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ABSTRACT:  The problem of acoustic monochromatic radiation by boundary with a traveling distri-

bution of phases of normal vibrational velocities is considered. It is shown that when the spatial fre-

quency of the traveling phase of normal velocities approaches the wave number in the medium, the 

energy transfer from boundary   into a “sliding” (with respect to the boundary) sound wave can reso-

nantly increase to a value many times greater than the energy transfer from of the in-phase boundary, 

correspondingly, into the normal one (with respect to the boundary) sound wave at the same modules 

of amplitudes of vibrational velocities of boundary. In addition, the resonant energy transfer of the 

boundary into a "sliding" wave is the greater, the larger the wave dimensions of the radiating pattern 

on boundary. It is shown that when a similar traveling distribution of sound pressure (instead normal 

velocity) is specified at the boundary, there is no resonance. The influence of the curvature of the radi-

ating boundary on the above phenomenon of resonant radiation was studied. It is shown that the res-

onant radiation of the boundary with given running phases of normal velocities generates a tangential 

(with respect to the boundary) constant in time radiation reaction force. It is shown that for the case of 

a linear chain of equidistant monopoles (or pulsing spheres separated from each other by medium) 

with a traveling phase (a traveling wave antenna) of their oscillatory velocities, the resonance does not 

appear. 

KEYWORDS: Boundary, Pattern, radiation, Resonance, Phasor, Spatial frequency, Radiation pressure 

 

1. Introduction  

It is usually well-known that there is radiation (acous-

tical or electromagnetic monochromatic field in the far 

zone) at the spatial frequency 00 kh   ( 0k  -wave number 

in the medium) of sources, and at the spatial frequency 

00 kh 
 
of sources radiation is absent or very small [1-7]. 

This is probably why the researchers did not consider this 

area in sufficient detail. Below, using several examples of 

very simple boundary value problems [8], it is shown that 

radiation power with an increase in the spatial frequency 

0h  from 00 =h  to 00 kh   (immediately before radiation 

falling to zero at 00 kh  ) can reach infinity when ap-

proaching 0h  to 0k . This means the phenomenon of reso-

nance, which is of particular interest to any physicist, es-

pecially since we are talking about such an important 

physical quantity as the surface density of the radiated 

power. On the other hand, it is known that the traveling 

amplitude distribution of radiating elements (separated 

from each other by the medium) in traveling wave anten-

nas does not lead to resonant radiation [9]. In addition, 

many highly educated researchers, without delving into 

details (on the basis of the hastily applied relationship be-

tween pressure and velocity through the impedance of the 

medium), are inclined to declare that there is no funda-

mental difference between boundary radiation with a 

given pressure and boundary radiation  with a given nor-

mal velocity. Thus the purpose of this work is to fill the 

above-mentioned small, but very common (as experience 

shows) gaps in understanding the process of wave radia-

tion. 

First, let's consider a sound field excited in a compress-

ible nonviscous linear medium (in a half-space 0z ) by a 

traveling distribution (with a traveling phase [8])  

)exp(),()( 00000 xihtihUtU −= r,                      (1) 
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of normal vibrational velocities on the surface S  (plane 

surface S , 0=z , )0,,( yx=r ), where ),( 00 hU     is the com-

plex amplitude of travelling wave on the time frequency  

0   and spatial frequency 0h  of normal vibrational veloc-

ities (Fig. 1-a). Below we will consider the radiation of var-

ious patterns (as modifications of (1)) with a traveling 

phase. 

2. Plane (acoustical field) 

Particle velocity ),,( tzxv  and sound pressure ),,( tzxp  

are determined by potential   as  

)grad(),( −=trv , 
/

),( ttp =r ,                  (2) 

where   is the mass density of medium at 0z .  
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Figure 1. Radiation of the boundary: (a) acoustical radiation; (b) elec-

tromagnetic radiation. 

Assuming the spatial two-dimensionality of the bound-

ary value problem (i.e. 0/ = y , +− y ), let us sub-

stitute the solution in the equation 

//2////

ttzzxx с 
−

=+                              (3) 

( с  is the speed of sound in a compressible medium) for 

the acoustic wave potential ),,( tzx  in the form  

  )()()(),,( tTzZxXtzx =                           (4) 

with functions )(xX , )(zZ , )(tT  of separable variables x , 

z , t  in the absence of waves incident on the boundary 

0=z . In this case for wave potential ),,( tzx  (in the ab-

sence of incident waves and satisfying the boundary con-

dition (1) or ),(),,( 0

/
txUtzx z =− ) we obtain the following 

expression 

),,(),,(),,( tzxtzxtzx  += ,                     (5)                     

where 

  ),(
exp

),,( 00002

0

2

0

2

0

2

0 00][
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
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iht
ehk

hki

hkiz
tzx

xi −
−

−−

−−
= I , (6) 
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ekh
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tzx

xi −
−

−−

−−
= I , (7)   

][I -Heaviside step function ( 0]0[ =I , 1]0[ =I ), 

(8) 

thus   =  at 00 kh  ,   =  at 00 kh  , where  

ck /00 = .  Now we get the power flux density  

2/*Re)( 0

//

0 ]))(([ == zzthW                  (9)
 

 or  
2

0

2

000

2

0000 /),()2/()( ][ hkhkhUhW −−= I
 
     

(10) 
 

at the boundary 0=z . This is the work performed by a 

section of a strip of unit width (along the axis "" x ) and 

unit length (along the axis y ) and averaged in time over a 

period 0/2 p ). This is due to an abrupt change in the ei-

genvalue of the boundary value problem from purely real 

to purely imaginary when going from 00 kh   to 00 kh  .  

For the reactive power flow, we obtain the expression 

2/*Im)( 0

//

0 ]))(([ == zzthW                     (11) 

or       )( 2

0

2

000

2

0000 2/),()( ][ khkhkhUhW −−= I .   

(12)  

Normalizing to the value )0(W  (i.e. for 00 =h , or in a one-

dimensional radiation problem), we obtain a simple ex-

pression that means the resonant dependence for relative 

active )( 0hW  and reactive )( 0hW  power flux density (Fig. 

2-a, 2-b) 

   

  2

00000
)/(1

1
)0(/)( /][ khhkWhW −−= I  (Fig. 2-a), 

(13)   1)/(
1

)0(/)(
2

00000
/][ −−= khkhWhW I   (Fig. 2-a), 

(14) 

of the energy transfer of the boundary 0=z  (into the half-

space 0z ) . Lines P (Pointing vector) of power flow go 

out of the plane 0=z  at an angle of inclination 

 )/arccos( 00 kh=a .                             (15) 

       However, when the traveling pressure  

)exp(~),( 00

/
xihtitxt −                            (16) 

is set at the boundary 0=z , there is no resonance in the 

following corresponding  functions (instead (13), (14))  

  ][ 00

2

000
)/(1

1p
)0(/)( hkkhWhW −−= I   (Fig. 2-c)  (17) 
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  ][ 00

2

000
1)/(

1p
)0(/)( khkhWhW −−= I

 

 (Fig. 2-d), 

(18)    

(contrary to superficial judgment about the relationship 

between pressure and velocity through the impedance of 

the medium, see Figs. 2-c, 2-d).  
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Figure 2. Resonant radiation of the infinite plane boundary S  with: (a) 

normalized real power (13) for velocity pattern (1); (b) normalized im-

aginary power (14) for velocity pattern (1); (c) normalized real power 

(17)  for given pressure pattern (16); (d) normalized imaginary power 

(18)  for given pressure pattern (16),  left white area corresponds to real 

part of power (radiation), right gray area means reactive imaginary 

power (no radiation); (e)  radiation of normal wave by pattern with 

amplitude modulus D , phasor 00 =h ,  2/pa = ; (f) radiation of a 

"sliding" wave ( 1a ) with the same amplitude modulus D  of the 

pattern, and with a phasor 00 kh → . 

       Below, the value  n)0(/)( 0 WhW
 
( 51n −= , i.e. in var-

ious modifications) will also be called the transmission 

function (in terms of power) of a spatial low-frequency 

filter (due to boundary value problem, Fig. 1) of spatial 

frequencies 0h
 
or also the normalized (by )0(W ) radia-

tion resistance of a radiating pattern (pattern number 

51n −= ) with spatial frequency 0h  along the vector 

called as phasor 0h . Below the quantity ),(0 txU  we also 

will call “pattern” with surface or boundary S .     

    The essence of the effect of resonant radiation: the wave 

generated by the pattern (1) at 1/ 000 − khk , takes 

much more energy for radiation (from the devices that 

support the pattern (1)) than the wave with 00 =h  (at the 

same fixed amplitude module ),( 00 hU=D  of pattern (1), 

Fig. 2-e, 2-f). In turn, devices that support pattern (1) must 

have an infinite internal impedance =UZ  (or not de-

pend on any wave pressure at  0z ) or an impedance 

cZ U  that is many times greater than the impedance 

c  of the medium (at 0z ), for example: air ( 0z )—pi-

ezoceramic (thickness  , − z0 )—steel ( −z ) . 

Here is another explanation of the effect. When 

1/ 000 − khk , the solution of equation (3) in the half-

space 0z  is a plane sound wave with a wave potential 

)sincosexp(),,( 00 aa zikxiktiAtzx −−= , where A  is the 

magnitude. To fulfill condition (1) at the boundary 0=z , 

the amplitude A  of the radiated wave must be increased 

at 00 kh →  (or 0→a ) so that the projection 

/

A )],,([ ztzx−  of particle velocities in the radiated wave 

  onto the axis "" z  coincides with pattern (1), which 

magnitude has been given independently on a . But sup-

porting a given pattern (1) at 0→a  requires more and 

more energy (energy of radiation). 

3. Plane (electromagnetic waves).  

The resonance characteristics (13), (14) described above 

are a property of the wave equation. Therefore, it is natu-

ral to assume the possibility of their appearance in the 

boundary value problem for an electromagnetic field. 

And indeed, for instance, the tangential electric field 

]exp[~ 0000 xihti −hE
                     

     (19) 

( )0(0 || =zE , )0(0 || =zh ) on the plane S  or 0=z  (see Fig. 1-

b) determines the electromagnetic field in the entire half-

space 0z . When specifying a tangential electric field 

0E
 
on the plane 0=z  (we emphasize, not an electric cur-

rent or a source on the right side of the boundary condi-

tions, namely the field 0E ), we get the same resonance 

functions (13), (14)  1)0(/)( 0 WhW
 
and  1)0(/)( 0 WhW .  

4. Plane (acoustical radiation pressure). Let us return to 

the acoustic problem as in Section 2.  The pattern ),(0 txU  

creates a nonzero complex amplitude of sine )],(sin[ tx  

( ),( tx  is the slope of the border 0=z  or a normal ),( txn , 

Fig. 3, 1  at
 

1 )  is equal to the following expres-

sion 

)exp(),()/( 000000 xihtihUh − .                   (20) 

Due to this, the local pressure force of the medium on the 

boundary 0=z  at the point x  at t  the moment has a tan-

gential component 

)),(sin(),0,()(),( 00 / txtxptx hhF −= .              (21) 

The average (for the time period 0/2 p
 
and for the spatial 

period 0/2 hp ) value of the force F  (force per unit square 

of surface S  , 0=z ) is equal to 

http://www.jenrs.com/
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     2/))],(sin(*),0,(Re[)( 00, / txtxptx hhF −=        (22)  

or    )( 0

1

U00, )/( hWctx

−
−= hhF  ,                    (23) 

 where 00U / hc =
 
is the phase velocity of the pattern 

),(0 txU   (or the speed with which it would be necessary 

to translate the rigid profile 

   )cos(]/),([)( 0U000 xhchhUx  −=                   (24)
 

along the axis "" x (i.e. )()( Utcxx −→ , see (1)) in order 

to obtain the distribution ),(0 txU
 
of normal velocities), 

)( 0hW
 
is the radiation power density of the boundary 

0=z . 
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Figure 3.  On the appearance of tangential acoustical radiation pressure 

on an infinite flat pattern. 

Obviously: (a) 0,  txF
 
is quadratic effect for ),(0 txU ; 

(b) 0, = txF
 
at 0)( 0 =hW  (i.e. at 00 kh  ). On the other 

hand, the pattern acts on the liquid with a force FF −=  

(or 
txtx ,, −= FF ) that can generate a flow in  liquid. 

Thus, we have obtained the radiation reaction force for a 

perfectly linear compressible nonviscous medium (unlike 

[10]). Now consider the case when the pattern (1) of nor-

mal vibrational velocities (at the boundary 0=z ) 

    
xihti

eu
xihti

eutxU
hh

n
n

n
n),( 00

0
0

00

0
00

nn 00

−



+
−




=


    

(25) 

represented by a set of sinusoids at spatial frequencies 

 n0h  and with amplitudes n0u  ( ,...3,2,1n = ). Some of 

these sinusoids run to the left ( 0n0 h ), some of the sinus-

oids run to the right ( 0n0 h  ). Accordingly, the projec-

tion xtx )( , F of the tangential force tx, F  (per unit 

area of the plane 0=z ) of the radiation reaction on the 

axis "" x    is presented by term x)( − F  (caused by spa-

tial harmonics running to the left, i.e. 0n0 h , ,...3,2,1n = ) 

and term x)( +− F
 
(caused by spatial harmonics run-

ning to the right, i.e. 0n0 h , ,...3,2,1n = ): 

xtxxtxxtx )()()( ,,, +− −= FFF ,          (26) 

 where, using (10) and (23), we can write 

)()()( nn
n

n 00

2/12

0

2

0
0

0

1

Un

2

0,
0

hkhkcu
h

xtx −−


=
−−

− IF  ,   

(27) 

)()()( nn
n

n 00

2/12

0

2

0
0

0

1

Un

2

0,
0

hkhkcu
h

xtx −−


=
−−

+ IF  , 

(28) 

where ][I -Heaviside step function (see (8)), 

n00Un / hc = . From (26)-(28) it is easy to see that the 

value (26) is the balance of the power of waves radiated 

to the right ( 0n0 h ) and the power of waves radiated to 

the left ( 0n0 h ). 

5. Cylinder (azimuthal phasor)  

Next, we will continue to consider examples of resonant 

radiation by various patterns. Let's consider patterns with 

a finite curvature of a bearing surface - an infinite cylin-

drical surface S  of pattern with a cross-sectional radius 

R , on which a certain distribution ),(0 tU r  of normal vi-

brational velocities is given (Fig. 4-a). 
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Figure 4.  The phase runs along the azimuth J  of the cylinder S : (a) 

geometry of the boundary value problem; (b) normalized radiation re-

sistance  2)0(/)( 0 WhW at different wave sizes Rk0  of the cylinder 

cross-section, (the gray line shows the function  

 
1

)0(/)( 0 WhW  ); (c) dependence of the peak value 2M  on Rk0 . 

 Using the cylindrical wave equation (instead (3)) 

( ) //2//2/1

ttrr crrr  JJ
−−−

=+
/

,                    (29) 
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(where r , J  are the corresponding cylindrical coordi-

nates of point r ) for pattern 

  )exp(),( 000

/ )( J RihtitUКкr −==− = r            (30) 

(the phase runs in the azimuthal direction J , pJ 20  , 

+− x , 0/ = x ) we obtain the normalized radia-

tion resistance (Fig. 4-b) 

( ) ( )

( ) ( )
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)(H)(HRe

)(H)(HRe
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)2(
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











/

/
       (31)

  

of such a pattern, where, of course, only discrete points 

Rh n/0 =
 
have a mathematical (and physical) meaning 

( )(H
)2(

n 
 
is the Hankel function of the second kind of the 

n –th order, ,...2,1,0n = ). Looking at the evolution of the 

graphs of the magnitude  2)0(/)( 0 WhW
 
with increasing 

Rk0 , one could assume that 

   1)0(/)(
?2)0(/)(Lim 00

0

WhWWhW
Rk

=
→

.             (32) 

However, the convergence of these values significantly 

slows down (this can be judged by the slowdown in the 

growth of the maximums (varying 0h ) 

 2)0(/)(Max)( 0
0

02 WhW
h

RkM = .                  (33) 

Power flux lines P  exit the cylinder surface at an sliding 

angle )/arccos( 00 kh=a  of inclination (i.e. 000 /)cos( kh=Ph , 

2/0 pa  , see Fig. 4-c) and become straight radial in the 

far zone at the distance 
0

2
hR . In book [4], for example, 

the author could get the resonance dependence (Fig. 2-a) 

if he would normalized the ordinate by )0(W , and the ab-

scissa by 0k
 
and considered the discrete azimuthal fre-

quencies Rh n/0 =  ( ,...3,2,1n = ) as interpolation nodes on 

the continuous axis of spatial frequencies.   Note that the 

integral flow of the Poynting vector P  through an arbi-

trary closed cylindrical surface S  (which embraces S ) is 

equal to the integral power flow on the surface S  of the 

cylindrical radiating pattern (Fig. 4-a). 

6. Cylinder (axial phasor)  

Now for the cylindrical wave equation (instead (29))  

    ( ) //2///1

ttxxrr crr 
−

+
−

=
/

                      (34)     

we consider the pattern (boundary condition)  

           )exp(),( 000

/ )( xihtitUКкr −==− =  r  ,         (35) 

where the phase runs along the axis of the cylinder S  

( +− x , Fig. 5-a). So the normalized radiation re-

sistance of such a pattern looks like  
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  (36)  

 (Fig. 5-b). Note that here the argument   of the Hankel 

function )(H
)2(

0  , when passing from 00 kh   to 00 kh  , 

turns from purely real to purely imaginary. The quantity 

 3)0(/)( 0 WhW  is closing to  1)0(/)( 0 WhW
 
faster than 

 2)0(/)( 0 WhW  (see the function 

 3)0(/)(Max)( 0
0

03 WhW
h

RkM =

 
,               (37) 

varying 0h , in Fig. 5-c). Power flux lines P  exit the cylin-

der surface in a taper angle )/arccos( 00 kh=a  (i.e.
  

000 /)cos( kh=Ph , 2/0 pa  ). 
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Figure 5.    The phase runs along the axis "" x  of cylinder S : (a) geom-

etry of the boundary value problem; (b) normalized radiation re-

sistance  3)0(/)( 0 WhW at different wave sizes Rk0  of the cylinder 

cross-section, (the gray line shows the function  1)0(/)( 0 WhW ); (c) 

dependence of the peak value 3M  on Rk0 . 

7. Linear Chain of Acoustic Monopoles 

Let us also consider the opposite example (with set-

ting the speed, but without resonance) - a ruler (length 

02L ) 1N2 + equidistantly (with a period N/0L= , 

10 k , ,...3,2,1N = ) of distributed pulsating spheres 
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(acoustic monopoles) with radii a  (Fig. 6-a). Here, as 

in the previous sections, we set the normal vibrational ve-

locity, but already on the surface of discrete pulsating 

spheres. The sinusoidal (with frequency 0 ) pulsations of 

the spheres are given the same amplitudes, and the 

phases of the pulsations are set linearly according to the 

law n)exp( 0ih− , where n  is the sphere number 

( NnN +− ), 00 h=h
 
is the phasor module 0h . Thus 

this is a wellknown 3D travelling wave antenna [9]. Then, 

for the normalized radiation resistance of the pattern 

(chain of monopoles), we obtain the expression 
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The function  4)0(/)( 0 WhW
 
graph (Fig. 6-b) has no reso-

nance, and  
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Figure 6. Linear chain of acoustic monopoles: (a) geometry of the 

boundary value problem; (b) normalized radiation resistance of the 

chain of monopoles at different wave sizes 00kL
 
at 100  kak .  

The difference between the boundary value problem and 

the previous ones lies in the absence of diffraction (small 

scattering on rigid fixed spheres) of the fields of pulsating 

spheres on each other due to their small wave sizes 

( 1ka ) and relatively large distances ( a ) between 

their centers. Surface S  becomes lumped into a set of  

1N2 +  small spheres (see Fig. 6-a). In other words, we 

summarize in the far zone the fields of the single pulsat-

ing spheres that each of them creates in a space free from 

other spheres. In the same way, there is no resonance 

when noninteracting spheres are placed on a ring (if we 

try to formulate the problem in Section 5 in a similar way). 

For ( 1ka )   ( a ) it is indifferent (for  4)0(/)( 0 WhW ) 

to make given velocity or pressure on the spheres. This is 

probably the reason for the absence of resonance. The 

maximum radiation power of the line of monopoles cor-

responds to the direction of the Poynting vector P  in a 

cone with an inclination angle )/arccos( 00 kh=a   (i.e. 

000 /)cos( kh=Ph , 2/0 pa  ). The radiation pressure is 

present as in above sections.  

8.  Spatially Localized Pattern on a Plane.  For a rough 

estimate of the effect of amplification of acoustic radiation 

using a phasor 0h  (at 00 kh → ) at constant module of 

normal velocity amplitudes, we now consider (for the 

subsequent spectral representation) a pattern 

),,(),( 00 tyxUtU =r
 
localized on the plane 0=z   

( − yx, ) in the following form: 

)exp()]/sinc()/[sinc(),,( 00000 xihtiLyLxtyxU −= pp ,    (41)  

where  /)sin()sinc( = , 0L -space scale of localization.   

We need to estimate the ratio of the total power emitted 

by the pattern (41) at 00 =h  (Fig. 7–a) and the total power 

emitted by the pattern (41) at 00 h  (Fig. 7–b). Below we 

will consider the boundary-value problem of radiation as 

a low-frequency filter of spatial frequencies with a trans-

mission coefficient (13) (in terms of power (Fig. 7-c)
  

  2

00 )/(11)0()( /][ khhkWhW −−= I/ ,           (42) 

 where ][I -Heaviside step function (see (8)), 

22

yx hhh +== h ,                             (43) 

xh , 
yh

 
are the components of the vector h  ( )0(|| =zh ) of 

the spatial frequency along the axes "x" and "y" , respec-

tively (Fig. 7-d). Let's write the spatial Fourier spectrum 

of pattern (41) as 

dxdyyihxityxUhhhU yxhyx   +=

−


− ]exp[),,();,(

~~
00 .     (44) 

Using the property 

     hLLdxihxLxLx −=−
+
− )/()exp()//()/sin( 0000 ppp I    

(45) 

of the function  /)sin( , we obtain Fourier spectrum 

    yxyx hLhhLLhhhU −−−= )/()/();,(
~~

000

2

00 pp II  , (46)  

 and, accordingly,   )0(/)()0(/)( 050 QhQWhW = , where 

  yxyxyx dhdhhhhUWhhWhQ
2

00
1

22

0 );,(
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Fig. 7-e presents graphs of the magnitude  5)0(/)( 0 WhW
 

for three wave sizes 
002 Lk

 
of the pattern (41) and the de-

pendence of the maximum (at varying 0h ) value (as peak) 

    5)0(/)(Max)2( 0
0

005 WhW
h

kLM =                  (48) 

on wave size 
002 Lk

 
(or area of spatial localization) of the 

pattern (41). It is not hard to see that for 0/ 000 →− khk  

(i.e. 0h  is closing to 0k ) we obtain the value 

  15)0(/)( 00

1

000 −
−

LkWLkhW .          (49) 

e

b

a

2 L0

......

......

x

x
y

2p /h0

h0

h = 00

h0

k0
h0

U y ( , , )0 00Re

U x ( , , )0 0
0

Re

U x ( , , )0 0
0

Re

W ( )0

W( )h

1

d

A B hx

h

hy

p2 /L0

p2 /L0

p2 /L0

1

k0
k+ 0

c

0

10

1

0

10

80

M  k  L (2 )
0 05

2k  L0 0

W( )0

W( )h

5

0 10 10 1

h k  /
0 0

p2 /L0k00
.0

1
L

0
k

0
2

=

0
.0

4
L

0
k

0
2

=

0
.1

6
L

0
k

0
2

=

0

h

 

Figure 7.  On the spatially localized pattern (41) on the infinite plane: 

(a) "" x 00 =h    ; (b) "" x   00 kh →   ; (c)  one dimensional section 

 
1

)0(/)( WhW
 
of low pass filter of boundary problem for pattern 

(41); (d)  two dimensional ( xh , yh  , 22

yx hhh += )  view on the low 

pass filter characteristics (black area means the no radiation) of bound-

ary problem for pattern (41); (e) normalized radiation resistance

 5)0(/)( WhW  of pattern (41) at different wave sizes 002 Lk , and 

value 5M  of its peak as function of wave dimension 002 kL  of (41).  

It can be seen from (49) that the larger the wave dimen-

sions 00 Lk  of the pattern (41), the more effectively and 

resonantly the pattern with a running phase (at 

1/ 00 − khk ) radiates than the in-phase pattern (at 

0=h ) at a given fixed module )0,0,0(0U  of pattern am-

plitude. 

     Note that for finite wave sizes of the radiating pattern 

(sections 5-8, in contrast to sections 2-4), the real part 

)( 0hW  of field power flux on the surface of the pattern and 

the imaginary part )( 0hW  are nonzero at all spatial fre-

quencies 0h .  

9. Conclusion 

     In this work, the phenomenon of resonant sound emis-

sion by a boundary is analyzed analytically when a pat-

tern is set on it in the form of a running sinusoidal spatial 

distribution of normal vibrational velocities at a certain 

temporal frequency (Section 1). 

     The initial problem is the resonant emission of sound 

by a spatially infinite harmonic distribution of normal ve-

locities on an infinite plane (Section 2). 

     It is shown that setting a sinusoidal distribution of 

acoustic pressure on the plane does not generate resonant 

radiation (Section 2). In addition, it is shown that a linear 

chain of monopoles with a running phase of vibrational 

velocity amplitudes does not generate a radiation reso-

nance (Section 7). 

    Further, the effect of the following factors on the mag-

nitude of the resonant peak is estimated: surface curva-

ture along the phasor (Section 5); surface curvature trans-

versal to the phasor (Section 6); limitedness of the pattern 

in space (localization, Section 8). 

    A complete analogy of the phenomenon of resonant ra-

diation in two problems is pointed out: (a) in the acoustic 

problem of Section 2;  in the problem of electromagnetic 

radiation of a flat boundary, on which a traveling distri-

bution of a tangential electric field with a polarization 

parallel to the phasor is specified (Section 3). 

    In practice, if we need to obtain the highest radiation 

power of a certain pattern with a limited dynamic range 

of actuators, then it would be most expedient to excite a 

sliding (with respect to the pattern) wave with a distribu-

tion of normal vibrational velocities with a traveling 

phase, and not excite a normal (with respect to the pattern) 

wave with an in-phase distribution normal vibrational ve-

locities.       

     It has been shown that a resonantly radiating bound-

ary with a traveling phase is capable of generating a time-

constant tangential radiation reaction force and, 

http://www.jenrs.com/
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consequently, can be used, for example, in designing an 

acoustic pump or for an active control of hydrodynamic 

boundary layer (Section 4). 
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