) (Lower - Upper) | (%) | Upper) (%) Upper) (%) (%)
KNN |99 98.1-100.0 99 97.9-100.0 100 100.0 - 100.0 100 98.1
RF 98.1 96.4 - 99.4 98.1 |96.4-994 99.6 99.1 -100.0 100 96.2
XGB 98.1 96.4 - 99.4 98.1 |96.5-994 99.2 98.5-99.8 98.1 98.1
SVM | 97.1 95.1-98.7 97.1 |95.1-98.8 98.6 96.9 - 100.0 98.1 96.2
LR 86 82.1-89.6 86.6 | 82.3-90.3 94.3 91.7 - 96.7 85.3 88.0
NB 80.2 75.6 - 84.4 77.8 |71.9-829 88.4 84.2-92.1 91.5 67.7
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To quantify discrimination metric without relying on
a single partition, we used stratified 5-fold cross-
validation, fitting preprocessing and models within each
training fold. We selected the decision threshold by
Youden’s ] using inner cross-validation, then applied that
fixed threshold to the outer validation fold. Following
best practice, we tuned the decision threshold in each fold
on the training predictions, selecting the cut-point that
maximized Youden’s J, rather than using a fixed 0.5
threshold [65], while still maintaining statistical
significance [66]. Table 6 reports the fold means for
Accuracy, F1, and ROC AUC for the uncalibrated models
optimized via Youden ], side by side with baseline
performance from Table 5.

Discrimination was strongest for four models, with
consistently high values. Random Forest and KNN reach
99.60% Accuracy and 99.60% F1, with ROC AUC at
100.00%. SVM attains 99.0% Accuracy, 99.1% F1, and
100% ROC AUC. XGBoost follows closely with 99.0%
Accuracy, 99.0% F1, and 100% ROC AUC. Logistic
Regression and Naive Bayes remain well below this
cluster, with 86.8% and 83.8% Accuracy, 87.5% and 84.7%
F1, and 94.0% and 89.5% ROC AUC, respectively.

These results reflect two effects. First, ROC AUC
values confirm very strong class separability on this
dataset. Second, optimizing the threshold on training data
via Youden’s ] raises fold-wise Accuracy and F1
compared with a fixed cutpoint, which explains the
higher values relative to our earlier fixed-threshold point
estimate summaries [67]. The Youden ] optimised values
in Table 6 serve as the discrimination baseline for all later
comparisons, where we examine how post-hoc
calibration changes calibration metrics while tracking any
movement in Accuracy and F1 relative to these
uncalibrated, Youden-J estimates.

Table 6: Uncalibrated Cross-validated Accuracy, F1, and ROC AUC with tuned parameters

Baseline model performance + Baseline model performance + Hyperparameter tuning + Cross
Hyperparameter tuning validation (CV=5) Out of fold (OOF) + Inner 5-fold for Youden ]
Model | Accuracy F1 ROC AUC Accuracy F1 ROC AUC
KNN 99.0 99.0 100 99.6 99.6 100
RF 98.1 98.1 99.6 99.6 99.6 100
XGB 98.1 98.1 99.2 99.0 99.0 100
SVM 97.1 97.1 98.6 99.0 99.1 100
LR 86.0 86.6 94.3 86.8 87.5 94.0
NB 80.2 77.8 88.4 83.8 84.7 89.5
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3.1. Reliability Plots

We plot reliability diagrams to visualise calibration
effects using out-of-fold predictions from stratified 5-fold
cross-validation. Given a test set of 306 instances (30% of
the 1,025-record dataset), predicted probabilities were
partitioned into ten equal-frequency bins so each bin
contained a similar number of cases, which stabilizes bin
estimates. This choice balances resolution and stability in
modest samples, consistent with guidance that
discourages aggressive binning when counts per bin
become small [56]. For each bin we plot the bin mean
against the observed event rate with Wilson 95% intervals
with a thin rolling mean over the sorted predictions.
Figures 6 to 9 present the six models for the uncalibrated
outputs and for Platt, Isotonic, and Temperature

calibration.

Before calibration (Figure 6), Logistic Regression and
XGBoost track the diagonal closely through most of the

probability range, with small departures near the
extremes. Random Forest shows overconfidence in the
upper tail, where predicted risks exceed observed
frequencies. SVM tracks the diagonal in the mid-range
but is less reliable at the extremes. KNN exhibits a flat,
underconfident shape over much of the scale. Naive
Bayes displays the familiar S-shape, underestimating risk
at intermediate probabilities and overshooting near 1,
consistent with prior reports of miscalibration for these
families of models [7], [9], [53].

Platt scaling (Figure 7) improves Logistic Regression,
SVM and Naive Bayes, drawing curves toward the
diagonal ~where deviations were approximately
monotonic, but it leaves clear residual error for Random
Forest and KNN, likely due to its monotonic, logistic-
form constraint [68][69]. XGBoost shows little gain and, in
places, mild distortion relative to its already good pre-

calibration fit.

Reliability diagrams, Uncalibrated — quantile bins, K=10
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Figure 6: Reliability diagrams, uncalibrated outputs, equal-frequency bins K = 10. Each panel shows bin means with Wilson 95% intervals and a

rolling mean curve.
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Reliability diagrams, Platt — quantile bins, K=10
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Figure 7: Reliability diagrams after Platt scaling, equal-frequency bins K = 10.

Reliability diagrams, Isotonic — quantile bins, K=10
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Figure 8: Reliability diagrams after Isotonic regression, equal-frequency bins K = 10.
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Reliability diagrams, Temperature — quantile bins, K=10
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Figure 9: Reliability diagrams after Temperature scaling, equal-frequency bins K = 10.

Isotonic regression (Figure 8) provides the largest and
most consistent improvements. Naive Bayes becomes
markedly more tightly positioned across the range, and
SVM tightens around the diagonal with narrower
uncertainty bands. Random Forest is corrected at high
probabilities, reducing overconfidence. KNN remains
relatively unstable, with small bins at the extremes still
showing variance. These findings suggest that while
sigmoid calibration is suitable for models with nearly
linear miscalibration, isotonic regression better handles
complex, non-monotonic distortions in probabilistic
estimates [70], [71].

Temperature scaling (Figure 9) yields modest, mostly
uniform shifts in confidence. It reduces the top-end
overconfidence for Random Forest and XGBoost, but its
effect is smaller than isotonic and, as expected for a single-
parameter rescaling, it does not correct non-linear
distortions.

The reliability plots show three consistent themes.
First, with
ensembles tending to be overconfident near 1, Naive

calibration needs are model-specific,
Bayes showing S-shaped error, and Logistic Regression
close to calibrated at baseline. Second, isotonic is the most
effective general-purpose post-hoc adjustment on this

dataset, while Platt helps when deviations are nearly
logistic in form. Third, confidence intervals make
departures from perfect calibration most apparent at the
extremes of the probability scale, where data are sparse.

3.2. Sensitivity of ECE to binning choice

We assessed the stability of ECE using two binning
strategies with K = 10, equal-width and equal-frequency.
For each model, calibration state, and fold, we computed
the paired difference [AECE = ECE {uniform} — ECE {quantite}].
Positive values indicate smaller ECE when bins carry
similar counts. The paired summaries are presented in
Table 7 below, and we plot per-model medians with 95 %
CIs in Figure 10.

Across all models and calibration states combined,
equal-frequency binning produced smaller ECE values.
As shown in Table 7, the overall median AECE was 0.0069
with a 95 % CI 0.0056 to 0.0089 and a Wilcoxon p value
4.87x1078, with 74.2% of paired fold comparisons favoring
equal frequency. The largest effects occur for the tree-
based ensembles. For XGBoost the median AECE was
0.0115 (95 % CI 0.0074 to 0.0149, p 9.54x107%), and for
Random Forest it was 0.0098 (95 % CI 0.0057 to 0.0119, p
2.61x10#). These two bars are the tallest in Figure 10,
matching the entries in Table 7.
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Table 7: Paired comparison of ECE with K =10 using equal-width and equal-frequency bins over CV folds. CIs are 95% Cls bootstrap (number of
boots = 10,000). Paired Wilcoxon tests on fold-matched deltas.

95% 95% Frac
Section Sub section | Number of | Median | Median Median CI | Mean | Wilcoxon p | quantile
pairs A ECE CI Low High A ECE <uniform
Overall ---- 120 0.0069 0.0056 0.0089 0.0054 | 4.87x10-® 0.7417
XGB 20 0.0115 0.0074 0.0149 0.011 9.54x10-¢ 0.9
RF 20 0.0098 0.0057 0.0119 0.0099 | 0.000261 0.95
SVM 20 0.0066 0.0007 0.01 0.006 0.009436 0.8
LR 20 0.0061 -0.0044 0.008 0.0024 | 0.2774 0.6
KNN 20 0.0053 0.0017 0.0074 0.0066 | 0.000655 0.75
By model | NB 20 -0.0024 -0.0093 0.013 -0.0037 | 0.7841 0.45
Uncalibrated | 30 0.0069 0.0012 0.0119 0.0078 | 8.09x10-° 0.7333
Isotonic 30 0.0068 0.0048 0.0083 0.0069 | 0.00073 0.8667
Platt 30 0.0073 0.0016 0.0108 -0.0004 | 0.2534 0.7
By
calibration | Temperature | 30 0.0064 0.0004 0.0147 0.0072 | 0.005383 0.6667
00115 Per-model median AECE with 95% ClI
0.015 4 0.0098 —0.(35)24
0.0066
@ 0.010 0.0061 0.0053
ok
53 0.005
c |
.© e
o
o :§ 0.000
E
= —0.005 -
_00]‘0 L T T T T T —I_
XGB RF SVM LR KNN NB
Model

Figure 10: Per-model median AECE with 95 % CIs bootstrap (number of boots = 10,000).

SVM and KNN show smaller but consistent gains. As
seen in Table 7, SVM has median AECE 0.0066 (95 % CI
0.0007 to 0.0100, p 9.44x10-%), and KNN has 0.0053 (95 %
CI 0.0017 to 0.0074, p 6.55x10). Logistic Regression
shows a modest median with a CI that crosses zero, 0.0061
(95 % CI-0.0044 to 0.0080, p 0.277). Naive Bayes shows no
advantage for equal-frequency, -0.0024 (95 % CI -0.0093 to
0.0130, p 0.784). These patterns are visible in Figure 10,

where LR has a short bar with wide whiskers and NB dips
slightly below zero.

By calibration method, the same direction holds. As
shown in Table 7, the median AECE is 0.0069 for
Uncalibrated (95 % CI10.0012 to 0.0119, p 8.09x10-%), 0.0068
for Isotonic (95 % CI 0.0048 to 0.0083, p 7.30x10%), and
0.0064 for Temperature (95 % CI 0.0004 to 0.0147, p
5.38x10-%). Platt shows a positive median 0.0073 with a
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non-significant p value 0.253, which is consistent with its
shorter bar and wide CI in Figure 10.

This sensitivity analysis indicates that ECE is lower
on average with equal-frequency bins, as shown in Table
7 and Figure 10. We therefore report both ECE variants
throughout and treat the quantile-based ECE as a
robustness check rather than as evidence of intrinsically
better calibration.

3.3. Calibration metrics by model and calibration method

Table 8 reports fold means for Accuracy, F1, AUC
ROC, Brier score, ECE with equal-width bins at K = 10,
ECE with equal-frequency bins at K=10, and Log Loss for
each model under Uncalibrated, Platt, Isotonic, and
Temperature. We identify the best calibration per model
using the rule “best” equals the minimum Brier, the
minimum of each ECE variant, and the minimum Log

Across models, Isotonic most often provides the
strongest calibration. This pattern is consistent with the
reliability plots where a monotone nonparametric map
aligns S-shaped or overconfident regions while
preserving ordering. Platt is competitive when deviations
are close to a logistic shift, and Temperature yields
smaller, uniform corrections that can trim overconfidence

without altering rank.

Two models, KNN and SVM, are best uncalibrated
across the calibration metrics in this dataset. For these
models, applying Platt, Isotonic, or Temperature does not
improve Brier, ECE, or Log Loss relative to the
uncalibrated scores in Table 8, and in places calibration
slightly worsens these quantities. This matches the
which
miscalibration for SVM and persistent variance for KNN

reliability  plots, show limited systematic

that calibration does not correct.

Loss.

Table 8: Cross-validated means for Accuracy, F1, AUC ROC, Brier, ECE (uniform, 10), ECE (quantile, 10), and Log Loss by model and calibration

method. Bold, per model, the method achieving the minimum for Brier, each ECE variant, and Log Loss.

RO
Accura C Brier Log ECE ECE Sharpness | Z- Z p-
Model | Calibration F1 (unifo | (quantile,
cy AU | Score | Loss (Var) Score | value
C rm, 10) | 10)

KNN | Isotonic 99.6 99.6 | 100 | 0.0044 | 0.0211 | 0.0146 | 0.0094 0.2396 0.9252 | 0.5618
Platt 99.6 99.6 | 100 | 0.0054 | 0.0388 | 0.0308 | 0.0237 0.2231 0.6622 | 0.5969
Temperature | 96.7 96.7 | 99 0.0258 | 0.1228 | 0.0287 | 0.0148 0.2295 1.0477 | 0.3933
Uncalibrated | 99.6 99.6 | 100 | 0.0026 | 0.007 0.0039 | 0.0039 0.2487 0.9849 | 0.6608

LR Isotonic 87.3 87.8 | 944 | 0.0905 | 0.3018 | 0.055 0.0482 0.1639 -0.1645 | 0.5713
Platt 86.7 87.5 | 94 0.0957 | 0.3182 | 0.0567 | 0.0645 0.1394 -0.0513 | 0.6791
Temperature | 85.1 85.7 1 93.6 | 0.0975 | 0.3259 | 0.0593 | 0.056 0.1504 0.4082 | 0.4916
Uncalibrated | 86.8 87.5 | 94 0.0944 | 0.3171 | 0.0646 | 0.0571 0.1565 0.021 0.577

NB Isotonic 83.8 84.7 1 90.7 |0.1196 | 0.3839 | 0.0621 | 0.0534 0.1344 -0.0773 | 0.5412
Platt 83.7 84.7 1 90.1 | 0.1291 | 0.4222 | 0.0545 | 0.0942 0.1023 -0.1822 | 0.6847
Temperature | 81.2 80.1 | 89.9 |0.1248 | 0.4487 | 0.0741 | 0.0689 0.1656 -0.0968 | 0.6696
Uncalibrated | 83.8 84.7 | 89.5 |0.1492 | 1.51 0.146 0.1348 0.2292 -3.1409 | 0.2343

RF Isotonic 99.6 99.6 | 100 | 0.0042 | 0.0201 | 0.0144 | 0.0098 0.2387 0.8125 | 0.5283
Platt 99.6 99.6 | 100 | 0.0048 | 0.0366 | 0.0331 | 0.0223 0.2217 0.5198 | 0.6463
Temperature | 97 97 199 0.0242 | 0.1024 | 0.0318 | 0.0201 0.2264 0.9775 | 0.4323
Uncalibrated | 99.6 99.6 | 100 | 0.0058 | 0.0484 | 0.0449 | 0.0322 0.2109 0.6992 | 0.506

SVM Isotonic 99.1 99.1 | 100 | 0.0087 | 0.0442 | 0.0337 | 0.0268 0.2228 0.4598 | 0.4639
Platt 98.8 98.9 1 99.9 |0.0125 | 0.075 0.0594 | 0.0452 0.1991 0.3284 | 0.5607
Temperature | 95.6 95.7 | 982 |0.0365 | 0.1675 | 0.0426 | 0.0411 0.2074 0.6681 | 0.4894
Uncalibrated | 99 99.1 | 100 | 0.0065 | 0.0376 | 0.0226 | 0.0214 0.2316 0.0207 | 0.3804

XGB Isotonic 99.2 99.2 | 100 | 0.007 0.0311 | 0.0241 | 0.0147 0.2313 0.4402 | 0.5234
Platt 99.4 99.4 | 100 | 0.0092 | 0.0534 | 0.0438 | 0.0307 0.2125 0.2697 | 0.7105
Temperature | 96.9 96.9 | 98.1 | 0.0308 | 0.1453 | 0.0385 | 0.0311 0.2142 0.7084 | 0.4043
Uncalibrated | 99 99 | 100 |0.0135 | 0.0764 | 0.0639 | 0.0497 0.1964 0.2525 | 0.8046
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Random Forest shows its clearest gains under
Isotonic. Brier, both ECE variants, and Log Loss are
lowest with Isotonic, mirroring the correction of high-
probability overconfidence seen in the reliability plots.
Accuracy and F1 remain close to the uncalibrated
Youden-] values, and AUC ROC is essentially unchanged.
XGBoost starts close to calibrated. Differences among
methods are small, with Isotonic producing the best Log
Loss and competitive ECE values. Accuracy and F1 shift
only marginally relative to the uncalibrated Youden-]
baseline.  Logistic Regression is already well
behaved. Isotonic yields the best Log Loss, ECE, with
discrimination metrics essentially unchanged. Naive
Bayes shows the largest calibration gains with Isotonic.
Brier, both ECE variants, and Log Loss drop, consistent
with the straightening of the S-shaped reliability curve.
AUC ROC remains constant, and Accuracy and F1 may
change slightly without a systematic direction.

On  the
Temperature does not behave as neutral. In your fold

calibration-discrimination balance,

means, Temperature shifts Accuracy and F1 for every

model, and AUC ROC also changes rather than remaining
fixed. Isotonic and Platt tend to preserve AUC ROC
within small deltas while improving Brier, ECE, and Log
Loss, but Temperature’s global rescaling can move
operating points and ranking enough to register in
discrimination metrics. Consequently, when
discrimination stability is a priority, Isotonic is generally
preferred for RF, XGB, LR, and NB, Uncalibrated is
preferred for SVM and KNN, and Temperature should be
used with caution because of its measurable impact on
Accuracy, F1, and sometimes AUC ROC as reflected in

Table 8.

3.4. Calibration metrics with uncertainty

We report cross-validated calibration performance
for Uncalibrated, Platt, Isotonic, and Temperature using
Brier score, ECE with equal-width bins, K =10, ECE with
equal-frequency bins, K = 10, and Log Loss. Table 9
presents per-model means with 95% bootstrap Cls across
folds. These tabulated intervals anchor the comparisons
that follow and are the source for the error bars in the

grouped plots.
Table 9: Calibration metrics with 95% bootstrap confidence intervals by model and calibration state, number of boots = 2000
. ECE ECE Log
Brier . .
95% CI ECE (uniform,10) ECE (quantile,10) Lo Loss
(]
Model | Calibration | Brier L (uniform, | 95% CI (quantile, | 95% CI L 8 95% CI
ower - 0ss
U ) 10) (Lower - 10) (Lower - (Lower -
er
PP Upper) Upper) Upper)
Uncalibrated | 0.0026 00~ 0.0039 0.0-0.01 0.0039 0.0-0.01 0.007 0.0~
ncalibrate . 0.0075 . . . . . . . 0.0192
KNN 0.0019 - 0.0274 -
Platt 0.0054 0.0308 0.0263 - 0.0352 | 0.0237 0.0185-0.029 | 0.0388
0.0114 0.0537
Isotoni 0.0044 00009~ 0.0146 0.0083 - 0.0211 | 0.0094 0.0036 - 0.0162 | 0.0211 0.0085 -
sotonic . 0.0108 . . . . . . . 0.0393
0.0199 - 0.068 -
Temperature | 0.0258 0.0287 0.0206 - 0.0388 | 0.0148 0.0102 - 0.0193 | 0.1228
0.0326 0.1916
. 0.0046 - 0.0449 -
Uncalibrated | 0.0058 0.0449 0.0422 - 0.049 | 0.0322 0.0316 - 0.0328 | 0.0484
0.0078 0.054
RF 0.0027 - 0.0303 -
Platt 0.0048 0.0331 0.0289 - 0.0374 | 0.0223 0.0195 - 0.0256 | 0.0366
0.0083 0.0442
. 0.0012 - 0.0111 -
Isotonic 0.0042 0.0144 0.0104 - 0.0184 | 0.0098 0.0071 - 0.0133 | 0.0201
0.0095 0.0329
0.017 - 0.076 -
Temperature | 0.0242 0.0318 0.0257 - 0.0378 | 0.0201 0.0109 - 0.0308 | 0.1024
0.0306 0.1339
. 0.0119 - 0.0716 -
Uncalibrated | 0.0135 0.0639 0.0592-0.069 | 0.0497 0.046 - 0.0534 | 0.0764
XGB 0.0152 0.0812
0.0074 - 0.0484 -
Platt 0.0092 0.0438 0.0382 - 0.0496 | 0.0307 0.0261 - 0.0371 | 0.0534
0.0112 0.0574
. 0.0044 - 0.0248 -
Isotonic 0.007 0.0241 0.0204 - 0.0294 | 0.0147 0.011-0.0194 | 0.0311
0.0096 0.0372
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0.0216 - 0.1089 -
Temperature | 0.0308 0.0385 0.0317 - 0.0444 | 0.0311 0.0268 - 0.0388 | 0.1453
0.04 0.1871
, 0.002 - 0.0204 -
Uncalibrated | 0.0065 0.0226 0.0157 - 0.0307 | 0.0214 0.0133-0.0299 | 0.0376
0.0132 0.061
SVM 0.0094 - 0.0668 -
Platt 0.0125 0.0594 0.0512 - 0.0664 | 0.0452 0.0312-0.0567 | 0.075
0.0174 0.0861
.0056 - 0376 -
Isotonic 0.0087 | %090~ 10 0337 0.0309 - 0.0365 | 0.0268 0.0221-0.0313 | 0.0442 | 20976
0.0128 0.052
0.0304 - 0.1266 -
Temperature | 0.0365 0.0426 0.0368 - 0.0484 | 0.0411 0.0322-0.05 | 0.1675
0.0412 0.2111
0.088 - 0.2912 -
Uncalibrated | 0.0944 0.0646 0.0575 - 0.0745 | 0.0571 0.0505 - 0.0637 | 0.3171
0.1002 0.34
LR 0.0906 - 0.3001 -
Platt 0.0957 0.0567 0.0446 - 0.0693 | 0.0645 0.0546 - 0.0746 | 0.3182
0.1007 0.3352
, 0.0842 - 0.2784 -
Isotonic 0.0905 0.055 0.0511 - 0.0589 | 0.0482 0.0415 - 0.0539 | 0.3018
0.0962 0.3194
0.0922 - 0.3062 -
Temperature | 0.0975 0.0593 0.0497 - 0.0697 | 0.056 0.0462 - 0.0655 | 0.3259
0.1027 0.3455
Uncalibrated | 01492 | 297 | 0146 0.1314-0.1649 | 0.1348 01191-0148 |151 | 2B%
ncalipbrate . 01634 . . -VU. . . - V. . 17586
NB 0.1201 - 0.4009 -
Platt 0.1291 0.0545 0.0407 - 0.0715 | 0.0942 0.0759 - 0.1117 | 0.4222
0.1381 0.4453
Isotoni 01196 | 21197 1 0621 0.0498 - 0.0784 | 0.0534 0.0425-0.0637 | 0.3839 | 0220~
sotonic . 01308 . . . . . . . 04166
0.1134 - 0.3869 -
Temperature | 0.1248 0.0741 0.0542 - 0.0893 | 0.0689 0.057-0.0771 | 0.4487
0.1382 05153

As shown in Figure 11, Brier score with 95% ClIs, tree
ensembles benefit the most from Isotonic. For Random
Forest, Brier drops from 0.0058 uncalibrated to 0.0042
with Isotonic, while Platt and Temperature are higher at
0.0048 and 0.0242. For XGBoost, Brier improves from
0.0135 uncalibrated to 0.0070 with Isotonic, with Platt

0.0092 and Temperature 0.0308. Naive Bayes shows a
large reduction relative to its baseline, 0.1492 uncalibrated
to 0.1196 with Isotonic. Support Vector Machine and K-
Nearest Neighbors are best Uncalibrated on Brier at
0.0065 and 0.0026 respectively, and Temperature is the
worst state for both.

Brier across Models and Calibration (95% CI from CV folds)

B=— 0.0026 Calibration
p— 0.0258 .
KNN = 0.0054 Isotonic
- 0.0044 Platt
B4 0.0058 Temperature
RF - T 0.0242 Uncalibrated
—— 0.0042
- 0.0065
SYM 00125|_| 0.0365
[ —— 0.0087
=l
[=}
0.0135
" xe8- I—I'-:)' 0092 00308
=i 0.007
——- 0.0944
LR 4 F—— 0.0975
F———- 0.0957
——- 0.0905
'Tz-m—' 0.1492
i 0
NB A - 0.1291
— 0.1196
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Brier

Figure 11: Brier score across models and calibration states with 95% Cls

WWWw .jenrs.com

Journal of Engineering Research and Sciences, 4(12): 25-54, 2025

44


http://www.jenrs.com/

@) JENRS

P. A. Odesola et al., Model Uncertainty Quantification: A Post Hoc

Turning to Figure 12, ECE (equal-width, K = 10),
Random Forest falls from 0.0449 uncalibrated to 0.0144
with Isotonic, and XGBoost from 0.0639 to 0.0241. Naive
Bayes improves from 0.146 to the 0.055-0.062 range under
Platt or Isotonic. KNN is already very low uncalibrated at
0.0039, and all calibrators increase uniform-ECE. SVM
shows mixed behavior, with Temperature giving a lower
uniform-ECE than Platt, yet Brier and Log Loss still favor
the uncalibrated state.

The sensitivity of ECE to the binning approach is clear
in Figure 13, ECE (equal-frequency, K = 10). Absolute
values are smaller and intervals are tighter because bins
carry similar counts. Random Forest improves from

near 0.0942. KNN remains best uncalibrated at 0.0039,
with Isotonic 0.0094 and Temperature 0.0148 above that.
SVM is lowest Uncalibrated at 0.0214 and rises under
calibration, Isotonic 0.0268, Temperature 0.0411, Platt
0.0452.

Likelihood trends in Figure 14, Log Loss with 95%
ClIs, reinforce the Brier score pattern with Temperature
worsening on most of the models. Random Forest moves
from 0.0484 uncalibrated to 0.0201 with Isotonic. XGBoost
drops from 0.0764 to 0.0311. Naive Bayes is most erratic,
1.51 uncalibrated to 0.3839 with Isotonic and 0.4222 with
Platt. KNN and SVM are best Uncalibrated at 0.0070 and
0.0376; Temperature increases loss across models.

0.0322 (uncalibrated) to 0.0098 with Isotonic, and  Logistic Regression improves modestly, 0.3171
XGBoost improves from 0.0497 to 0.0147. Naive Bayes  uncalibrated to 0.3018 with Isotonic.
drops from 0.1348 to 0.0534 with Isotonic, while Platt sits
ECE (uniform,10) across Models and Calibration (95% CI from CV folds)
0.0039 Calibration
KNN 00%[?8287 e Isotonic
0.0146 mem Platt
0.0226 . Temperature
SVM 0.0426 0.0594 W Uncalibrated
0.0 7
b 0.0449
RF 0.0331
] 0.0144
E=
g R 0.0639
XGB 40.0438
0.024
0.0555°%4¢
LR 0.0567
0.055
o 0.146
NB 0.0545 ’
0.0621
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
ECE (uniform,10)
Figure 12: Expected Calibration Error with equal-width bins, K = 10, across models and calibration states with 95% ClIs.
ECE (quantile,10) across Models and Calibration (95% CI from CV folds)
0.0039 Calibration
KNN 0.0148 0.0237 mm Isotonic
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Figure 13: Expected Calibration Error with equal-frequency bins, K = 10, across models and calibration states with 95% ClIs.
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Log Loss across Models and Calibration (95% Cl from CV folds)

Calibration
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e Platt
. Temperature
B Uncalibrated

KNN
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LR

1.51
NB

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
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Figure 14: Log Loss across models and calibration states with 95% Cls

The statistical check in Figure 15, Spiegelhalter's Z  for the uncalibrated state. Logistic Regression remains

and p, complements the aggregate metrics. Valuesnear Z  close to zero, Z from -0.16 to 0.41 with p = 0.49-0.68, in line

= 0 with p > 0.05 indicate no detectable miscalibration at
fold scale. Random Forest stays near zero across states
with p = 0.50-0.65, and XGBoost shows Z = 0.25-0.71 with
p = 0.40-0.81. Naive Bayes improves from Z = -3.14, p =

with small but consistent gains under Isotonic.

We further conducted a statistical comparison test
using permutation P-values between pre and post-

calibration metrics, setting the number of permutations to
20,000 and the number of bootstraps to 2,000. Table 10
reports

0.234 uncalibrated to Z = -0.08 to -0.18 with p =~ 0.54-0.69
after calibration, consistent with its large reductions in
Brier and Log Loss. KNN sits around Z = 0.66-1.05 with p
= 0.39-0.66, which matches its already strong Brier and
Log Loss when uncalibrated and the lack of benefit from
calibration. SVM shows Z = 0.02-0.67 and p =~ 0.38-0.56,
again echoing the mixed ECE behavior and the preference

changes calculated as calibrated minus
uncalibrated for each metric, where negative deltas
indicate

improvement, with permutation p-values

computed on fold-matched resamples.

Spiegelhalter's Z-Score

Spicgelhalter's Z p-value

K-Nearest Neighbors i 5 . 0.597

Logistic Regression ~OH k . 0.679

Naive Bayes

Maodel

Random Forest

- 0.4
Suppoert Vector Machine

- 0.3
XGBoost

Uncalibrated  Isotonic Platt

Calibration

Temperature Uncalibrated Isotonic Platt

Calibration

Temperature

Figure 15: Heatmaps of Spiegelhalter’s Z-score and p-value across models and calibration states. Values near zero with p above 0.05 indicate no
detectable miscalibration
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Table 10: Statistical comparison tests using Permutation P between pre and post-calibration metrics.

ECE
. . Brier . Permutation | ECE Permutation | Log

Calibration . (uniform, i i

Model A (Cal | Permutation 10) A p (ECE (quantile, | p (ECE Loss A | Permutation
odel | vs
] - p (Brier) (uniform, 10) A (Cal | (quantile, (Cal- | p(Log Loss)
Uncalibrated (Cal -
Uncal) 10) - Uncal) 10) Uncal)
Uncal)

Platt 0.0028 | 0.0626 0.0269 0.0632 0.0198 0.0624 0.0318 | 0.0682

Isotonic 0.0018 | 0.0608 0.0107 0.0684 0.0055 0.0638 0.0141 | 0.0624
KNN | Temperature | 0.0232 | 0.0633 0.0248 0.0637 0.0109 0.1284 0.1158 | 0.0618

Platt -0.001 | 0.2537 -0.0119 0.0601 -0.0099 0.0566 0.0118 | 0.0637

Isotonic 0.0016 | 0.3717 -0.0305 0.0612 -0.0224 0.0604 0.0283 | 0.0664
RF Temperature | 0.0184 | 0.0611 -0.0131 0.0605 -0.0121 0.1826 0.054 | 0.0604

Platt 0.0043 | 0.0654 -0.0202 0.0624 -0.019 0.0605 0.0231 | 0.0611

Isotonic 0.0065 | 0.0613 -0.0398 0.064 -0.0349 0.0625 0.0453 | 0.0612
XGB Temperature | 0.0173 | 0.0616 -0.0254 0.0642 -0.0185 0.1278 0.0688 | 0.0632

Platt 0.006 | 0.06 0.0368 0.0626 0.0238 0.0637 0.0374 | 0.0625

Isotonic 0.0022 | 0.3037 0.0111 0.0618 0.0054 0.1889 0.0065 | 0.4374
SVM Temperature | 0.03 0.0622 0.02 0.1236 0.0197 0.1863 0.1299 | 0.0634

Platt 0.0013 | 0.0637 -0.0079 0.1285 0.0074 0.1236 0.0011 | 1

Isotonic 0.0039 | 0.0644 -0.0096 0.0611 -0.0089 0.1241 0.0153 | 0.0637
LR Temperature | 0.0031 | 0.1859 -0.0053 0.5643 -0.0011 0.8708 0.0088 | 0.0625

Platt 0.0201 | 0.0589 -0.0915 0.0619 -0.0406 0.0632 1.0878 | 0.0628

Isotonic 0.0296 | 0.0589 -0.0838 0.063 -0.0814 0.0599 -1.126 | 0.0612
NB Temperature | 0.0244 | 0.0609 -0.0719 0.0662 -0.0659 0.0633 1.0613 | 0.0622

For Random Forest, Isotonic delivers coherent gains
across all metrics, for example ECE with equal-width bins
falls by 0.0305 and ECE with equal-frequency bins by
0.0224 with p about 0.06, and Log Loss drops by 0.0283
with similar uncertainty. XGBoost shows the same
direction with larger magnitudes, ECE with equal-width
bins by 0.0398, ECE with equal-frequency bins by 0.0349,
and Log Loss by 0.0453, all with p near 0.06.Naive Bayes
exhibits the largest changes in this study, moving from
poor raw calibration to materially lower error after
Isotonic, Brier decreases by 0.0296, ECE with equal-width
by 0.0838, ECE with equal-frequency by 0.0814, and Log
Loss by 1.126, again with p around 0.06.

In contrast, K-Nearest Neighbors and Support Vector
Machine are best left uncalibrated, since all calibrators

raise error on most metrics, for example KNN Log Loss
increases by 0.0318 with Platt and by 0.1158 with
Temperature, while SVM ECE with equal-width increases
by 0.0368 with Platt and by 0.020 with Temperature.
Logistic Regression shows only small, mostly favorable
shifts under Isotonic, for example ECE with equal width
decreases by 0.0096 and Log Loss by 0.0153, while Platt
and Temperature are mixed or neutral. The p-values
cluster near 0.06, so the direction and coherence across
metrics carry the interpretation. Where effects are large
and consistent, as in Naive Bayes and the two ensembles
with Isotonic, the conclusion is strong. Where effects are
small or mixed, as in Logistic Regression, claims should
be conservative.
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To explore the relationship between calibration and
prediction quality, we plotted Expected Calibration Error
(ECE) against the Brier Score for all model-calibration
combinations (Figure 16-17). Ideally, well-calibrated and
accurate models should lie close to the diagonal line,
where ECE and Brier Score are proportionally aligned.
We plotted ECE (uniform, K = 10) against the Brier score
for every model-calibration pair, with a 45° reference line
for proportional agreement (Figure 16). Points in the
lower left indicate both low Brier and low ECE. XGBoost
and Random Forest cluster close to this region under
isotonic and Platt, consistent with the grouped bar results
that showed small Brier and small ECE after calibration.
Logistic Regression sits mid-left, where Brier is modest
and ECE varies by method, with isotonic typically lowest.
K-Nearest Neighbors and Support Vector Machine show
larger spread, and their uncalibrated states lie below the
diagonal with small Brier but noticeably higher ECE,
matching their reliability curves that showed local
miscalibration at low and mid probabilities. Naive Bayes

forms the upper-right cloud, reflecting both high Brier
and high ECE when uncalibrated, with clear leftward and
downward shifts after calibration.

Repeating the plot with quantile binning reduces ECE
values across most points while preserving the relative
ordering (Figure 17). This mirrors the sensitivity analysis
where quantile ECE was systematically lower than
uniform ECE. Tree models remain in the lower-left
quadrant, Logistic Regression is slightly shuffled &
moves closer to the diagonal under isotonic, and KNN
continues to show higher ECE than its Brier alone would
suggest in the uncalibrated and Platt states. Naive Bayes
still separates from the rest, but calibration methods shift
it downward and left. The consistency of these patterns
across both binning schemes supports the conclusion that
models with better Brier also tend to have better
calibration, while ECE exposes cases where apparently
small Brier can hide meaningful miscalibration.

Calibration Comparisan: Brier Score vs ECE (uniform,10)
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Figure 16: Calibration comparison, Brier score vs ECE (uniform, K = 10). Each point represents one model-calibration pair. The dashed line marks

proportional equality between the two metrics.

Calibration Comparison: Brier Score vs ECE (quantile,10)
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3.5. Sharpness of predicted probabilities

Sharpness, measured as the variance of predicted
probabilities, summarizes how concentrated a model’s
probabilities are. Larger variance means more confident
smaller variance means flatter,

predictions; more

conservative outputs.

Across all conditions, KNN is the sharpest. The
uncalibrated KNN attains the highest variance at 0.249,
and remains high after calibration, 0.240 with isotonic and
0.230 with temperature, with a modest reduction under
Platt to 0.223. Tree ensembles are also highly sharp, but
their behavior differs by calibration method. Random
Forest rises from 0.211 uncalibrated to 0.239 with isotonic,
with smaller values for Platt (0.222) and temperature
(0.226). XGBoost pattern, 0.196
uncalibrated, 0.231 isotonic, 0.214 temperature, 0.212
Platt. These results indicate that isotonic leaves ensemble

shows a similar

predictions are confident, while Platt and temperature
introduce mild smoothing.

For margin-based and linear models, calibration
tends to smooth more. SVM drops from initial 0.232
to 0223 with 0.207 with
temperature, and 0.199 with Platt. Logistic Regression
falls from 0.157 uncalibrated to 0.164 isotonic, 0.150
temperature, and 0.139 Platt. Naive Bayes exhibits the
largest reduction, from 0.229 uncalibrated to 0.166

uncalibrated isotonic,

temperature, 0.134 isotonic, and 0.102 Platt, consistent
with its strong decrease in ECE and Log Loss in Table 9.

Isotonic often preserves or slightly increases

sharpness for the ensembles while reducing ECE and Log
Loss, suggesting better-positioned confidence without

blunting predictions. Also, Platt and temperature
systematically soften LR, SVM, and NB, which can be
desirable when the uncalibrated model is overconfident,
as evidenced by their reliability curves in Figure 6-9 and
Spiegelhalter’s statistics in Figure 15.

4. Interpretation of Results

This study demonstrates the impact of post-hoc
calibration methods on model confidence, calibration
quality, and statistical reliability in heart disease
prediction. Isotonic regression remained the most
effective calibrator for several models, but its advantage
was model-dependent. In our cross-validated analysis,
Random Forest, XGBoost, Logistic Regression, and Naive
Bayes showed consistent improvements under isotonic
calibration across Brier, ECE, and Log Loss, while
Support Vector Machine and K-Nearest Neighbors were
best left uncalibrated on the calibration metrics and
likelihood, with temperature scaling often worsening
discrimination. These conclusions are supported by the
grouped calibration plots with 95% confidence intervals
and the permutation tests that compare calibrated to
uncalibrated fold by fold (Tables 8-10, Figures 11-15). As
an illustration, Random Forest's ECE and Log Loss
decrease substantially under isotonic relative to
uncalibrated in the grouped plots, and Naive Bayes
exhibits the largest drops among all models. These effects
are mirrored by near-zero Spiegelhalter Z with higher p
after calibration in several models, which indicates no
detectable miscalibration at fold scale while recognizing
that non-significant p does not prove perfect calibration

[61].
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Figure 18: Sharpness of predicted probabilities (variance) across models and calibration methods.
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These findings support the theory that sigmoid
calibration is most suitable when miscalibration is close to
a logistic shift, whereas isotonic regression can correct
distortions [7], [9].
Temperature scaling provides a single-parameter softness

more complex, monotone
control, but it shifts Accuracy and F1 across all models
and frequently increased Log Loss, so it should be applied
with caution here [5]. The comparative nature of our
analysis is crucial. We based inferences on cross-validated
fold means with confidence intervals, and on paired
permutation tests that quantify whether calibrated
metrics are better than uncalibrated under the matched
fold design, directly addressing requests for statistical
comparison rather than isolated point estimates.

In clinical applications, where predicted risks inform
communication and thresholds, miscalibrated models can
convey inappropriate levels of confidence, complicating
risk discussions and the consistency of threshold-based
decisions without necessarily improving patient-level
utility. For example, Naive Bayes before calibration
produced extreme probabilities with poor alignment to
outcomes, which post-calibration corrected, lowering
Brier and Log Loss and improving Z and p toward values
consistent with good calibration. This highlights the need
for calibration pipelines in Al-assisted diagnostics to
improve trustworthiness and reduce the risk that
[72].
Reliability diagrams built from out-of-fold predictions

probability outputs misrepresent uncertainty
with Wilson intervals and per-bin counts further illustrate
these corrections while avoiding test-set leakage [5][56].
Together with the sharpness analysis, this shows when
confidence is well in line with observed risk and when it
is not.

A key methodological contribution is the joint use of
multiple calibration summaries, guidance on clinical
presentation of calibration and reporting practices
supports this multi-metric approach [52]. Previous work
often reported only one metric such as Brier or ECE [5],
[73]. We combined Brier, ECE, Log Loss, Spiegelhalter’s
Z, p-value, and Sharpness across six classifiers, and we
visualized their relationships with grouped plots and
Brier versus ECE scatterplots. The scatterplots show that
points move down and left after isotonic for the tree
ensembles and Naive Bayes, indicating lower calibration
error and lower probabilistic loss, while SVM and KNN
tend to cluster closer to their uncalibrated states,
consistent with their preference to remain uncalibrated.
The ECE sensitivity analysis confirms that equal-
frequency binning yields smaller ECE than equal-width

on average, with a positive median difference and a
paired test p below conventional threshold. We therefore
report both ECE variants, interpret their magnitudes
cautiously, and base primary claims on the convergence
of multiple metrics rather than a single summary [5], [56].

Another contribution of this work is a reproducible
evaluation framework for post-hoc calibration in binary
heart disease prediction that couples strict leakage control
with fold-conscious uncertainty and paired comparative
testing. Some models, notably Naive Bayes and Random
Forest, benefit substantially from isotonic calibration,
while others, such as KNN and SVM, do not. By
introducing sharpness alongside calibration, we examine
correctness and the confidence dispersion, which is
essential for risk stratification and model auditability [74].
Throughout, all preprocessing, threshold selection by
Youden’s | inside an inner loop, and calibration were fit
on training data only, never on the test set, which reduces
optimistic bias and supports statistically valid inference
[44], [75], [76].

From an operational standpoint, the calibration
procedures used here are lightweight and feasible to
maintain. Platt and temperature scaling add negligible
compute at inference and only a small fit cost on held-out
training predictions, while isotonic regression remains
inexpensive at structured clinical feature data. For
integration, the same nested cross-validated approach can
be embedded in routine retraining to provide continuous
calibration as data drift is detected, for example by
monitoring ECE and Log Loss on recent cases and
triggering recalibration when control limits are exceeded.
Because probability calibration can change subgroup
error profiles, fairness should be checked pre and post-
calibration, for instance by reporting calibration curves,
ECE, and Brier stratified by demographic groups, and by
tracking stability under distribution shift. In our setting,
the per-model recommendations are actionable, isotonic
for tree ensembles and Naive Bayes, uncalibrated for
SVM and KNN, and cautious use of temperature scaling.
This preserves inference speed and aligns with a periodic
recalibration policy that is straightforward to implement
in clinical pipelines.

This study is limited by the size of the dataset
(N=1,025), which can increase variability in binned
metrics and in Z, even with Wilson intervals and cross-
validated designs. We did not include an external cohort,
to be
independent populations. We focused on Platt, Isotonic,

so generalizability remains confirmed on

and Temperature, leaving alternatives such as beta
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calibration or Bayesian binning to future work. We also
did not include decision-curve analysis in the main
results, which would connect calibrated probabilities to
clinical net benefit and we did not integrate model
interpretability or explainability analysis. Future research
should extend the framework to external and temporal
validation, add decision-curve analysis under fixed
thresholds selected by Youden's ], evaluate alternative
calibrators, and incorporate explainability to link
calibrated risk with feature attributions in support of
clinical review.

5. Conclusion

This study evaluated the calibration performance of
six classification models for heart disease prediction using
post-hoc techniques and multiple uncertainty metrics.
While several models achieved strong discrimination,
their probability estimates were not always aligned with
observed outcomes. This confirms the need to assess
probability quality in addition to accuracy and AUC
ROC.

Across methods and models, post-hoc calibration
improved probability alignment in a model-dependent
way. Isotonic regression yielded the most consistent gains
in Brier score, ECE, and Log Loss for Random Forest,
XGBoost, Logistic Regression, and Naive Bayes, with
verified under cross-validated

effects estimation,

bootstrap intervals, and paired permutation tests.
Spiegelhalter’'s Z and p provided complementary
evidence for absolute calibration, interpreted cautiously
given sample size. In contrast, Support Vector Machine
and K-Nearest Neighbors were best left uncalibrated on
these metrics. Temperature scaling was included for
completeness, but in this setting, it often increased Log

Loss and affected discrimination.

The study contributes a reproducible calibration-
evaluation framework for structured clinical predictors.
Preprocessing, threshold selection via Youden'’s ], and all
calibrators were fit on training data within cross-
validation, then applied to matched validation folds and
only finally to the held-out test set. Reliability diagrams
were built from out-of-fold predictions with Wilson
intervals and bin counts. ECE was reported in two
variants, equal-width and equal-frequency, and a paired
sensitivity analysis showed lower values under quantile
binning without changing the qualitative ranking.
Sharpness was calibration to

reported alongside

characterize confidence concentration, helping to

interpret when improvements reflect better aligned
probabilities rather than simple smoothing.

These results indicate that isotonic calibration is a
strong default for tree ensembles and Naive Bayes under
this workflow, that Logistic Regression benefits from
Isotonic, and that SVM and KNN may not require
calibration. The framework balances calibration and
discrimination by using a single threshold per model
chosen with Youden’s ] inside the training folds, which
stable
recommendation is to evaluate calibration routinely with

mirrors a operating policy. The overall
fold-aware uncertainty, to select the calibration method
by empirical evidence on the target data, and to deploy

periodic recalibration with monitoring for drift.
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