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ABSTRACT: We investigated whether post-hoc calibration improves the trustworthiness of heart-
disease risk predictions beyond discrimination metrics. Using a Kaggle heart-disease dataset (n = 
1,025), we created a stratified 70/30 train-test split and evaluated six classifiers, Logistic Regression, 
Support Vector Machine, k-Nearest Neighbors, Naive Bayes, Random Forest, and XGBoost. 
Discrimination was quantified by stratified 5-fold cross-validation with thresholds chosen by Youden’s 
J inside the training folds. We assessed probability quality before and after Platt scaling, isotonic 
regression, and temperature scaling using Brier score, Expected Calibration Error with equal-width 
and equal-frequency binning, Log Loss, reliability diagrams with Wilson intervals, and Spiegelhalter’s 
Z and p. Uncertainty was reported with bootstrap 95% confidence intervals, and calibrated versus 
uncalibrated states were compared with paired permutation tests on fold-matched deltas. 

Isotonic regression delivered the most consistent improvements in probability quality for Random 
Forest, XGBoost, Logistic Regression, and Naive Bayes, lowering Brier, ECE, and Log Loss while 
preserving AUC ROC in cross-validation. Support Vector Machine and k-Nearest Neighbors were best 
left uncalibrated on these metrics. Temperature scaling altered discrimination and often increased Log 
Loss in this structured dataset. Sensitivity analysis showed that equal-frequency ECE was 
systematically smaller than equal-width ECE across model-calibration pairs, while preserving the 
qualitative ranking of methods. Reliability diagrams built from out-of-fold predictions aligned with 
the numeric metrics, and Spiegelhalter’s statistics moved toward values consistent with better absolute 
calibration for the models that benefited from isotonic regression. The study provides a reproducible, 
leakage-controlled workflow for evaluating and selecting calibration strategies in structured clinical 
feature data. 

KEYWORDS: Heart disease prediction, Machine learning, Probability calibration, Isotonic regression, 
Platt scaling, Temperature scaling, Uncertainty quantification, Expected calibration error (ECE), Brier 
score, Log loss, Spiegelhalter’s test, Reliability diagram, Post hoc calibration. 

 

1. Introduction 

1.1. Background 

Heart disease continues to be the major leading 
cause of death globally. It was recorded that heart disease 

was responsible for an estimated 19.8 million deaths in 
2022 [1]. However, early and accurate prediction plays a 
significant role in the prevention of adverse results and 
reduction in healthcare costs. Machine learning (ML) 
models are increasingly adopted for diagnostic and 

http://www.jenrs.com/
https://doi.org/10.55708/js0412003
mailto:peterodes27@gmail.com
mailto:author2@example.com
mailto:eidreiz01@gmail.com
https://orcid.org/0009-0008-5648-1524
https://orcid.org/0009-0006-2397-0263
https://orcid.org/0009-0007-5531-6909


 P. A. Odesola et al., Model Uncertainty Quantification: A Post Hoc 
 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(12): 25-54, 2025                                            26 
 

prognostic tasks in cardiology due to their ability to 
uncover complex patterns in large clinical datasets [2].  

Early ML research on heart disease cohorts primarily 
focused on classification accuracy, with studies routinely 
reporting performance above 97% using supervised 
classifiers [3]. These models have the capacity to learn 
non-linear relationships and high-dimensional 
interactions between contributing factors such as age, 
cholesterol, blood pressure, and electrocardiogram 
results. For example, algorithms such as Random Forest 
and Gradient Boosting have demonstrated superior 
performance to identify subtle indicators of 
cardiovascular abnormalities compared to traditional 
rule-based systems [4]. This makes them powerful 
techniques for risk stratification and preventive care. 

However, there could be possibility that the models 
often provide high predictive performance, while 
probabilistic outputs can be poorly calibrated. That is, the 
confidence scores they assign do not always align with 
actual probabilities of disease presence [5]. In high-stakes 
domains such as healthcare system, well-calibrated 
predictions are more important to guide the appropriate 
treatment decisions and manage clinical risks efficiently. 
Miscalibrated models may lead to overconfident or 
underconfident decisions, ultimately compromising 
patient safety [6].  This has prompted a growing interest 
in uncertainty quantification and post hoc calibration 
methods, which can adjust the model's output 
probabilities without retraining the original model [7]. 
The importance of these methods has increased in 
response to an increasing demand for transparent and 
trustworthy AI systems in clinical settings, particularly 
with the rise of explainable AI initiatives [8]. 

Furthermore, recent research has proven that visual 
tools such as reliability diagrams and calibration metrics 
such as Expected Calibration Error (ECE), Brier score, and 
log loss are important in evaluating how well a model is 
calibrated [9]. While accuracy and AUROC (Area Under 
the Receiver Operating Characteristic curve) remain 
popular metrics for model evaluation, they are 
insufficient for assessing how well a model estimates 
uncertainty. These metrics provide both quantitative and 
visual representations of uncertainty and prediction 
quality, which are vital for gaining the confidence of 
clinical stakeholders. 

1.2. Motivation and Problem Statement 

One of the major challenges faced by the medical 
health sector is the inability to detect early stages of 

problems related to the heart. When making decisions in 
the clinical sector, uncalibrated predictions may be 
misleading. For example, if a model predicts that a patient 
has a 90% chance of developing heart disease, clinicians 
must trust that this probability truly reflects clinical 
reality, otherwise this could lead to incorrect decisions 
and poor outcomes for the patient. 

In many studies, calibration and uncertainty 
quantification in medical AI systems are often 
overlooked, leading to a gap between predictive 
performance and clinical trust [6]. However, this paper 
addresses that gap by evaluating the calibration of several 
popular classifiers using post hoc techniques.  

1.3. Scope and Contributions 

This study aims to evaluate and compare uncertainty 
estimation of heart disease prediction models. The 
research is guided by the following questions: 

1. How do post-hoc calibration methods (Platt scaling, 
temperature scaling and isotonic regression) affect 
the uncertainty, calibration quality, and prediction 
confidence of machine learning models for heart 
disease classification? 

2. What are the baseline levels of calibration and 
uncertainty (ECE, Brier score, log loss, sharpness, 
Spiegelhalter’s Z-score) for heart disease prediction 
before and after post-hoc calibration? 

3. How does each model (e.g., Random Forest, XGBoost, 
SVM, KNN and Naive Bayes) perform in terms of 
probability calibration for heart disease before and 
after applying post hoc calibration? 

Below, we delineate the contributions of this work in 
light of the research questions above. We conduct a 
systematic, model-agnostic evaluation of post-hoc 
calibration for heart-disease prediction, quantifying how 
Platt (sigmoid) and isotonic mapping alter probability 
quality without retraining the base models. Beyond 
headline discrimination metrics, we emphasize clinically 
relevant probability fidelity, calibration, sharpness, and 
statistical goodness-of-fit. This study makes four (4) 
contributions, summarized as follows:  

1. A side-by-side pre/post analysis of six machine 
learning classifiers using reliability diagrams plus 
Brier, ECE, log loss, Spiegelhalter’s Z/p, and 
sharpness to provide complementary views of 
probability quality for heart disease prediction. 
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2. Empirical demonstration that isotonic calibration 
most consistently improves probability estimates, 
whereas Platt and temperature scaling helps some 
models but can worsen others.  

3. Despite perfect test-set discrimination for some 
model, reliability diagrams reveal overconfidence 
pre-calibration, demonstrating why discrimination 
alone is insufficient for clinical use. 

4. Analysis of variance in predicted probabilities shows 
calibration-induced smoothing and overconfidence 
correction, clarifying confidence reliability trade-offs 
relevant to clinical interpretation. 

1.4. Related Works 

1.4.1. Machine Learning in Heart Disease Prediction: 
Calibration and Reliability Considerations  

Machine learning (ML) techniques have been widely 
applied to predict cardiovascular disease outcomes, 
typically using patient risk factor data to classify the 
presence or risk of heart disease. For example, in heart 
disease prediction using supervised machine learning 
algorithms: Performance analysis and comparison, [10] 
evaluated several classifiers (KNN, decision tree, random 
forest, etc.) on a Kaggle heart disease dataset. They 
reported perfect performance with random forests 
achieving 100% accuracy (along with 100% sensitivity and 
specificity). However, their evaluation emphasized 
accuracy and did not include any probability calibration 
or uncertainty quantification. Similarly, [11] evaluation of 
Heart Disease Prediction Using Machine Learning 
Methods with Elastic Net Feature Selection compared 
logistic regression (LR), KNN, SVM, random forest (RF), 
AdaBoost, artificial neural network (ANN), and 
multilayer perceptron on the Kaggle dataset used in this 
study. They found RF to attain ~99% accuracy and 
AdaBoost ~94% on the full feature set and observed SVM 
performing best after SMOTE class-balancing and feature 
selection. Like [10], this study focused on accuracy 
improvements and other discrimination metrics, with no 
model calibration applied. 

Another work by [12], they also utilized the Kaggle 
dataset we explored. They evaluated a wide range of 
classifiers including RF, decision tree (DT), gradient 
boosting (GBM), KNN, AdaBoost, LR, ANN, QDA, LDA, 
SVM and reported extremely high accuracy for ensemble 
methods. In fact, their RF model reached 100% training 
accuracy (and ~99% under cross-validation). Despite 
reporting precision, recall, F1-score, and ROC-AUC for 

each model, this work too did not report any calibration 
metrics or uncertainty estimates; the focus remained on 
discrimination performance. 

Beyond the popular Kaggle/UCI datasets, researchers 
have explored ML on other heart disease cohorts. For 
instance, [13] in A Machine Learning Model for Detection 
of Coronary Artery Disease applied ML to the Z-Alizadeh 
Sani dataset (303 patients from Tehran’s Rajaei 
cardiovascular center). They employed six algorithms 
(DT, deep neural network, LR, RF, SVM, and XGBoost) to 
predict coronary artery disease (CAD). After Pearson-
correlation feature selection, the best results were 
achieved by SVM and LR, each attaining 95.45% accuracy 
with 95.91% sensitivity, 91.66% specificity, F1≈0.969, and 
AUROC ≈0.98. Notably, although this study achieved 
excellent discrimination, it did not incorporate any post-
hoc probability calibration or uncertainty analysis, the 
evaluation centered on accuracy and ROC curves alone. 

In [14], the authors took a different approach by 
leveraging larger, real-world data. In an interpretable 
LightGBM model for predicting coronary heart disease: 
Enhancing clinical decision-making with machine 
learning, they trained a LightGBM model on a U.S. CDC 
survey dataset (BRFSS 2015) and validated on two 
external cohorts (the Framingham Heart Study and the Z-
Alizadeh Sani data). The LightGBM achieved about 90.6% 
accuracy (AUROC ~81.1%) on the BRFSS training set, 
with slightly lower performance on Framingham (85% 
accuracy, ~67% AUROC) and Z-Alizadeh (80% accuracy). 
While [14] prioritized model interpretability (using SHAP 
values) and reported standard metrics like accuracy, 
precision, recall, and AUROC, they did not report any 
calibration-specific metrics (e.g. no ECE, Brier score, or 
reliability diagrams), nor did they apply Platt scaling or 
isotonic regression in their pipeline. Several recent studies 
have pushed accuracy to very high levels by combining 
datasets or using advanced ensembles, yet still largely 
ignore calibration. In [15], the authors proposed a hybrid 
approach for predicting heart disease using machine 
learning and an explainable AI method, where they 
combined a private hospital dataset with a public one and 
used feature selection plus ensemble methods. Their best 
model (an XGBoost classifier on a selected feature subset 
SF-2) achieved 97.57% accuracy with 96.61% sensitivity, 
90.48% specificity, 95.00% precision, F1=92.68%, and 98% 
AUROC. Despite this impressive performance, no 
probability calibration was mentioned; the study’s 
contributions focused on maximizing accuracy and 
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explaining feature impacts (via SHAP) rather than 
assessing prediction uncertainty.  

Using a clinical and biometric dataset (n=571) with a 
man-in-the-loop paradigm for assessing coronary artery 
disease, [16] compared standard ML classifiers; best 
accuracy reached ≈83% with expert input, but the work 
emphasized explainability over probabilistic calibration. 
To address the need for diverse and comprehensive 
research, we conducted a lightweight systematic review 

and surveyed a range of peer reviewed studies on ML for 
heart disease prediction in the last 5–10 years with focus 
on a minimum of 5,000 cohort patients built into the 
experimental setup. Table 1 summarizes key studies, 
including their data sources, ML approaches, and 
whether model calibration was evaluated (and how). 
Each study is cited with its year and reference number 
(e.g., 2025 [17] means the study was published in 2025 and 
is reference [17] in the reference list).

Table 1: Recent ML-based heart disease prediction studies (2017-2025) - Summary of data, methods, and calibration evaluation. (Calibration metrics: 
HL = Hosmer–Lemeshow test; ECE = Expected Calibration Error; O/E = observed-to-expected ratio; Brier = Brier score.) 

Year 
[Ref] 

Data (Population / 
Dataset) 

ML Approach & Key Results Calibration (Evaluation & 
Metrics) 

2025 
[17] 

Japanese Suita cohort 
(n=7,260; ~15-year follow-
up; ages 30-84). 

Risk models (LR, RF, SVM, XGB, LGBM) 
for 10 year CHD; RF best (AUC ~0.73); 
SHAP identified key factors. 

Yes - Calibration curves and O/E 
ratios; RF ~1:1 calibration. 

2025 
[18] 

NHANES (USA; ~37,000). PSO ANN - particle swarm optimized 
neural net; ~97% accuracy; surpassed LR 
(~95.8%); feature selection + SMOTE. 

No - Calibration not reported. 

2024 
[19] 

Simulated big dataset + 
UCI. 

AttGRU HMSI deep model; ~95.4% 
accuracy; emphasis on big data 
processing and feature selection. 

No - Calibration not reported. 

2023 
[20] 

UK Biobank (n≈473,000; 10 
year follow up). 

AutoPrognosis AutoML; AUC ≈0.76; 10 
key predictors discovered. 

Yes - Brier ~0.057 (good 
calibration). 

2023 
[21] 

China EHR (Ningbo; 
n=215,744; 5 year follow 
up). 

XGBoost vs Cox; C index 0.792 vs 0.781. Yes - HL χ² ≈0.6, p=0.75 in men; 
non significant HL (good 
calibration). 

2023 
[22] 

Stanford ECG datasets; 
external validation at 2 
hospitals. 

SEER CNN using resting ECG; 5 yr CV 
mortality AUC ~0.80 - 0.83; ASCVD AUC 
~0.67; reclassified ~16% low risk to higher 
risk with true events. 

No - Calibration not reported. 

2022 
[23] 

China hypertension cohort 
(n=143,043). 

Ensemble (avg RF/XGB/DNN); AUC 
0.760 vs LR 0.737. 

No - Calibration not reported. 

2021 
[24] 

Korea NHIS (n≈223k) + 
external cohorts. 

ML vs risk scores for 5 yr CVD; simple 
NN improved C stat (0.751 vs 0.741). 

Yes - HL χ² baseline 171 vs 15-86 
for ML (p>0.05). Brier ~0.031 - 0.032 
(good calibration). 

2021 
[25] 

NCDR Chest Pain MI 
registry (USA; n=755,402; 
derivation 564k; validation 
190k). 

In hospital mortality after MI; 
ensemble/XGBoost/NN vs logistic; 
similar AUC (~0.89). 

Yes - Calibration slope ~1.0 in 
validation; Brier components & 
recalibration tables reported. 

2021 
[26] 

Faisalabad Institute + 
Framingham + South 
African Hearth dataset & 
UCI (Cleveland n=303). 

Feature importance with 10 ML 
algorithms; XAI focus. 

No - Calibration not reported. 

2020 
[27] 

Eastern China high risk 
screening (n=25,231; 3 year 
follow up). 

Random Forest; AUC ≈0.787 vs risk charts 
≈0.714. 

Yes - HL χ²=10.31, p=0.24 (good 
calibration). 
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2019 
[28] 

UK Biobank subset 
(n=423,604; 5-year follow-
up). 

AutoPrognosis ensemble; AUC ≈0.774 vs 
Framingham ≈0.724; +368 cases identified. 

Yes - Pipeline includes calibration 
(e.g., Platt scaling [sigmoid]); good 
agreement of predicted vs 
observed risk. 

2017 
[29] 

UK CPRD primary care 
(n=378,256; 10 year follow 
up; 24,970 events). 

Classic ML vs ACC/AHA score; NN best 
(AUC ≈0.764) vs 0.728; improved 
identification. 

No - Calibration not reported. 

 

1.4.2. Gaps in Research 

Despite abundant work on ML-based heart disease 
prediction, there are clear gaps in the literature regarding 
probability calibration and uncertainty quantification. 
First, most studies prioritize discriminative performance 
(accuracy, F1, AUROC, etc.) and devote little or no 
attention to how well the predicted probabilities reflect 
true risk. As shown above, prior works seldom report 
calibration metrics like ECE or Brier score, nor do they 
plot reliability diagrams. For example, none of the 10+ 
studies reviewed applied calibration methods such as 
Platt scaling or isotonic regression to their classifiers, 
except for only one study [28]. This indicates a lack of 
focus on calibration quality, an important aspect if these 
models are to be used in clinical decision-making where 
calibrated risk predictions are crucial. 

Second, there is a lack of unified evaluation across 
multiple models and calibration techniques. Prior 
research typically evaluates a set of ML models on a 
dataset (as in comparative studies) but stops at reporting 
raw performance metrics. No study to date has 
systematically taken multiple classification models for 
heart disease and evaluated them before and after post-
hoc calibration. This means it remains unclear how 
different algorithms (e.g. an SVM vs. a random forest) 
compare in terms of probability calibration (not just 
classification accuracy), and whether simple calibration 
methods can significantly improve their reliability. 
Furthermore, the interplay between model uncertainty 
(e.g. variance in predictions) and calibration has not been 
explored in this domain. Third, most heart disease 
prediction papers do not report uncertainty metrics or 
advanced calibration statistics.  Metrics such as the Brier 
score (which combines calibration and refinement), the 
ECE (Expected Calibration Error), or even more domain-
specific checks like Spiegelhalter’s Z-test for calibration, 
are virtually absent from prior studies. Sharpness (the 
concentration of predictive distributions) and other 
uncertainty measures are also not discussed. This leaves 
a research gap in understanding how confident we can be 

in these model predictions and where they might be over 
or under-confident. For instance, none of the reviewed 
studies provide reliability diagrams to visually inspect 
calibration; as a result, a model claiming 95% accuracy 
might still make poorly calibrated predictions 
(overestimating or underestimating risk).  

To the best of our knowledge, no prior work has 
offered a comprehensive evaluation of pre and post-
calibration metrics across multiple models on the specific 
Kaggle heart disease dataset (1,025 records) used in this 
study. While several papers have used this or similar data 
for model comparison, none have examined calibration 
changes (ECE, log-loss, Brier, sharpness, Spiegelhalter’s 
Z-test, calibration curves) resulting from post-hoc 
calibration methods (Platt scaling, isotonic regression). In 
short, existing studies have left a critical question 
unanswered: if we calibrate our heart disease prediction 
models, do their confidence estimates become more 
trustworthy, and how does this vary by model? 
Addressing this gap is the focus of our work. We provide 
a thorough assessment of multiple classifiers before and 
after calibration, using a suite of calibration and 
uncertainty metrics not previously applied in this context, 
thereby advancing the evaluation criteria for heart 
disease ML models beyond conventional accuracy-based 
measures.  

2. Materials and Methods 

2.1. Research Methodology Overview  

This study employs a structured machine learning 
workflow to predict heart disease risk based on clinical 
and demographic variables. As outlined in Figure 1, the 
process begins with the heart disease dataset, followed by 
data preprocessing, model selection and training, 
performance evaluation, and post-hoc calibration. Three 
(3) calibration techniques (i.e Platt Scaling, Isotonic 
Regression and Temperature scaling) are applied to refine 
probabilistic outputs, with effectiveness assessed. 

http://www.jenrs.com/
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Figure 1: Workflow Diagram for Heart Disease Prediction and 
Calibration Pipeline 

2.2. Description of the Dataset  

The Heart Disease dataset used in this study was 
sourced from Kaggle. It was originally sourced by 
merging data from four medical centers Cleveland, 
Hungary, Switzerland and VA Long Beach, bringing the 

sample size to 1,025 records, including 713 males (69.6%) 
and 312 females (30.4%), ages ranging between 29 - 77 
years (median age ~56). The dataset contains 14 variables 
encompassing demographic, clinical and diagnostic test 
features. Descriptions of the dataset are outlined in Table 
2.  

The dataset was inspected for missing values and 
none was identified. The target variable (heart disease) 
was approximately balanced, with 51.3% of records 
labelled Presence of Disease and 48.7% labelled absence 
of Disease as shown in Figure 2. The target was binarised 
as heart disease = 1 and absence = 0, retained as an integer. 
Any re-coding of the target labels was not required for the 
present analysis. 

 

Figure 2: Heart disease distribution 

Table 2: Data description for heart disease dataset 

Feature Description Data Type Values / Range 

Age (Years)  Age of the patient Integer 29-77 

sex Sex (1 = male, 0 = female) Categorical 0, 1 

cp Chest pain type Categorical 1: typical angina, 2: atypical angina, 3: non-
anginal pain, 4: asymptomatic 

trestbps(mmHg)  Resting blood pressure (on 
admission to the hospital) 

Integer 94-200 

chol(mmol/L) Serum cholesterol Integer 126-564 

Fbs (mmol/L)  Fasting blood sugar > 120 mg/dl (1 = 
true, 0 = false) 

Categorical 0, 1 

restecg Resting electrocardiographic results Categorical 0: normal, 1: ST-T abnormality, 2: left 
ventricular hypertrophy 

thalach Maximum heart rate achieved Integer 71-202 
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exang Exercise induced angina (1 = yes, 0 = 
no) 

Categorical 0, 1 

oldpeak ST depression induced by exercise 
relative to rest 

Real 0.0-6.2 

slope Slope of the peak exercise ST 
segment 

Categorical 1: upsloping, 2: flat, 3: downsloping 

ca Number of major vessels (0-3) 
colored by fluoroscopy 

Integer 0-3 

thal Thalassemia test result Categorical 3: normal, 6: fixed defect, 7: reversible 
defect 

num Presence of heart disease (target: 0 = 
no, 1-4 = disease) 

Categorical 0, 1, 2, 3, 4 

2.3. Data Preprocessing  

In this study, the dataset was separated into 13 
predictors (i.e patient risk factors) and the 1 outcome 
feature (i.e the presence or risk of heart disease). 
Predictors were further divided into two groups: 
numerical features (e.g Age, RestingBP, Cholesterol) and 
categorical features (e.g ChestPainType, RestingECG, 
Thalassemia, Sex). We scale numerical features using a 
RobustScaler approach, which centres values around the 
median and spreads them according to the interquartile 
range. This method was selected due to it being less 
sensitive to outliers and skewness [30]. For categorical 
features, a One-Hot Encoding approach was applied, 
converting each category into binary (0/1) variables. This 
ensured that all categories were represented in a machine-
readable format.  

To prevent information leakage, all preprocessing 
steps were fit on training data only and were 
implemented inside the model pipelines. Within each 
cross-validation fold, imputation, scaling, and encoding 
were learned on the fold’s training split and then applied 
to the corresponding validation split. The same rule was 
followed for the final 70/30 train-test split, where 
transformers were fit on the 70% training partition and 
then applied to the held-out 30% test set. Where missing 
values occurred, numerics were imputed by the median 
and categoricals by the most frequent level before scaling 
or encoding. The outcome remained binary as integers 
throughout the workflow. 

 

 

2.4. Model Selection 

In this work, we benchmark six models (spanning 
linear, non-linear and ensemble model architectures) to 
classify patients based on the presence or absence of heart 
disease. The selected models include Logistic Regression 
(LR), Support Vector Machines (SVM), Random Forest 
(RF), Extreme Gradient Boosting (XGBoost), K-Nearest 
Neighbors (KNN), and Naive Bayes (NB). Using training 
(70%) and testing (30%) sets, we trained each model on 
the preprocessed training data and evaluated it on the 
held-out test data. 

Logistic Regression (LR): Logistic Regression is a 
supervised machine learning model well-suited for 
binary classification, such as determining the presence or 
absence of heart disease.  LR calculates the probability of 
a class (e.g., disease or no disease) by applying a sigmoid 
function to a weighted sum of predictor variables. Its 
strengths include simplicity, efficiency, and the ability to 
interpret coefficients as odds ratios, which is valuable in 
clinical settings for understanding feature importance 
and risk factors. Logistic Regression has a proven track 
record in medical research for risk stratification and is 
easily calibrated for probability estimation [31]. 

Support Vector Machines (SVM): Support Vector 
Machines are powerful, supervised classification models 
that work by finding the optimal hyperplane that 
separates classes in the feature space. SVMs excel at 
handling high-dimensional data and can model nonlinear 
relationships through kernel tricks, making them highly 
effective for complex medical datasets. Their ability to 
maximize the margin between classes reduces the 
likelihood of misclassification, which is especially useful 

http://www.jenrs.com/


 P. A. Odesola et al., Model Uncertainty Quantification: A Post Hoc 
 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(12): 25-54, 2025                                            32 
 

when distinguishing subtle differences between patients 
with and without heart disease. SVMs are known for their 
robustness in real-world clinical prediction tasks [32]. 

Random Forest (RF): Random Forest is an ensemble 
algorithm that builds multiple decision trees during 
training and aggregates their outputs via majority voting 
for classification. It is especially effective at capturing 
nonlinear relationships and interactions among risk 
factors in heart disease prediction. The ensemble nature 
of RF mitigates overfitting and variance, providing more 
reliable and stable predictions on diverse patient 
populations. Its embedded feature importance scores 
help clinicians identify key predictors of heart disease, 
further supporting its use in healthcare analytics [33]. 

Extreme Gradient Boosting (XGBoost): XGBoost is a 
gradient boosting framework that creates a series of weak 
learners (usually decision trees) and optimizes them 
sequentially. It is renowned for combining high 
predictive accuracy with speed and efficiency, making it 
a top performer in medical classification challenges. 
XGBoost handles missing data gracefully and is robust to 
outliers, both of which are common in clinical datasets. Its 
sophisticated regularization techniques reduce 
overfitting, and its model interpretability tools are 
advantageous for validating results in heart disease risk 
prediction [34]. 

K-Nearest Neighbors (KNN): K-Nearest Neighbors is 
a non-parametric classification method that predicts the 
class of a sample based on the majority class among its k 
closest neighbors in feature space. KNN is intuitive, easy 
to implement, and doesn’t assume data distribution, 
making it suitable for heterogeneous clinical datasets. 
KNN is effective at leveraging local patterns, which can 
help identify at-risk heart disease patients by matching 
them to previously observed cases. However, it can be 
sensitive to feature scaling and less efficient with 
extensive datasets [35]. 

Naive Bayes (NB): Naive Bayes is a probabilistic 
classification algorithm that applies Bayes’ theorem, 
assuming feature independence. Its simplicity and 
computational efficiency make it attractive for medical 
tasks with many categorical variables. Despite its “naive” 
independence assumption, NB often performs 
surprisingly well for heart disease prediction because it 
can handle missing values, is robust with noisy data, and 
quickly estimates posterior probabilities. This makes it 

valuable for real-time risk assessment and decision 
support in clinical environments [36]. 

2.5. Model Tuning Strategy 

In this study, GridSearchCV was used as the primary 
hyperparameter-tuning strategy due to its structured and 
reproducible approach [37], [38]. GridSearchCV works by 
exhaustively evaluating all possible combinations of 
predefined hyperparameters for a given algorithm [37], 
[38]. For each candidate configuration, the model is 
trained and validated using 5-fold cross-validation, 
ensuring stable performance estimates; this setup is 
widely recommended for clinical prediction models and 
has been applied to heart-disease prediction tasks [39], 
[40]. This is particularly important in healthcare datasets 
such as heart disease prediction, where sample sizes may 
be limited and class distributions may be imbalanced [40], 
[41]. By systematically exploring the parameter space, 
GridSearchCV helps identify the configuration that yields 
an appropriate balance between accuracy and 
generalisation performance [37], [38], [39]. In our heart-
disease model, we used GridSearchCV to improve the 
stability of probability outputs before applying post-hoc 
calibration techniques. Table 3 summarises the parameter 
grid and chosen parameters for each model trained in this 
experiment. 

2.6. Cross-validated discrimination 

To measure discrimination outside one held-out test 
split, we used stratified 5-fold cross-validation on the 70% 
training set. In every outer fold, the full preprocessing 
pipeline and the classifier were fitted only on that fold’s 
training partition, then applied to the corresponding 
validation partition. This guards against information 
leakage from scaling or encoding into validation data. 

Threshold-dependent metrics used a single, data-
driven cutpoint per model based on Youden’s J index. For 
a given threshold ton predicted probabilities, 
J(t) = Sensitivity(t) + Specificity (t) - 1 and the selected cut 
point is t = arg max t J(t), [42]. Within each outer-fold 
training partition we ran an inner 5-fold CV to estimate t 
using only the inner validation predictions, then fixed t 
and applied it to the outer-fold validation data to 
compute Accuracy and F1. AUC ROC was computed 
from continuous scores and did not use a threshold. 
Using J focuses the operating point where both sensitivity 
and specificity are jointly maximized in the training data, 
a practice with well-studied statistical properties for 
cutpoint selection [43]. 
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Table 3: Hyperparameter Grids and Selected Best Settings by Model 

Model Parameter grid Best parameter 

K-Nearest 
Neighbors 

Minkowski p: 1, 2; Number of neighbors: 3, 5, 7, 9; 
Weights: uniform, distance 

Minkowski p: 1; Number of neighbors: 9; 
Weights: distance 

Random Forest Number of trees: 200, 300, 400; Max depth: None, 5, 
10; Min samples per leaf: 1, 2, 4; Max features: sqrt, 
log2 

Number of trees: 200; Max depth: None; 
Max features: sqrt; Min samples per leaf: 1 

XGBoost Number of trees: 200, 300; Learning rate: 0.03, 0.05, 
0.1; Max depth: 3, 4, 5; Subsample: 0.8, 1.0; Column 
sample by tree: 0.8, 1.0 

Number of trees: 200; Learning rate: 0.05; 
Max depth: 4; Subsample: 1.0; Column 
sample by tree: 0.8 

Support Vector 
Machine 

Kernel: rbf, linear; Regularization strength (C): 0.1, 1, 
10; Gamma: scale, auto 

Kernel: rbf; Regularization strength (C): 10; 
Gamma: scale 

Logistic 
Regression 

Regularization strength (C): 0.1, 1, 10; Solver: lbfgs, 
liblinear; Class weight: None, balanced 

Regularization strength (C): 10; Solver: 
lbfgs; Class weight: None 

Naive Bayes Variance smoothing: 1e-09, 1e-08, 1e-07 Variance smoothing: 1e-07 

 

This nested procedure helps control overfitting and 
preserves statistical validity. The threshold is chosen 
strictly inside the training portion of each outer fold, 
never on the outer validation or test data, which avoids 
optimistic bias and the circularity that arises when model 
selection and error estimation are performed on the same 
data [44]. When comparing uncalibrated and calibrated 
variants, the identical t learned within the outer-fold 
training data was applied to both sets of probabilities for 
that fold. This preserves a paired design, reduces variance 
in fold differences and maintains the validity of 
subsequent significance testing based on matched 
resamples [45]. 

2.7. Model Performance Metrics 

We evaluated classification performance using 
Accuracy, ROC-AUC, Precision, Recall, and F1-score. Let 
TP, FP, TN, and FN denote true positives, false positives, 
true negatives, and false negatives, respectively. 

Accuracy. Defined as ( TP+TN
TP+FP+TN+FN

), accuracy reflects the 
share of correctly classified cases in the test set. In clinical 
screening contexts where disease prevalence may be low 
accuracy depends on the decision threshold and can mask 
deficiencies under class imbalance, yielding seemingly 
strong performance while missing many positive cases 
[46]. 

ROC-AUC. The receiver-operating-characteristic area 
summarizes discrimination across all thresholds; it equals 
the probability that a randomly selected positive receives 
a higher score than a randomly selected negative and 
ranges from 0.5 (no discrimination) to 1.0 (perfect). ROC-
AUC is broadly used in clinical prediction for its 
threshold-agnostic view of separability, though it does 
not reflect calibration or the clinical costs of specific error 
types [47]. 

Precision. Given by ( TP
TP+FP

), quantifies how reliable 
positive alerts are among patients flagged as having heart 
disease, the fraction truly positive. As thresholds are 
lowered to capture more cases, precision typically 
decreases, illustrating the trade-off clinicians face 
between false alarms and case finding [48]. 

Recall. Defined as ( TP
TP+FN

), measures the proportion of 
truly diseased patients the model detects (sensitivity). 
Raising recall generally requires a lower threshold, which 
increases false positives and reduces precision; selecting 
an operating point should therefore reflect clinical 
consequences and disease prevalence [49]. 

F1-score. The harmonic mean �Precision x Recall 
Precision+Recall

� ∗ 2, 

provides a single summary when both missed cases and 
false alarms matter. F1 is commonly reported in 
imbalanced biomedical tasks, though its interpretation 
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should be complemented by other metrics given known 
limitations under skewed prevalence [50]. 

These metrics establish a consistent baseline for cross-
model comparison and inform our subsequent calibration 
and uncertainty quantification analysis. 

2.8. Post-Hoc Calibration and Evaluation 

2.8.1. Selected Calibration Techniques 

Post-hoc calibration refers to techniques applied after 
model training that map raw scores to probabilities 
without changing the underlying classifier. In clinical 
settings where decisions hinge on risk estimates, these 
procedures use a held-out calibration set to fit a simple, 
typically monotonic mapping so that predicted 
probabilities better match observed event rates [9], [51], 
[52]. In this study, calibration was fit strictly on training-
only validation data inside cross-validation and applied 
to the corresponding validation folds, then to the held-out 
test split, which avoids information leakage and 
optimistic bias as recommended in prior work [5], [7], [9], 
[51].  

In clinical text or imaging pipelines for heart-disease 
prediction, this is attractive, one can retain the trained 
model and its operating characteristics, then calibrate its 
outputs to yield probabilities that are more trustworthy 
for downstream decision thresholds, alerts, or shared 
decision-making [51], [52]. For this study, we applied 
three post-hoc calibration methods, Platt scaling, isotonic 
regression, and temperature scaling, to adjust model 
outputs into well-calibrated probabilities [5], [7]. 

1) Platt scaling works by fitting a smooth S-shaped 
sigmoid curve to the model’s scores using a separate 
validation set, so that predicted probabilities better 
match actual outcomes. This method is simple and 
efficient but assumes that the relationship between 
scores and probabilities follows a logistic pattern [9], 
[53]. In our pipeline, the sigmoid mapping was 
learned on training-only validation folds and then 
applied to their matched validation sets. 

2) Isotonic regression is a more flexible, non-parametric 
method that does not assume any specific shape. 
Instead, it fits a step-like monotonic curve that can 
adapt to complex patterns in the data [54]. While this 
flexibility can better capture irregular relationships, it 
can also lead to overfitting if the validation dataset is 
small, hence our use of cross-validated, training-only 
fits to mitigate instability [5], [7], [51]. 

3) Temperature scaling applies a single global 
temperature T > 0 to sharpen or soften probabilities 
via pT = σ (logit(p)/T). We estimated T on training-
only out-of-fold predictions by minimizing negative 
log loss, then applied the learned T to the 
corresponding validation folds and the held-out test 
split. Temperature scaling is lightweight and widely 
used to correct overconfident scores without altering 
class ranking [5]. 

In practice, Platt scaling is most useful when a 
sigmoid relationship is expected, isotonic regression is 
preferred when the calibration pattern is unknown or 
more complex [9], and temperature scaling provides a 
simple, global adjustment of confidence that can be 
effective when miscalibration is primarily due to score 
overconfidence rather than shape distortions [5]. Using all 
three methods provides a robust calibration toolbox, 
ensuring reliable probability estimates across different 
models, while our training-only fitting approach 
addresses concerns about leakage and preserves valid 
evaluation. 

2.8.2. Model Uncertainty Quantification and Calibration 
Evaluation Metrics 

In this study, we measure the uncertainty of the 
models using these key calibration evaluation metrics: 
Reliability diagram, Brier Score, Expected Calibration 
Error (ECE), Log Loss and Sharpness. A combination of 
these metrics provides a holistic understanding of each 
model's effectiveness in quantifying model uncertainty. 

Reliability diagram, calibration plot. A reliability 
diagram visualizes how predicted probabilities align with 
observed event rates by plotting, across confidence bins, 
the empirical outcome frequency against the mean 
predicted probability. A perfectly calibrated model traces 
the 45-degree diagonal line, while systematic deviations 
reveal over or under-confidence [9]. Reliability diagrams 
are standard in forecast verification and machine-
learning calibration, and they provide a visual check of 
probability accuracy while preserving discrimination. 
Practical caveats include sensitivity to binning and 
sample size, and the fact that the plot alone does not 
indicate how many samples fall into each bin, often 
addressed by adding a companion confidence histogram 
[5], [55], [56]. We experiment with two binning strategies 
(i.e equal-width bins and equal-frequency bins). A 
rolling-mean curve over the predicted probabilities was 
added to stabilise visual trends without changing the bin 
statistics. 
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Brier Score - The Brier Score measures the mean 
squared difference between predicted probabilities and 
the actual binary outcomes. Unlike accuracy which 
reduces predictions to “yes/no” and ignores the 
uncertainty behind probability values the Brier Score 
penalizes poorly calibrated or overly confident 
predictions. This makes it more informative for model 
uncertainty quantification, especially in clinical settings 
were knowing the probability of heart disease (and not 
just a binary label) aids risk discussions and decision-
making. Lower Brier Scores indicate better calibrated and 
more reliable probability forecasts, a key aspect of clinical 
utility [57]. 

Expected Calibration Error (ECE). ECE summarizes 
how closely a model’s predicted probabilities match the 
observed frequencies of outcomes. It divides predictions 
into probability bins and measures the mismatch between 
average predicted probability and the actual outcome rate 
in each bin. In heart disease prediction, ECE helps verify 
if model confidence reflects real-world risks, ensuring 
patients with a predicted 70% heart disease risk, for 
example, actually face that risk. Lower ECE values 
indicate better calibrated models, which is crucial for 
trusted clinical decision support [5]. In this work, we 
report two ECE variants to assess robustness to binning: 

equal-width bins with K = 10 and equal-frequency bins 
with K = 10; the latter balances counts per bin and often 
yields more stable estimates on modest sample sizes [5], 
[56]. 

Log Loss - Log Loss (or cross-entropy loss) evaluates 
the uncertainty of probabilistic outputs by heavily 
penalizing confident but incorrect predictions.  Log Loss 
is sensitive to how far predicted probabilities diverge 
from the actual class, providing a continuous measure of 
model reliability. For heart disease prediction, low Log 
Loss means the model rarely makes wildly overconfident 
errors, promoting safer, uncertainty-aware clinical 
interpretation [58]. 

Sharpness (variance of predicted probabilities) - 
Sharpness measures the spread or concentration of 
predicted probabilities, independent of whether they’re 
correct. High sharpness means the model often predicts 
risks near 0 or 1, indicating confident, decisive forecasts. 
For heart disease prediction, greater sharpness is 
desirable only if paired with good calibration confident 
predictions should be correct. Thus, sharpness reveals 
how much intrinsic uncertainty the model expresses, 
helping physicians judge whether predictions are 
actionable or too vague for clinical use [55].

Table 4: Pipeline decisions for Baseline Classification Performance & Calibration - summary of experiment setup, evaluation choices, and 
preprocessing decisions 

Component Description 

Test Split 30% of dataset (~306 instances), stratified by target class 

Cross-Validation 5-fold StratifiedKFold with shufflingpercent 

Scaling RobustScaler for numeric variables 

Encoding OneHotEncoder for nominal categorical fields 

Models Logistic Regression, SVM, Random Forest, XGBoost, KNN, Naive Bayes 

Development Environment Google Colab 

Python libraries Sklearn, matplotlib, scipy, numpy, pandas, seaborn 

Model Evaluation Metrics Accuracy, ROC-AUC, Precision, Recall, and F1 Score 

Uncertainty Quantification 
Metrics 

Brier Score, Expected Calibration Error (ECE), Log Loss, Spiegelhalter’s Z-score & p-
value, Sharpness, Reliability diagram  

Train/test split ratio  70% training: 30% testing 
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2.9. Confidence intervals and statistical tests 

Confidence intervals. For test-set discrimination 
metrics, we computed 95% bootstrap percentile intervals 
with 2,000 resamples, using stratified resampling to 
preserve class balance and skipping resamples with a 
single class for AUROC [59]. For cross-validated 
summaries we formed per-fold estimates, then 
bootstrapped across the out-of-fold units to obtain fold-
aware 95% intervals for Brier score, ECE, Log Loss, and 
sharpness. For reliability diagrams we reported Wilson 
95% intervals for bin-wise observed event rates to 
stabilize proportions in modest bin counts [60]. 

Spiegelhalter’s Z-score & p-value - Spiegelhalter’s Z-
score tests overall calibration by comparing predicted 
probabilities to actual outcomes, normalized by their 
variance. A non-significant p-value suggests the model is 
well-calibrated; otherwise, the probabilistic forecasts may 
be systematically over or under-confident. This 
calibration test is especially important in health 
applications, assuring clinicians that model probabilities 
are statistically valid reflections of true outcome chances 
[61]. 

Permutation p-tests on fold-matched deltas. To 
compare calibrated to uncalibrated states we used paired 
permutation tests on fold-matched differences, for 
example Δ = metriccal - metricuncal. Within each model, we 
repeatedly flipped the signs of fold-level deltas to 
generate the null distribution that the median delta equals 

zero, using 10,000 permutations, two sided. We report the 
observed delta, its bootstrap 95% interval, and the 
corresponding permutation p-value, which answers 
whether the improvement is larger than expected by 
chance under the paired design [62], [63]. 

Wilcoxon signed-rank tests. For the equal-width 
versus equal-frequency ECE comparison, we also report 
paired Wilcoxon signed-rank tests on fold-matched 
differences, alongside bootstrap intervals for the median 
delta, to summarize direction and robustness of the 
binning effect without distributional assumptions [64]. 

3. Baseline model performance 

Six classifiers were trained and evaluated on the held-
out test set. Table 5 reports Accuracy, F1, and ROC AUC 
with 95% bootstrap confidence intervals alongside 
precision and recall. Four models achieved very high 
scores across metrics, with KNN, Random Forest, 
XGBoost, and SVM, each reaching high test scores. For 
example, KNN achieved 99.0% Accuracy, 99.0% F1, and 
100.0% ROC AUC, while Random Forest, XGBoost, and 
SVM were in the 97.1% to 99.6% range across these 
metrics. Logistic Regression was lower, with 86.0% 
Accuracy, 86.6% F1, and 94.3% ROC AUC. Naive Bayes 
was lowest, with 80.2% Accuracy, 77.8% F1, and 88.4% 
ROC AUC. Confidence intervals are tight for the top four 
models, as shown in Figures 3 to 5 and wider for Logistic 
Regression and Naive Bayes, indicating greater sampling 
uncertainty for the latter pair.

Table 5: Performance metrics of baseline classification models (before calibration) with 95% confidence interval (CI) bootstrap 
 (number of boots = 2,000) 

Model 
Accuracy 
(%) 

Accuracy 95% CI 
(Lower - Upper) 

F1 
(%) 

F1 95% CI 
(Lower - 
Upper) 

ROC 
AUC 
(%) 

ROC AUC 95% 
CI (Lower - 
Upper) 

Precision 
(%) 

Recall 
(%) 

KNN 99 98.1 - 100.0 99 97.9 - 100.0 100 100.0 - 100.0 100 98.1 

RF 98.1 96.4 - 99.4 98.1 96.4 - 99.4 99.6 99.1 - 100.0 100 96.2 

XGB 98.1 96.4 - 99.4 98.1 96.5 - 99.4 99.2 98.5 - 99.8 98.1 98.1 

SVM 97.1 95.1 - 98.7 97.1 95.1 - 98.8 98.6 96.9 - 100.0 98.1 96.2 

LR 86 82.1 - 89.6 86.6 82.3 - 90.3 94.3 91.7 - 96.7 85.3 88.0 

NB 80.2 75.6 - 84.4 77.8 71.9 - 82.9 88.4 84.2 - 92.1 91.5 67.7 
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Figure 3: Test Accuracy with 95% Confidence Intervals 

 
Figure 4: Test F1 with 95% Confidence Intervals 

 
Figure 5: Test ROC AUC with 95% Confidence Interval 

To quantify discrimination metric without relying on 
a single partition, we used stratified 5-fold cross-
validation, fitting preprocessing and models within each 
training fold. We selected the decision threshold by 
Youden’s J using inner cross-validation, then applied that 
fixed threshold to the outer validation fold. Following 
best practice, we tuned the decision threshold in each fold 
on the training predictions, selecting the cut-point that 
maximized Youden’s J, rather than using a fixed 0.5 
threshold [65], while still maintaining statistical 
significance [66]. Table 6 reports the fold means for 
Accuracy, F1, and ROC AUC for the uncalibrated models 
optimized via Youden J, side by side with baseline 
performance from Table 5. 

Discrimination was strongest for four models, with 
consistently high values. Random Forest and KNN reach 
99.60% Accuracy and 99.60% F1, with ROC AUC at 
100.00%. SVM attains 99.0% Accuracy, 99.1% F1, and 
100% ROC AUC. XGBoost follows closely with 99.0% 
Accuracy, 99.0% F1, and 100% ROC AUC. Logistic 
Regression and Naive Bayes remain well below this 
cluster, with 86.8% and 83.8% Accuracy, 87.5% and 84.7% 
F1, and 94.0% and 89.5% ROC AUC, respectively. 

These results reflect two effects. First, ROC AUC 
values confirm very strong class separability on this 
dataset. Second, optimizing the threshold on training data 
via Youden’s J raises fold-wise Accuracy and F1 
compared with a fixed cutpoint, which explains the 
higher values relative to our earlier fixed-threshold point 
estimate summaries [67]. The Youden J optimised values 
in Table 6 serve as the discrimination baseline for all later 
comparisons, where we examine how post-hoc 
calibration changes calibration metrics while tracking any 
movement in Accuracy and F1 relative to these 
uncalibrated, Youden-J estimates. 

 

Table 6: Uncalibrated Cross-validated Accuracy, F1, and ROC AUC with tuned parameters 

Model 

Baseline model performance + 
Hyperparameter tuning 

Baseline model performance + Hyperparameter tuning + Cross 
validation (CV=5) Out of fold (OOF) + Inner 5-fold for Youden J 

Accuracy F1 ROC AUC Accuracy F1 ROC AUC 
KNN 99.0 99.0 100 99.6 99.6 100 
RF 98.1 98.1 99.6 99.6 99.6 100 
XGB 98.1 98.1 99.2 99.0 99.0 100 
SVM 97.1 97.1 98.6 99.0 99.1 100 
LR 86.0 86.6 94.3 86.8 87.5 94.0 
NB 80.2 77.8 88.4 83.8 84.7 89.5 
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3.1. Reliability Plots 

We plot reliability diagrams to visualise calibration 
effects using out-of-fold predictions from stratified 5-fold 
cross-validation. Given a test set of 306 instances (30% of 
the 1,025-record dataset), predicted probabilities were 
partitioned into ten equal-frequency bins so each bin 
contained a similar number of cases, which stabilizes bin 
estimates. This choice balances resolution and stability in 
modest samples, consistent with guidance that 
discourages aggressive binning when counts per bin 
become small [56]. For each bin we plot the bin mean 
against the observed event rate with Wilson 95% intervals 
with a thin rolling mean over the sorted predictions. 
Figures 6 to 9 present the six models for the uncalibrated 
outputs and for Platt, Isotonic, and Temperature 
calibration. 

Before calibration (Figure 6), Logistic Regression and 
XGBoost track the diagonal closely through most of the 

probability range, with small departures near the 
extremes. Random Forest shows overconfidence in the 
upper tail, where predicted risks exceed observed 
frequencies. SVM tracks the diagonal in the mid-range 
but is less reliable at the extremes. KNN exhibits a flat, 
underconfident shape over much of the scale. Naive 
Bayes displays the familiar S-shape, underestimating risk 
at intermediate probabilities and overshooting near 1, 
consistent with prior reports of miscalibration for these 
families of models [7], [9], [53]. 

Platt scaling (Figure 7) improves Logistic Regression, 
SVM and Naive Bayes, drawing curves toward the 
diagonal where deviations were approximately 
monotonic, but it leaves clear residual error for Random 
Forest and KNN, likely due to its monotonic, logistic-
form constraint [68][69]. XGBoost shows little gain and, in 
places, mild distortion relative to its already good pre-
calibration fit.

 

 

Figure 6: Reliability diagrams, uncalibrated outputs, equal-frequency bins K = 10. Each panel shows bin means with Wilson 95% intervals and a 
rolling mean curve. 
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Figure 7: Reliability diagrams after Platt scaling, equal-frequency bins K = 10. 

 

 

Figure 8: Reliability diagrams after Isotonic regression, equal-frequency bins K = 10. 
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Figure 9: Reliability diagrams after Temperature scaling, equal-frequency bins K = 10. 

Isotonic regression (Figure 8) provides the largest and 
most consistent improvements. Naive Bayes becomes 
markedly more tightly positioned across the range, and 
SVM tightens around the diagonal with narrower 
uncertainty bands. Random Forest is corrected at high 
probabilities, reducing overconfidence. KNN remains 
relatively unstable, with small bins at the extremes still 
showing variance. These findings suggest that while 
sigmoid calibration is suitable for models with nearly 
linear miscalibration, isotonic regression better handles 
complex, non-monotonic distortions in probabilistic 
estimates [70], [71].  

Temperature scaling (Figure 9) yields modest, mostly 
uniform shifts in confidence. It reduces the top-end 
overconfidence for Random Forest and XGBoost, but its 
effect is smaller than isotonic and, as expected for a single-
parameter rescaling, it does not correct non-linear 
distortions. 

The reliability plots show three consistent themes. 
First, calibration needs are model-specific, with 
ensembles tending to be overconfident near 1, Naive 
Bayes showing S-shaped error, and Logistic Regression 
close to calibrated at baseline. Second, isotonic is the most 
effective general-purpose post-hoc adjustment on this 

dataset, while Platt helps when deviations are nearly 
logistic in form. Third, confidence intervals make 
departures from perfect calibration most apparent at the 
extremes of the probability scale, where data are sparse.  

3.2. Sensitivity of ECE to binning choice 

We assessed the stability of ECE using two binning 
strategies with K = 10, equal-width and equal-frequency. 
For each model, calibration state, and fold, we computed 
the paired difference [ΔECE = ECE {uniform} – ECE {quantile}]. 
Positive values indicate smaller ECE when bins carry 
similar counts. The paired summaries are presented in 
Table 7 below, and we plot per-model medians with 95 % 
CIs in Figure 10. 

Across all models and calibration states combined, 
equal-frequency binning produced smaller ECE values. 
As shown in Table 7, the overall median ΔECE was 0.0069 
with a 95 % CI 0.0056 to 0.0089 and a Wilcoxon p value 
4.87×10⁻⁸, with 74.2% of paired fold comparisons favoring 
equal frequency. The largest effects occur for the tree-
based ensembles. For XGBoost the median ΔECE was 
0.0115 (95 % CI 0.0074 to 0.0149, p 9.54×10⁻⁶), and for 
Random Forest it was 0.0098 (95 % CI 0.0057 to 0.0119, p 
2.61×10⁻⁴). These two bars are the tallest in Figure 10, 
matching the entries in Table 7. 
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Table 7: Paired comparison of ECE with K = 10 using equal-width and equal-frequency bins over CV folds. CIs are 95% CIs bootstrap (number of 
boots = 10,000). Paired Wilcoxon tests on fold-matched deltas. 

Section Sub section Number of 
pairs 

Median 
Δ ECE 

95% 
Median 
CI Low 

95% 
Median CI 
High 

Mean 
Δ ECE 

Wilcoxon p 
Frac 
quantile 
< uniform 

Overall ---- 120 0.0069 0.0056 0.0089 0.0054 4.87×10⁻⁸ 0.7417 

By model 

XGB 20 0.0115 0.0074 0.0149 0.011 9.54×10⁻⁶ 0.9 

RF 20 0.0098 0.0057 0.0119 0.0099 0.000261 0.95 

SVM 20 0.0066 0.0007 0.01 0.006 0.009436 0.8 

LR 20 0.0061 -0.0044 0.008 0.0024 0.2774 0.6 

KNN 20 0.0053 0.0017 0.0074 0.0066 0.000655 0.75 

NB 20 -0.0024 -0.0093 0.013 -0.0037 0.7841 0.45 

By 
calibration 

Uncalibrated 30 0.0069 0.0012 0.0119 0.0078 8.09×10⁻⁵ 0.7333 

Isotonic 30 0.0068 0.0048 0.0083 0.0069 0.00073 0.8667 

Platt 30 0.0073 0.0016 0.0108 -0.0004 0.2534 0.7 

Temperature 30 0.0064 0.0004 0.0147 0.0072 0.005383 0.6667 

 

 

Figure 10: Per-model median ΔECE with 95 % CIs bootstrap (number of boots = 10,000). 

SVM and KNN show smaller but consistent gains. As 
seen in Table 7, SVM has median ΔECE 0.0066 (95 % CI 
0.0007 to 0.0100, p 9.44×10⁻³), and KNN has 0.0053 (95 % 
CI 0.0017 to 0.0074, p 6.55×10⁻⁴). Logistic Regression 
shows a modest median with a CI that crosses zero, 0.0061 
(95 % CI -0.0044 to 0.0080, p 0.277). Naive Bayes shows no 
advantage for equal-frequency, -0.0024 (95 % CI -0.0093 to 
0.0130, p 0.784). These patterns are visible in Figure 10, 

where LR has a short bar with wide whiskers and NB dips 
slightly below zero. 

By calibration method, the same direction holds. As 
shown in Table 7, the median ΔECE is 0.0069 for 
Uncalibrated (95 % CI 0.0012 to 0.0119, p 8.09×10⁻⁵), 0.0068 
for Isotonic (95 % CI 0.0048 to 0.0083, p 7.30×10⁻⁴), and 
0.0064 for Temperature (95 % CI 0.0004 to 0.0147, p 
5.38×10⁻³). Platt shows a positive median 0.0073 with a 
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non-significant p value 0.253, which is consistent with its 
shorter bar and wide CI in Figure 10. 

This sensitivity analysis indicates that ECE is lower 
on average with equal-frequency bins, as shown in Table 
7 and Figure 10. We therefore report both ECE variants 
throughout and treat the quantile-based ECE as a 
robustness check rather than as evidence of intrinsically 
better calibration. 

3.3. Calibration metrics by model and calibration method 

Table 8 reports fold means for Accuracy, F1, AUC 
ROC, Brier score, ECE with equal-width bins at K = 10, 
ECE with equal-frequency bins at K = 10, and Log Loss for 
each model under Uncalibrated, Platt, Isotonic, and 
Temperature. We identify the best calibration per model 
using the rule “best” equals the minimum Brier, the 
minimum of each ECE variant, and the minimum Log 
Loss. 

Across models, Isotonic most often provides the 
strongest calibration. This pattern is consistent with the 
reliability plots where a monotone nonparametric map 
aligns S-shaped or overconfident regions while 
preserving ordering. Platt is competitive when deviations 
are close to a logistic shift, and Temperature yields 
smaller, uniform corrections that can trim overconfidence 
without altering rank. 

Two models, KNN and SVM, are best uncalibrated 
across the calibration metrics in this dataset. For these 
models, applying Platt, Isotonic, or Temperature does not 
improve Brier, ECE, or Log Loss relative to the 
uncalibrated scores in Table 8, and in places calibration 
slightly worsens these quantities. This matches the 
reliability plots, which show limited systematic 
miscalibration for SVM and persistent variance for KNN 
that calibration does not correct. 

Table 8: Cross-validated means for Accuracy, F1, AUC ROC, Brier, ECE (uniform, 10), ECE (quantile, 10), and Log Loss by model and calibration 
method. Bold, per model, the method achieving the minimum for Brier, each ECE variant, and Log Loss. 

Model Calibration 
Accura
cy 

F1 

RO
C 
AU
C 

Brier 
Score 

Log 
Loss 

ECE 
(unifo
rm, 10) 

ECE 
(quantile, 
10) 

Sharpness 
(Var) 

Z-
Score 

Z p-
value 

KNN 
  
  
  

Isotonic 99.6 99.6 100 0.0044 0.0211 0.0146 0.0094 0.2396 0.9252 0.5618 
Platt 99.6 99.6 100 0.0054 0.0388 0.0308 0.0237 0.2231 0.6622 0.5969 
Temperature 96.7 96.7 99 0.0258 0.1228 0.0287 0.0148 0.2295 1.0477 0.3933 
Uncalibrated 99.6 99.6 100 0.0026 0.007 0.0039 0.0039 0.2487 0.9849 0.6608 

LR 
  
  
  

Isotonic 87.3 87.8 94.4 0.0905 0.3018 0.055 0.0482 0.1639 -0.1645 0.5713 
Platt 86.7 87.5 94 0.0957 0.3182 0.0567 0.0645 0.1394 -0.0513 0.6791 
Temperature 85.1 85.7 93.6 0.0975 0.3259 0.0593 0.056 0.1504 0.4082 0.4916 
Uncalibrated 86.8 87.5 94 0.0944 0.3171 0.0646 0.0571 0.1565 0.021 0.577 

NB 
  
  
  

Isotonic 83.8 84.7 90.7 0.1196 0.3839 0.0621 0.0534 0.1344 -0.0773 0.5412 
Platt 83.7 84.7 90.1 0.1291 0.4222 0.0545 0.0942 0.1023 -0.1822 0.6847 
Temperature 81.2 80.1 89.9 0.1248 0.4487 0.0741 0.0689 0.1656 -0.0968 0.6696 
Uncalibrated 83.8 84.7 89.5 0.1492 1.51 0.146 0.1348 0.2292 -3.1409 0.2343 

RF 
  
  
  

Isotonic 99.6 99.6 100 0.0042 0.0201 0.0144 0.0098 0.2387 0.8125 0.5283 
Platt 99.6 99.6 100 0.0048 0.0366 0.0331 0.0223 0.2217 0.5198 0.6463 
Temperature 97 97 99 0.0242 0.1024 0.0318 0.0201 0.2264 0.9775 0.4323 
Uncalibrated 99.6 99.6 100 0.0058 0.0484 0.0449 0.0322 0.2109 0.6992 0.506 

SVM 
  
  
  

Isotonic 99.1 99.1 100 0.0087 0.0442 0.0337 0.0268 0.2228 0.4598 0.4639 
Platt 98.8 98.9 99.9 0.0125 0.075 0.0594 0.0452 0.1991 0.3284 0.5607 
Temperature 95.6 95.7 98.2 0.0365 0.1675 0.0426 0.0411 0.2074 0.6681 0.4894 
Uncalibrated 99 99.1 100 0.0065 0.0376 0.0226 0.0214 0.2316 0.0207 0.3804 

XGB 
  
  
  

Isotonic 99.2 99.2 100 0.007 0.0311 0.0241 0.0147 0.2313 0.4402 0.5234 
Platt 99.4 99.4 100 0.0092 0.0534 0.0438 0.0307 0.2125 0.2697 0.7105 
Temperature 96.9 96.9 98.1 0.0308 0.1453 0.0385 0.0311 0.2142 0.7084 0.4043 
Uncalibrated 99 99 100 0.0135 0.0764 0.0639 0.0497 0.1964 0.2525 0.8046 
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Random Forest shows its clearest gains under 
Isotonic. Brier, both ECE variants, and Log Loss are 
lowest with Isotonic, mirroring the correction of high-
probability overconfidence seen in the reliability plots. 
Accuracy and F1 remain close to the uncalibrated 
Youden-J values, and AUC ROC is essentially unchanged. 
XGBoost starts close to calibrated. Differences among 
methods are small, with Isotonic producing the best Log 
Loss and competitive ECE values. Accuracy and F1 shift 
only marginally relative to the uncalibrated Youden-J 
baseline. Logistic Regression is already well 
behaved.  Isotonic yields the best Log Loss, ECE, with 
discrimination metrics essentially unchanged. Naive 
Bayes shows the largest calibration gains with Isotonic. 
Brier, both ECE variants, and Log Loss drop, consistent 
with the straightening of the S-shaped reliability curve. 
AUC ROC remains constant, and Accuracy and F1 may 
change slightly without a systematic direction. 

On the calibration-discrimination balance, 
Temperature does not behave as neutral. In your fold 
means, Temperature shifts Accuracy and F1 for every 

model, and AUC ROC also changes rather than remaining 
fixed. Isotonic and Platt tend to preserve AUC ROC 
within small deltas while improving Brier, ECE, and Log 
Loss, but Temperature’s global rescaling can move 
operating points and ranking enough to register in 
discrimination metrics. Consequently, when 
discrimination stability is a priority, Isotonic is generally 
preferred for RF, XGB, LR, and NB, Uncalibrated is 
preferred for SVM and KNN, and Temperature should be 
used with caution because of its measurable impact on 
Accuracy, F1, and sometimes AUC ROC as reflected in 
Table 8. 

3.4. Calibration metrics with uncertainty 

We report cross-validated calibration performance 
for Uncalibrated, Platt, Isotonic, and Temperature using 
Brier score, ECE with equal-width bins, K = 10, ECE with 
equal-frequency bins, K = 10, and Log Loss. Table 9 
presents per-model means with 95% bootstrap CIs across 
folds. These tabulated intervals anchor the comparisons 
that follow and are the source for the error bars in the 
grouped plots. 

Table 9: Calibration metrics with 95% bootstrap confidence intervals by model and calibration state, number of boots = 2000  

Model Calibration Brier 

Brier 
95% CI 
(Lower - 
Upper) 

ECE 
(uniform, 
10) 

ECE 
(uniform,10) 
95% CI 
(Lower - 
Upper) 

ECE 
(quantile, 
10) 

ECE 
(quantile,10) 
95% CI 
(Lower - 
Upper) 

Log 
Loss 

Log 
Loss 
95% CI 
(Lower - 
Upper) 

KNN 
  
  
  

Uncalibrated 0.0026 
0.0 - 
0.0075 

0.0039 0.0 - 0.01 0.0039 0.0 - 0.01 0.007 
0.0 - 
0.0192 

Platt 0.0054 
0.0019 - 
0.0114 

0.0308 0.0263 - 0.0352 0.0237 0.0185 - 0.029 0.0388 
0.0274 - 
0.0537 

Isotonic 0.0044 
0.0009 - 
0.0108 

0.0146 0.0083 - 0.0211 0.0094 0.0036 - 0.0162 0.0211 
0.0088 - 
0.0393 

Temperature 0.0258 
0.0199 - 
0.0326 

0.0287 0.0206 - 0.0388 0.0148 0.0102 - 0.0193 0.1228 
0.068 - 
0.1916 

RF 
  
  
  

Uncalibrated 0.0058 
0.0046 - 
0.0078 

0.0449 0.0422 - 0.049 0.0322 0.0316 - 0.0328 0.0484 
0.0449 - 
0.054 

Platt 0.0048 
0.0027 - 
0.0083 

0.0331 0.0289 - 0.0374 0.0223 0.0195 - 0.0256 0.0366 
0.0303 - 
0.0442 

Isotonic 0.0042 
0.0012 - 
0.0095 

0.0144 0.0104 - 0.0184 0.0098 0.0071 - 0.0133 0.0201 
0.0111 - 
0.0329 

Temperature 0.0242 
0.017 - 
0.0306 

0.0318 0.0257 - 0.0378 0.0201 0.0109 - 0.0308 0.1024 
0.076 - 
0.1339 

XGB 
  
  
  

Uncalibrated 0.0135 
0.0119 - 
0.0152 

0.0639 0.0592 - 0.069 0.0497 0.046 - 0.0534 0.0764 
0.0716 - 
0.0812 

Platt 0.0092 
0.0074 - 
0.0112 

0.0438 0.0382 - 0.0496 0.0307 0.0261 - 0.0371 0.0534 
0.0484 - 
0.0574 

Isotonic 0.007 
0.0044 - 
0.0096 

0.0241 0.0204 - 0.0294 0.0147 0.011 - 0.0194 0.0311 
0.0248 - 
0.0372 
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Temperature 0.0308 
0.0216 - 
0.04 

0.0385 0.0317 - 0.0444 0.0311 0.0268 - 0.0388 0.1453 
0.1089 - 
0.1871 

SVM 
  
  
  

Uncalibrated 0.0065 
0.002 - 
0.0132 

0.0226 0.0157 - 0.0307 0.0214 0.0133 - 0.0299 0.0376 
0.0204 - 
0.061 

Platt 0.0125 
0.0094 - 
0.0174 

0.0594 0.0512 - 0.0664 0.0452 0.0312 - 0.0567 0.075 
0.0668 - 
0.0861 

Isotonic 0.0087 
0.0056 - 
0.0128 

0.0337 0.0309 - 0.0365 0.0268 0.0221 - 0.0313 0.0442 
0.0376 - 
0.052 

Temperature 0.0365 
0.0304 - 
0.0412 

0.0426 0.0368 - 0.0484 0.0411 0.0322 - 0.05 0.1675 
0.1266 - 
0.2111 

LR 
  
  
  

Uncalibrated 0.0944 
0.088 - 
0.1002 

0.0646 0.0575 - 0.0745 0.0571 0.0505 - 0.0637 0.3171 
0.2912 - 
0.34 

Platt 0.0957 
0.0906 - 
0.1007 

0.0567 0.0446 - 0.0693 0.0645 0.0546 - 0.0746 0.3182 
0.3001 - 
0.3352 

Isotonic 0.0905 
0.0842 - 
0.0962 

0.055 0.0511 - 0.0589 0.0482 0.0415 - 0.0539 0.3018 
0.2784 - 
0.3194 

Temperature 0.0975 
0.0922 - 
0.1027 

0.0593 0.0497 - 0.0697 0.056 0.0462 - 0.0655 0.3259 
0.3062 - 
0.3455 

NB 
  
  
  

Uncalibrated 0.1492 
0.1365 - 
0.1634 

0.146 0.1314 - 0.1649 0.1348 0.1191 - 0.148 1.51 
1.2434 - 
1.7586 

Platt 0.1291 
0.1201 - 
0.1381 

0.0545 0.0407 - 0.0715 0.0942 0.0759 - 0.1117 0.4222 
0.4009 - 
0.4453 

Isotonic 0.1196 
0.1105 - 
0.1308 

0.0621 0.0498 - 0.0784 0.0534 0.0425 - 0.0637 0.3839 
0.3556 - 
0.4166 

Temperature 0.1248 
0.1134 - 
0.1382 

0.0741 0.0542 - 0.0893 0.0689 0.057 - 0.0771 0.4487 
0.3869 - 
0.5153 

As shown in Figure 11, Brier score with 95% CIs, tree 
ensembles benefit the most from Isotonic. For Random 
Forest, Brier drops from 0.0058 uncalibrated to 0.0042 
with Isotonic, while Platt and Temperature are higher at 
0.0048 and 0.0242. For XGBoost, Brier improves from 
0.0135 uncalibrated to 0.0070 with Isotonic, with Platt 

0.0092 and Temperature 0.0308. Naive Bayes shows a 
large reduction relative to its baseline, 0.1492 uncalibrated 
to 0.1196 with Isotonic. Support Vector Machine and K-
Nearest Neighbors are best Uncalibrated on Brier at 
0.0065 and 0.0026 respectively, and Temperature is the 
worst state for both. 

 
Figure 11: Brier score across models and calibration states with 95% CIs 
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Turning to Figure 12, ECE (equal-width, K = 10), 
Random Forest falls from 0.0449 uncalibrated to 0.0144 
with Isotonic, and XGBoost from 0.0639 to 0.0241. Naive 
Bayes improves from 0.146 to the 0.055-0.062 range under 
Platt or Isotonic. KNN is already very low uncalibrated at 
0.0039, and all calibrators increase uniform-ECE. SVM 
shows mixed behavior, with Temperature giving a lower 
uniform-ECE than Platt, yet Brier and Log Loss still favor 
the uncalibrated state. 

The sensitivity of ECE to the binning approach is clear 
in Figure 13, ECE (equal-frequency, K = 10). Absolute 
values are smaller and intervals are tighter because bins 
carry similar counts. Random Forest improves from 
0.0322 (uncalibrated) to 0.0098 with Isotonic, and 
XGBoost improves from 0.0497 to 0.0147. Naive Bayes 
drops from 0.1348 to 0.0534 with Isotonic, while Platt sits 

near 0.0942. KNN remains best uncalibrated at 0.0039, 
with Isotonic 0.0094 and Temperature 0.0148 above that. 
SVM is lowest Uncalibrated at 0.0214 and rises under 
calibration, Isotonic 0.0268, Temperature 0.0411, Platt 
0.0452. 

Likelihood trends in Figure 14, Log Loss with 95% 
CIs, reinforce the Brier score pattern with Temperature 
worsening on most of the models. Random Forest moves 
from 0.0484 uncalibrated to 0.0201 with Isotonic. XGBoost 
drops from 0.0764 to 0.0311. Naive Bayes is most erratic, 
1.51 uncalibrated to 0.3839 with Isotonic and 0.4222 with 
Platt. KNN and SVM are best Uncalibrated at 0.0070 and 
0.0376; Temperature increases loss across models. 
Logistic Regression improves modestly, 0.3171 
uncalibrated to 0.3018 with Isotonic.

 
Figure 12: Expected Calibration Error with equal-width bins, K = 10, across models and calibration states with 95% CIs. 

 
 Figure 13: Expected Calibration Error with equal-frequency bins, K = 10, across models and calibration states with 95% CIs.  
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Figure 14: Log Loss across models and calibration states with 95% CIs 

The statistical check in Figure 15, Spiegelhalter’s Z 
and p, complements the aggregate metrics. Values near Z 
= 0 with p > 0.05 indicate no detectable miscalibration at 
fold scale. Random Forest stays near zero across states 
with p ≈ 0.50-0.65, and XGBoost shows Z ≈ 0.25-0.71 with 
p ≈ 0.40-0.81. Naive Bayes improves from Z = -3.14, p = 
0.234 uncalibrated to Z ≈ -0.08 to -0.18 with p ≈ 0.54-0.69 
after calibration, consistent with its large reductions in 
Brier and Log Loss. KNN sits around Z ≈ 0.66-1.05 with p 
≈ 0.39-0.66, which matches its already strong Brier and 
Log Loss when uncalibrated and the lack of benefit from 
calibration. SVM shows Z ≈ 0.02-0.67 and p ≈ 0.38-0.56, 
again echoing the mixed ECE behavior and the preference 

for the uncalibrated state. Logistic Regression remains 
close to zero, Z from -0.16 to 0.41 with p ≈ 0.49-0.68, in line 
with small but consistent gains under Isotonic. 

We further conducted a statistical comparison test 
using permutation P-values between pre and post-
calibration metrics, setting the number of permutations to 
20,000 and the number of bootstraps to 2,000. Table 10 
reports changes calculated as calibrated minus 
uncalibrated for each metric, where negative deltas 
indicate improvement, with permutation p-values 
computed on fold-matched resamples. 

 

 

Figure 15: Heatmaps of Spiegelhalter’s Z-score and p-value across models and calibration states. Values near zero with p above 0.05 indicate no 
detectable miscalibration 
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Table 10: Statistical comparison tests using Permutation P between pre and post-calibration metrics. 

Model 
Calibration 
vs 
Uncalibrated 

Brier 
Δ (Cal 
- 
Uncal) 

Permutation 
p (Brier) 

ECE 
(uniform, 
10) Δ 
(Cal - 
Uncal) 

Permutation 
p (ECE 
(uniform, 
10) 

ECE 
(quantile, 
10) Δ (Cal 
- Uncal) 

Permutation 
p (ECE 
(quantile, 
10) 

Log 
Loss Δ 
(Cal - 
Uncal) 

Permutation 
p (Log Loss) 

KNN 

Platt 0.0028 0.0626 0.0269 0.0632 0.0198 0.0624 0.0318 0.0682 
Isotonic 0.0018 0.0608 0.0107 0.0684 0.0055 0.0638 0.0141 0.0624 

Temperature 0.0232 0.0633 0.0248 0.0637 0.0109 0.1284 0.1158 0.0618 

RF 

Platt -0.001 0.2537 -0.0119 0.0601 -0.0099 0.0566 
-
0.0118 0.0637 

Isotonic 
-
0.0016 0.3717 -0.0305 0.0612 -0.0224 0.0604 

-
0.0283 0.0664 

Temperature 0.0184 0.0611 -0.0131 0.0605 -0.0121 0.1826 0.054 0.0604 

XGB 

Platt 
-
0.0043 0.0654 -0.0202 0.0624 -0.019 0.0605 

-
0.0231 0.0611 

Isotonic 
-
0.0065 0.0613 -0.0398 0.064 -0.0349 0.0625 

-
0.0453 0.0612 

Temperature 0.0173 0.0616 -0.0254 0.0642 -0.0185 0.1278 0.0688 0.0632 

SVM 

Platt 0.006 0.06 0.0368 0.0626 0.0238 0.0637 0.0374 0.0625 
Isotonic 0.0022 0.3037 0.0111 0.0618 0.0054 0.1889 0.0065 0.4374 

Temperature 0.03 0.0622 0.02 0.1236 0.0197 0.1863 0.1299 0.0634 

LR 

Platt 0.0013 0.0637 -0.0079 0.1285 0.0074 0.1236 0.0011 1 

Isotonic 
-
0.0039 0.0644 -0.0096 0.0611 -0.0089 0.1241 

-
0.0153 0.0637 

Temperature 0.0031 0.1859 -0.0053 0.5643 -0.0011 0.8708 0.0088 0.0625 

NB 

Platt 
-
0.0201 0.0589 -0.0915 0.0619 -0.0406 0.0632 

-
1.0878 0.0628 

Isotonic 
-
0.0296 0.0589 -0.0838 0.063 -0.0814 0.0599 -1.126 0.0612 

Temperature 
-
0.0244 0.0609 -0.0719 0.0662 -0.0659 0.0633 

-
1.0613 0.0622 

For Random Forest, Isotonic delivers coherent gains 
across all metrics, for example ECE with equal-width bins 
falls by 0.0305 and ECE with equal-frequency bins by 
0.0224 with p about 0.06, and Log Loss drops by 0.0283 
with similar uncertainty.XGBoost shows the same 
direction with larger magnitudes, ECE with equal-width 
bins by 0.0398, ECE with equal-frequency bins by 0.0349, 
and Log Loss by 0.0453, all with p near 0.06.Naive Bayes 
exhibits the largest changes in this study, moving from 
poor raw calibration to materially lower error after 
Isotonic, Brier decreases by 0.0296, ECE with equal-width 
by 0.0838, ECE with equal-frequency by 0.0814, and Log 
Loss by 1.126, again with p around 0.06. 

In contrast, K-Nearest Neighbors and Support Vector 
Machine are best left uncalibrated, since all calibrators 

raise error on most metrics, for example KNN Log Loss 
increases by 0.0318 with Platt and by 0.1158 with 
Temperature, while SVM ECE with equal-width increases 
by 0.0368 with Platt and by 0.020 with Temperature. 
Logistic Regression shows only small, mostly favorable 
shifts under Isotonic, for example ECE with equal width 
decreases by 0.0096 and Log Loss by 0.0153, while Platt 
and Temperature are mixed or neutral. The p-values 
cluster near 0.06, so the direction and coherence across 
metrics carry the interpretation. Where effects are large 
and consistent, as in Naive Bayes and the two ensembles 
with Isotonic, the conclusion is strong. Where effects are 
small or mixed, as in Logistic Regression, claims should 
be conservative. 
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To explore the relationship between calibration and 
prediction quality, we plotted Expected Calibration Error 
(ECE) against the Brier Score for all model-calibration 
combinations (Figure 16-17). Ideally, well-calibrated and 
accurate models should lie close to the diagonal line, 
where ECE and Brier Score are proportionally aligned. 
We plotted ECE (uniform, K = 10) against the Brier score 
for every model-calibration pair, with a 45° reference line 
for proportional agreement (Figure 16). Points in the 
lower left indicate both low Brier and low ECE. XGBoost 
and Random Forest cluster close to this region under 
isotonic and Platt, consistent with the grouped bar results 
that showed small Brier and small ECE after calibration. 
Logistic Regression sits mid-left, where Brier is modest 
and ECE varies by method, with isotonic typically lowest. 
K-Nearest Neighbors and Support Vector Machine show 
larger spread, and their uncalibrated states lie below the 
diagonal with small Brier but noticeably higher ECE, 
matching their reliability curves that showed local 
miscalibration at low and mid probabilities. Naive Bayes 

forms the upper-right cloud, reflecting both high Brier 
and high ECE when uncalibrated, with clear leftward and 
downward shifts after calibration. 

Repeating the plot with quantile binning reduces ECE 
values across most points while preserving the relative 
ordering (Figure 17). This mirrors the sensitivity analysis 
where quantile ECE was systematically lower than 
uniform ECE. Tree models remain in the lower-left 
quadrant, Logistic Regression is slightly shuffled & 
moves closer to the diagonal under isotonic, and KNN 
continues to show higher ECE than its Brier alone would 
suggest in the uncalibrated and Platt states. Naive Bayes 
still separates from the rest, but calibration methods shift 
it downward and left. The consistency of these patterns 
across both binning schemes supports the conclusion that 
models with better Brier also tend to have better 
calibration, while ECE exposes cases where apparently 
small Brier can hide meaningful miscalibration.

 
Figure 16: Calibration comparison, Brier score vs ECE (uniform, K = 10). Each point represents one model-calibration pair. The dashed line marks 

proportional equality between the two metrics. 

 
Figure 17: Calibration comparison, Brier score vs ECE (quantile, K = 10). Equal-frequency binning 
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3.5. Sharpness of predicted probabilities 

Sharpness, measured as the variance of predicted 
probabilities, summarizes how concentrated a model’s 
probabilities are. Larger variance means more confident 
predictions; smaller variance means flatter, more 
conservative outputs. 

Across all conditions, KNN is the sharpest. The 
uncalibrated KNN attains the highest variance at 0.249, 
and remains high after calibration, 0.240 with isotonic and 
0.230 with temperature, with a modest reduction under 
Platt to 0.223. Tree ensembles are also highly sharp, but 
their behavior differs by calibration method. Random 
Forest rises from 0.211 uncalibrated to 0.239 with isotonic, 
with smaller values for Platt (0.222) and temperature 
(0.226). XGBoost shows a similar pattern, 0.196 
uncalibrated, 0.231 isotonic, 0.214 temperature, 0.212 
Platt. These results indicate that isotonic leaves ensemble 
predictions are confident, while Platt and temperature 
introduce mild smoothing. 

For margin-based and linear models, calibration 
tends to smooth more. SVM drops from initial 0.232 
uncalibrated to 0.223 with isotonic, 0.207 with 
temperature, and 0.199 with Platt. Logistic Regression 
falls from 0.157 uncalibrated to 0.164 isotonic, 0.150 
temperature, and 0.139 Platt. Naive Bayes exhibits the 
largest reduction, from 0.229 uncalibrated to 0.166 
temperature, 0.134 isotonic, and 0.102 Platt, consistent 
with its strong decrease in ECE and Log Loss in Table 9. 

Isotonic often preserves or slightly increases 
sharpness for the ensembles while reducing ECE and Log 
Loss, suggesting better-positioned confidence without 

blunting predictions. Also, Platt and temperature 
systematically soften LR, SVM, and NB, which can be 
desirable when the uncalibrated model is overconfident, 
as evidenced by their reliability curves in Figure 6-9 and 
Spiegelhalter’s statistics in Figure 15. 

4. Interpretation of Results 

This study demonstrates the impact of post-hoc 
calibration methods on model confidence, calibration 
quality, and statistical reliability in heart disease 
prediction. Isotonic regression remained the most 
effective calibrator for several models, but its advantage 
was model-dependent. In our cross-validated analysis, 
Random Forest, XGBoost, Logistic Regression, and Naive 
Bayes showed consistent improvements under isotonic 
calibration across Brier, ECE, and Log Loss, while 
Support Vector Machine and K-Nearest Neighbors were 
best left uncalibrated on the calibration metrics and 
likelihood, with temperature scaling often worsening 
discrimination. These conclusions are supported by the 
grouped calibration plots with 95% confidence intervals 
and the permutation tests that compare calibrated to 
uncalibrated fold by fold (Tables 8-10, Figures 11-15). As 
an illustration, Random Forest’s ECE and Log Loss 
decrease substantially under isotonic relative to 
uncalibrated in the grouped plots, and Naive Bayes 
exhibits the largest drops among all models. These effects 
are mirrored by near-zero Spiegelhalter Z with higher p 
after calibration in several models, which indicates no 
detectable miscalibration at fold scale while recognizing 
that non-significant p does not prove perfect calibration 
[61].

 
Figure 18: Sharpness of predicted probabilities (variance) across models and calibration methods. 
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These findings support the theory that sigmoid 
calibration is most suitable when miscalibration is close to 
a logistic shift, whereas isotonic regression can correct 
more complex, monotone distortions [7], [9]. 
Temperature scaling provides a single-parameter softness 
control, but it shifts Accuracy and F1 across all models 
and frequently increased Log Loss, so it should be applied 
with caution here [5]. The comparative nature of our 
analysis is crucial. We based inferences on cross-validated 
fold means with confidence intervals, and on paired 
permutation tests that quantify whether calibrated 
metrics are better than uncalibrated under the matched 
fold design, directly addressing requests for statistical 
comparison rather than isolated point estimates. 

In clinical applications, where predicted risks inform 
communication and thresholds, miscalibrated models can 
convey inappropriate levels of confidence, complicating 
risk discussions and the consistency of threshold-based 
decisions without necessarily improving patient-level 
utility. For example, Naive Bayes before calibration 
produced extreme probabilities with poor alignment to 
outcomes, which post-calibration corrected, lowering 
Brier and Log Loss and improving Z and p toward values 
consistent with good calibration. This highlights the need 
for calibration pipelines in AI-assisted diagnostics to 
improve trustworthiness and reduce the risk that 
probability outputs misrepresent uncertainty [72]. 
Reliability diagrams built from out-of-fold predictions 
with Wilson intervals and per-bin counts further illustrate 
these corrections while avoiding test-set leakage [5][56]. 
Together with the sharpness analysis, this shows when 
confidence is well in line with observed risk and when it 
is not. 

A key methodological contribution is the joint use of 
multiple calibration summaries, guidance on clinical 
presentation of calibration and reporting practices 
supports this multi-metric approach [52]. Previous work 
often reported only one metric such as Brier or ECE [5], 
[73]. We combined Brier, ECE, Log Loss, Spiegelhalter’s 
Z, p-value, and Sharpness across six classifiers, and we 
visualized their relationships with grouped plots and 
Brier versus ECE scatterplots. The scatterplots show that 
points move down and left after isotonic for the tree 
ensembles and Naive Bayes, indicating lower calibration 
error and lower probabilistic loss, while SVM and KNN 
tend to cluster closer to their uncalibrated states, 
consistent with their preference to remain uncalibrated. 
The ECE sensitivity analysis confirms that equal-
frequency binning yields smaller ECE than equal-width 

on average, with a positive median difference and a 
paired test p below conventional threshold. We therefore 
report both ECE variants, interpret their magnitudes 
cautiously, and base primary claims on the convergence 
of multiple metrics rather than a single summary [5], [56]. 

Another contribution of this work is a reproducible 
evaluation framework for post-hoc calibration in binary 
heart disease prediction that couples strict leakage control 
with fold-conscious uncertainty and paired comparative 
testing. Some models, notably Naive Bayes and Random 
Forest, benefit substantially from isotonic calibration, 
while others, such as KNN and SVM, do not. By 
introducing sharpness alongside calibration, we examine 
correctness and the confidence dispersion, which is 
essential for risk stratification and model auditability [74]. 
Throughout, all preprocessing, threshold selection by 
Youden’s J inside an inner loop, and calibration were fit 
on training data only, never on the test set, which reduces 
optimistic bias and supports statistically valid inference 
[44], [75], [76]. 

From an operational standpoint, the calibration 
procedures used here are lightweight and feasible to 
maintain. Platt and temperature scaling add negligible 
compute at inference and only a small fit cost on held-out 
training predictions, while isotonic regression remains 
inexpensive at structured clinical feature data. For 
integration, the same nested cross-validated approach can 
be embedded in routine retraining to provide continuous 
calibration as data drift is detected, for example by 
monitoring ECE and Log Loss on recent cases and 
triggering recalibration when control limits are exceeded. 
Because probability calibration can change subgroup 
error profiles, fairness should be checked pre and post-
calibration, for instance by reporting calibration curves, 
ECE, and Brier stratified by demographic groups, and by 
tracking stability under distribution shift. In our setting, 
the per-model recommendations are actionable, isotonic 
for tree ensembles and Naive Bayes, uncalibrated for 
SVM and KNN, and cautious use of temperature scaling. 
This preserves inference speed and aligns with a periodic 
recalibration policy that is straightforward to implement 
in clinical pipelines. 

This study is limited by the size of the dataset 
(N=1,025), which can increase variability in binned 
metrics and in Z, even with Wilson intervals and cross-
validated designs. We did not include an external cohort, 
so generalizability remains to be confirmed on 
independent populations. We focused on Platt, Isotonic, 
and Temperature, leaving alternatives such as beta 
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calibration or Bayesian binning to future work. We also 
did not include decision-curve analysis in the main 
results, which would connect calibrated probabilities to 
clinical net benefit and we did not integrate model 
interpretability or explainability analysis. Future research 
should extend the framework to external and temporal 
validation, add decision-curve analysis under fixed 
thresholds selected by Youden’s J, evaluate alternative 
calibrators, and incorporate explainability to link 
calibrated risk with feature attributions in support of 
clinical review. 

5. Conclusion 

This study evaluated the calibration performance of 
six classification models for heart disease prediction using 
post-hoc techniques and multiple uncertainty metrics. 
While several models achieved strong discrimination, 
their probability estimates were not always aligned with 
observed outcomes. This confirms the need to assess 
probability quality in addition to accuracy and AUC 
ROC. 

Across methods and models, post-hoc calibration 
improved probability alignment in a model-dependent 
way. Isotonic regression yielded the most consistent gains 
in Brier score, ECE, and Log Loss for Random Forest, 
XGBoost, Logistic Regression, and Naive Bayes, with 
effects verified under cross-validated estimation, 
bootstrap intervals, and paired permutation tests. 
Spiegelhalter’s Z and p provided complementary 
evidence for absolute calibration, interpreted cautiously 
given sample size. In contrast, Support Vector Machine 
and K-Nearest Neighbors were best left uncalibrated on 
these metrics. Temperature scaling was included for 
completeness, but in this setting, it often increased Log 
Loss and affected discrimination. 

The study contributes a reproducible calibration-
evaluation framework for structured clinical predictors. 
Preprocessing, threshold selection via Youden’s J, and all 
calibrators were fit on training data within cross-
validation, then applied to matched validation folds and 
only finally to the held-out test set. Reliability diagrams 
were built from out-of-fold predictions with Wilson 
intervals and bin counts. ECE was reported in two 
variants, equal-width and equal-frequency, and a paired 
sensitivity analysis showed lower values under quantile 
binning without changing the qualitative ranking. 
Sharpness was reported alongside calibration to 
characterize confidence concentration, helping to 

interpret when improvements reflect better aligned 
probabilities rather than simple smoothing. 

These results indicate that isotonic calibration is a 
strong default for tree ensembles and Naive Bayes under 
this workflow, that Logistic Regression benefits from 
Isotonic, and that SVM and KNN may not require 
calibration. The framework balances calibration and 
discrimination by using a single threshold per model 
chosen with Youden’s J inside the training folds, which 
mirrors a stable operating policy. The overall 
recommendation is to evaluate calibration routinely with 
fold-aware uncertainty, to select the calibration method 
by empirical evidence on the target data, and to deploy 
periodic recalibration with monitoring for drift. 
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