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ABSTRACT: In this paper, a polynomial displacement function is developed to evaluate the stability 

of rectangular thick plate that is freely supported at the third edge and other three edges simply 

supported (SSFS). Employing three-dimensional (3-D) constitutive relations which consist of entire 

stress components, the functional for total potential energy was obtained. The governing equations 

plate was obtained through the variation of the 3-D theory of elasticity to get the slope and deflection 

relations. The solution of equilibrium equations gives an exact polynomial deflection and rotation 

function which was gotten after replacement of the variables of total potential energy while the solution 

of the governing equation gave the expression for the deflection coefficient of the plate. The direct 

variation method through deflection coefficient was applied to get the formula for calculation of the 

critical buckling load. Furthermore, the model followed strictly from the first principle of 3-D theory 

of elasticity without state of stress assumption through the thickness axis of the plate, so that it is able 

to eliminate the stress under-estimation problem from the approximation and 2-D refined plate theory 

approach, when the thickness becomes thicker. The result of the present study using the established 3-

D model yields an exact solution which shows that it can be used with confidence in the stability 

analysis of any type of plate boundary condition. 

KEYWORDS: SSFS rectangular plate, Energy variation method, 3-D plate theory, Exact polynomial 

deflection function, Stability analysis of thick plate. 

 

1. Introduction 

Plates are three-dimensional structural elements 

whose parallel plane surface dimensions are large 

compared with the thickness [1]. In recent times, thick 

plates have many applications in engineering structures 

such as offshore platform structures, ship hulls and decks, 

aircraft wings, building floor, roof, slabs, and spacecraft 

panels. Hence the research interest in thick plates has 

greatly increased.  

To describe the plate problem in a state of three-

dimensional stress, three dimensional theory of elasticity 

is mostly required [2]. However, plates behavior largely 

depends on their span-to-depth ratio. Hence, plates are 

classified as thin, thick or moderately thick plates [3]. 

According to [4], rectangular plates with 50 ≤ a/t ≤ 100 are 

classified as thin plate, 20 ≤ a/t ≤ 50 as moderately thick 

and a/t ≤ 20 as thick plate.   

Thick plate analysis involves research areas such as 

plate vibration, bending and buckling [5].  Under the 

influence of in-plane compressive loads, the plate 

material gradually becomes unstable at the critical value 

of the loads. This phenomenon is called buckling [6, 7]. 

Based on the stress - strain relationship, plate buckling 

problem is classified as elastic and inelastic (plastic) 

buckling. When the critical buckling load is smaller than 

the elastic limit of the plate material, it is considered as 

the elastic buckling problem otherwise the problem is 

called inelastic buckling [8]. It is therefore necessary to 
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determine the critical buckling loads of a plate to ensure 

a safe design.  Although the research on plate buckling is 

still progressive, more attention is drawn to developing 

and implementing varying methods for solving them 

depending on the properties of the plate. Generally, the 

methods employed in solving the buckling problems of 

plates can be grouped into three namely: classical 

methods, numerical methods, and the energy methods [9].  

The classical methods also called the equilibrium 

(Euler) methods are analytical methods that seek to obtain 

closed form solutions for solving the governing partial 

differential equilibrium equations of the plate buckling 

problem within the plate domain, subject to the boundary 

conditions of loading and the restraints of the plate edges 

[10]. They include the Fourier series method, Navier’s 

double trigonometric series method, the separation of 

variables method, and the methods of integral 

transformation. When applied to plates with fixed edges, 

free edges and mixed support conditions, mathematical 

and analytical difficulties are encountered. To obtain 

approximate solutions to the plate problem, numerical 

methods are used. These methods include the weighted 

residual methods, finite difference methods, finite 

element methods, and finite strip methods [11]. To 

overcome the rigorous routine inherent in classical and 

numerical methods, variational method can be applied. 

The energy methods such as Ritz variational method, 

Kantorovich variational method, Rayleigh-Ritz method, 

and Galerkin method; with respect to the displacement 

function minimizes the total potential energy functional 

to derive the characteristic buckling equation from which 

the buckling loads are obtained.  

Series of theories has been developed and applied to 

analyze the buckling behavior of plates. One of these 

theories is the classical plate theory (CPT) [12], which is 

mostly employed in the analysis of thin plates, 

underestimates deflections, and over-estimates buckling 

loads and natural frequencies in thick plates. Reissner and 

Mindlin proposed the shear deformation plate theories to 

overcome the limitations of CPT [12, 13]. These theories 

are also called the Refined Plate Theories (RPT) which 

consists of first-order shear deformation theory (FSDT) 

[14] and higher-order shear deformation theories (HSDT) 

[15, 16, 17].  

FSDT cannot produce accurate results because of the 

inclusion of a shear correction factor which alters some 

geometric parameters in the analysis. Reddy’s and Ritz’s 

theory in HSDT considers the satisfaction of the 

transverse shear-free surface conditions assuming a 

parabolic distribution of transverse shear strains 

throughout the thickness [18, 19, 20]. In this theory, there 

is no need for shear correction factor. Although these 

refined plate theories addressed the gap in CPT and are 

suitable for thick plate analysis, they are inadequate for a 

three-dimensional plate analysis. A 3-D theory is required 

for precise analysis of a three-dimensional plate; hence 

this study is essential.  

2. Literature review 

The authors in [21] derived the governing plasticity 

equations using Stowell’s and Bleich’s principles, also 

formulated the shape function by applying Taylor’s series 

truncated at the fifth term. The authors in [22] studied 

rectangular that is clamped at all edges under biaxial 

compression using Galerkin’s method. Accurate buckling 

load coefficients were obtained for the same boundary 

condition using polynomial shape function that was 

based on Tailor-Mclaurin series. The outcome of their 

study revealed that the buckling coefficients reduce 

consistently when the increment in aspect ratios is 

recorded from 1 to 2, thus, cannot be accurate in 

predicting the buckling load of thick plate rather thin 

plate only. They did not consider thick plate assumptions 

rather limited their study to CPT. More so, both studies 

failed to cover the plate that is freely supported at the 

third edge and other three edges simply supported (SSFS) 

condition and the authors did not consider the use of 

polynomial functions. 

Authors in [23], employed refined trigonometric shear 

deformation plate theory to analyze the buckling 

behavior of a simply supported plate under both biaxial 

and uniaxial compression using the virtual work 

principle. The result obtained from the study showed 

excellent agreement when compared with other refined 

theories.   The exponential shear deformation theory 

presented by [24] accurately predicted the critical 

buckling loads of the isotropic thick plates. The use of 

shear correction factors was unnecessary as the theory 

took account of transverse shear effects. The authors in [23, 

24] did not consider the plate as a typical 3-D plate and 

could not employ the exact polynomial shear deformation 

functions in their analysis thereby making their work 

inexact. The polynomial shape functions were used by the 

authors in [25, 26] analyzed the buckling behavior of the 

same thick rectangular plate that is simply supported 

under uniaxial compressive loading. To derive the 

governing equations of the plate, the authors applied 

polynomial shape theory. The equation for formulating 

the non-dimensional critical buckling load parameters of 

the plates was obtained by solving the direct governing 

equation with satisfied plate boundary conditions. The 

authors in [25] and [26] considered a 3-D theory in their 

study and applied energy methods in the formulation of 

governing equation of the plate, but the authors in [25] 

used an assumed shape function which is not a close-form 

solution. Both authors failed to take into account the plate 

with the SSFS edge condition. 

To analyze the buckling behavior of clamping plate, 

the authors in [27] adopted work principle approach. The 
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buckling coefficients of the plate were obtained and a 

numerical model was developed using the polynomial 

displacement function. The authors did not take a thick 

plate into consideration as their assumption is limited to 

the classical plate theory which is not reliable for thick 

plate analysis. Their study did not apply trigonometric 

functions and SSFS plate was not considered. In [28] and 

[29], the authors applied both trigonometric and 

polynomial displacement function to determine the 

critical buckling load of clamped thick rectangular plate 

using the analytical three-dimensional plate theory that is 

formulated and derived from the variational energy 

method, but could not apply it to a rectangular plate 

structure that is freely supported at the third edge and 

other three edges simply supported (SSFS).  

In the study carried out by [30], the authors applied 

third order energy functional to analyze the stability of 

CCSS and CCCS plates within the plate domain and using 

the combination of the product of the stress and strain at 

every point in the plate. The authors formulated the third 

order strain energy equation by incorporating the direct 

variation method into the third order total potential 

energy functional which was obtained through the 

addition of strain energy to the external load. The study 

did not consider the current shape function and boundary 

condition or study the plate as a typical 3-D structure 

which should involve all the six stress element for the 

thick plate analysis. The authors in [29] applied the 

variational energy approach to obtain the critical buckling 

load of a 3-D CSSS thick rectangular plate using a new 

displacement theory. From the compatibility equation 

obtained from first principle, the displacement functions 

were derived and applied in analyzing the plates and this 

yielded exact solutions. In contrast to refined plate 

theories, their theory analyzed all the stress elements of 

the plate, but SSFS thick plate was not taken into account.  

The authors in [31] actually studied the static analysis 

of a three edge simply supported, one support free (SSFS) 

rectangular thick plate and author in [32] studies thick 

plate with one edge clamped and other three edges 

simply supported (CSSS) using RPT. Both authors [31, 32] 

obtained expressions for the analysis of critical imposed 

load of the plate at specified limit state or elastic yield 

stress. They neither determine the critical buckling load 

that may occur due to compressive load on the plate nor 

applied an exact 3-D plate theory for reliable results. 

The physical properties of SSFS plate material is that, 

the three edges are supported by a beam and the other 

remaining edge are free of support, depicting the 

relevance of the present study. This is because the 

boundary condition depends on the type of beam/column 

support in the plate, thus when SSFS initial condition 

occurs in the a plate material, analyzing it as any other 

type of plate as mentioned in the literature will not 

account for stresses induced. This is because, stresses are 

induced due to the applied load (in-plane load) in this 

case, and hence, non-negligible error results. Also, the 

thick plate assumption made in this work made it clear 

that the deformation line after bending is no longer 

normal to the mid-plane of the plate thereby considering 

the effect of shear deformation which may arise if the 

thickness of the plate are enhanced. 

It can be noted in the literature that other shape 

functions like an exponential, trigonometric and 

hyperbolic were used, which are not flexible enough to 

handle all types of plate boundary conditions such as 

SSFS. This work filled the gap as they applied the 

variation energy method with a polynomial displacement 

function to a three-dimensional stability rectangular plate 

under uniaxial compressive load. Furthermore, compared 

with previous studies, the distinguishing feature of this 

current study with other works is that previous studies 

used an assumed the deflection function while the present 

study is tends to obtain an exact polynomial deflection 

function from the equilibrium equation developed.  Apart 

from the work in [26, 28, 29], no work can be seen that 

adopted the 3-D plate theory to evaluate the stability of 

rectangular thick plate. The work in [26, 28, 29] did not 

study the plate that is freely supported at the third edge 

and other three edges simply supported (SSFS); so this 

research work is needed.  

This study is focusing on the stability analysis of SSFS 

rectangular plates section subjected to a uniaxial 

compressive load using a three-dimensional plate theory 

with polynomial displacement function. In this work, the 

aspect ratio effect of the critical buckling load of the plate 

was evaluated to show its capacity of the derived model 

to analyze different categories of plate, by presenting a 

novel formula for determining the critical buckling load 

of a thick rectangular plate. 

3. Methodology 

In this work, and displacement in x, y and z axis; u, v 

and w respectively are applied and presented in Equation 

(1), (2) and (3) (see [1]): 

𝑢 = 𝐹(𝑧)𝑥                                                                                      (1) 

𝑣 = 𝐹(𝑧)𝑦                                                                                       (2) 

where; F is deformation profile, 𝜃𝑥 slope in x-axis and 𝜃𝑦 

is slope in y-axis of the plate. 

It can be seen in figure 1, that the six strains and stress 

elements required for the analysis were determined in 

line with the work of authors in [2].  
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Figure 1: displacement of x-z (or y-z) 

3.1. Formulation of Total Potential Energy 

The energy [] equation were obtained in line with 

the authors in [7] and presented as: 
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)
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] 𝑑𝑅 𝑑𝑄                                                                    (3) 

Where; 𝑁𝑥  is the uniform applied uniaxial 

compression load of the plate. 

3.2. Compatibility Equations 

By differentiation of total potential energy with 

respect to 𝜃𝑥  and 𝜃𝑦  and establish the relation between 

the rotation and deflection [8] gives: 

𝜕𝛱

𝜕𝜃𝑥

=
𝐷∗𝑎𝑏
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Given that [2]; 

𝜃𝑥 = 
𝑥𝑧

−
1

𝑎
.
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𝜕𝑅
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𝑐
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where c is a quantity whose expression or value shall be 

obtained later. 

Hence, for zero integrands, the true solution was 

gotten by simplifying and factorizing the outcome of the 

compatibility equation to give the algebraic solution in 

Equation (8) which is the relation of known and unknown 

variable to get the constant quantity c.  

6(1 − 2)(1 + 𝑐)

t2
= −
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a2
(
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+

1
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3.3. Governing Equations 

The governing differential equation was obtained 

after the total potential energy was minimized with 

respect to deflection (w) and its solution yields the exact 

polynomial deflection function: 

𝜕𝛱
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𝐷∗

2𝑎2
∫∫[

12(1 − 2)

𝑡2
(
𝜕2𝑤

𝜕𝑅2
+

1

𝛽2
.
𝜕2𝑤

𝜕𝑄2
+ 𝑎.

𝜕𝑥

𝜕𝑅

1

0

1

0

+
𝑎

𝛽

𝜕𝑦

𝜕𝑄
) + 2

(1 − 𝜇)𝑎2

𝑡4
.
𝜕2𝑤

𝜕𝑆2

− 2
𝑁𝑥

𝐷∗
.
𝜕2𝑤

𝜕𝑅2
] 𝑑𝑅 𝑑𝑄 = 0                            (9) 

By factorizing and simplifying the outcome, gives:  

(
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One of the possibilities of Equation (10) to be true is for 

the terms in each of the two brackets sum to zero. That is: 
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(1 − 𝜇)𝑎4

𝑡4
.
𝜕2𝑤𝑆

𝜕𝑆2
= 0                                                                  (12) 

The solution of Equation (11) to get an exact deflection 

and slope of the plate.  
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Similarly: 
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And; 

𝑦 =
𝑐

𝑎𝛽
. ∆0. [1  𝑅  𝑅2𝑅3𝑅4]

[
 
 
 
 
𝑎0

𝑎1
𝑎2

𝑎3

𝑎4]
 
 
 
 

. [1  2𝑄  3𝑄2  4𝑄3] [

𝑏1

𝑏2

𝑏3

𝑏4

]

=
𝐴2𝑄

𝑎𝛽
.
𝜕ℎ

𝜕𝑄
                                                 (15) 

where: 

𝐴2𝑅 = 𝑐. ∆0.
𝜕ℎ

𝜕𝑅
. 𝐴𝑄                                                                   (16) 
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𝐴2𝑄 = 𝑐. ∆0

𝜕ℎ

𝜕𝑄
. 𝐴𝑅                                                                   (17) 

The constants; 𝑐, ∆0, 𝐴𝑅and 𝐴𝑄, thus, putting Equations 

(13), (14) and (15) into (3), simplifying gives (see [8]): 
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D∗ab

2a4
[(1 − μ)A2R

2kRR  

+
1

β2
[A2R. A2Q +

(1 − 2)A2R
2

2

+
(1 − 2)A2Q

2

2
] kRQ +

(1 − μ)A2Q
2

β4
kQQ

+ 6(1

− 2) (
a

t
)

2

([A2R
2 + A1

2 + 2A1A2R]. kR

+
1

β2
. [A2Q

2 + A1
2 + 2A1A2Q]. kQ)

−
Nxa

2A1
2

D∗
. kR]                                    (18) 

where: 

𝑘𝑅𝑅 = ∫ ∫(
𝜕2ℎ

𝜕𝑅2
)

21

0

1

0

𝑑𝑅𝑑𝑄; 𝑘𝑅 = ∫ ∫(
𝜕ℎ

𝜕𝑅
)

2
1

0

1

0

𝑑𝑅𝑑𝑄     (19𝑎) 

𝑘𝑄𝑄 = ∫∫(
𝜕2ℎ

𝜕𝑄2
)

21

0

1

0

𝑑𝑅𝑑𝑄; 𝑘𝑄 = ∫∫ (
𝜕ℎ

𝜕𝑄
)

2
1

0

1

0

𝑑𝑅𝑑𝑄    (19𝑏) 

𝑘𝑅𝑄 = ∫∫(
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄                                                (19𝑐)  

  

Minimizing Equation (18) with respect to A2R gives: 

(1 − 𝜇)𝐴2𝑅𝑘𝑅𝑅  +
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Minimizing Equation (18) with respect to A2Q gives: 
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([𝐴2𝑄 + 𝐴1]. 𝑘𝑄)

= 0                                                             (21) 

Rewriting Equations (20) and (21) gives: 

[(1 − 𝜇)𝑘𝑅𝑅 +
1

2𝛽2
(1 − 2)𝑘𝑅𝑄 + 6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑅] 𝐴2𝑅

+ [
1

2𝛽2
𝑘𝑅𝑄] 𝐴2𝑄

= [−6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑅] 𝐴1               (22) 

[
1

2𝛽2
𝑘𝑅𝑄] 𝐴2𝑅 + [

(1 − 𝜇)

𝛽4
𝑘𝑄𝑄 +

1

2𝛽2
(1 − 2)𝑘𝑅𝑄

+
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑄] 𝐴2𝑄

= [−
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑄] 𝐴1          (23) 

Solving Equations (22) and (23) simultaneously gives: 
𝐴2𝑅 = 𝐺2𝐴1                                                                            (24) 
𝐴2𝑄 = 𝐺3𝐴1                                                                            (25) 

Let: 

𝐺2 =
(𝑐12𝑐23 − 𝑐13𝑐22)

(𝑐12𝑐12 − 𝑐11𝑐22)
                                                       (26) 

𝐺3 =
(𝑐12𝑐13 − 𝑐11𝑐23)

(𝑐12𝑐12 − 𝑐11𝑐22)
                                                       (27) 

𝑐11 = (1 − 𝜇)𝑘𝑅𝑅 +
1

2𝛽2
(1 − 2)𝑘𝑅𝑄

+ 6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑅                           (28) 

𝑐22 =
(1 − 𝜇)

𝛽4
𝑘𝑄𝑄 +

1

2𝛽2
(1 − 2)𝑘𝑅𝑄

+
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑄                        (29) 

𝑐12 = 𝑐21 =
1

2𝛽2
𝑘𝑅𝑄;  𝑐13 = −6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑅;  𝑐23 = 𝑐32

= −
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑄                   (30) 

Minimizing Equation (18) with respect to A1 and 

simplifying the outcome gives: 

6(1 − 2) (
𝑎

𝑡
)

2

([1 + 𝐺2]. 𝑘𝑅 +
1

𝛽2
. [1 + 𝐺3]. 𝑘𝑄) −

𝑁𝑥𝑎
2

𝐷∗
. 𝑘𝑅

= 0                                                                  (31) 

Rearranging Equation (31) and simplify the outcome 

to gives: 
𝑁𝑥𝑎

2

𝐷∗
= 6(1 − 2) (

𝑎

𝑡
)

2

([1 + 𝐺2] +
1

𝛽2
. [1 + 𝐺3].

𝑘𝑄

𝑘𝑅

)   (32) 

 

3.4. Numerical Analysis 

A numerical analysis is performed on the rectangular 

thick plate that is freely supported at the third edge and 

other three edges simply supported (SSFS) under 

compressive load as presented in the Figure 2. 

 

Figure 2: A Section of SSFS Rectangular Thick Plate under Uniaxial 

Compressive Load 

The boundary conditions of the plate in figure 3 are as 

follows: 

At  𝑅 =  𝑄 =  0; deflection (𝑤)  = 0                                   (33)         

At  𝑅 = 𝑄 =  0, bending moment ( 
𝑑2𝑤

𝑑𝑅2  𝑎𝑛𝑑 
𝑑2𝑤

𝑑𝑄2) = 0  (34) 

At  𝑅 =  𝑄 =  1;  deflection (𝑤) = 0; (
𝑑2𝑤

𝑑𝑄2) = 0             (35) 

At 𝑅 =  𝑄 =  1; (𝑖𝑒.
𝑑2𝑤

𝑑𝑅2) = 0;  shear force (
𝑑3𝑤

𝑑𝑄3) = 0   (36) 

At, 𝑄 = 1; slope =
2

3𝑏5
(𝑖𝑒.

𝑑𝑤

𝑑𝑄
=

2

3𝑏5
)                                   (37) 

Substituting Equations (33-37) into established 

equation and solving gives the following constants: 

𝑎0 = 0; 𝑎1 =
𝐹𝑎4

24
; 𝑎2 = 0; 𝑎3 = 

−𝐹𝑎4

2
                               (38) 

𝑏0 = 0; 𝑏1 = −
7

3
𝑏5;  𝑏2 = 0; 𝑏3 = 

𝑏5

6
; 𝐹𝑏4 = −

2𝑏5

3
      (39) 
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Substituting the constants of Equation (38) and (39) 

into established equations gives; 

𝑤 = (𝐹𝑎4

𝑅

24
− 𝐹𝑎4

𝑅3

12
+ 𝐹𝑎4

𝑅4

24
) . (𝑏5

𝑄

52
− 𝑏5

𝑄3

36
+ 𝑏5

2𝑄4

72

− 𝑏5

𝑄5

120
)                                                   (40) 

Simplifying Equation (40) which satisfying the 

boundary conditions of Equation (33-37) gave; 

𝑤 =
𝐹𝑎4

24
.

𝑏5

360
(𝑅 − 2𝑅3 + 𝑅4)(7𝑄 − 10𝑄3 + 10𝑄4

− 3𝑄5)                                                         (41) 
Recall from that; 

𝑤 = 𝐴1. ℎ             

Let the amplitude,  

𝐴1 =
𝐹𝑎4 × 𝑏5

8640
                                                                           (42) 

         And;  

ℎ = (𝑅 − 2𝑅3 + 𝑅4) × (
7𝑄

3
−

10

3
𝑄3 +

10

3
𝑄4 − 𝑄5)    (43) 

Thus, the polynomial deflection functions after satisfying 

the boundary conditions is:  

𝑤 = 𝐴1(𝑅 − 2𝑅3 + 𝑅4). (
7𝑄

3
−

10

3
𝑄3 +

10

3
𝑄4 − 𝑄5)  (44) 

Using the polynomial displacement function, the 

solution of stiffness coefficients for deflection of 

rectangular thick plate analysis subjected to the SSFS 

boundary condition was obtained and presented in Table 

1.  

Let; the polynomial stiffness coefficient values of SSFS 

plate 𝑘𝑅𝑅 = 4.0258; 𝑘𝑅𝑄 = 1.0331; 𝑘𝑄𝑄 = 0.1875; 𝑘𝑅 =

0.4074; 𝑘𝑄 = 0.10466 

Where; the Poisson’s ratio of the plate be 0.3. 

4. Results and Discussions 

In this section, a numerical solution of the problem of 

a thick rectangular plate that is freely supported at the 

third edge and other three edges simply supported (SSFS) 

presented in Figure 2, is obtained using the Equation 

presented in the previous section. The non-dimensional 

value of the critical buckling load for an isotropic SSFS 

rectangular plate under uniaxial compression is 

presented in the Figures 1 through 11, different aspect 

ratio respectively. The numerical and graphical 

comparison was made to show the disparities between 

the present study and the literature under review to show 

the effect of aspect ratio on the buckling load in a 3-D 

stability analysis of rectangular plate at varying thickness. 

The span to thickness ratio considered is ranged between 

4 through 1500, which is obviously seen to span from the 

thick plate, moderately thick plate and thin plate (see [4]). 

On the other hand, the length and breadth ratio (aspect 

ratio) in consideration in this study includes; 1.0, 1.5, 2.0, 

2.5, 3.0, 3.5, 4.0, 4.5 and 5.0. Meanwhile, in this study, 

more attention is to be given to the effect of aspect ratio 

on the buckling load for thicker plate. This is because, the 

effect of shear deformation was considered in the analysis, 

and that made it possible to predict accurately the 

buckling load of any type of plate ranging from thin 

through thick plate. 

The present work obtained non-dimensional result of 

buckling load of the plate by expressing the displacement 

function of the plate in the form of polynomial to analyze 

the effect of aspect ratio of the critical buckling load of the 

plate. Figure 3 in Figure 11 contains the graphical 

representation of the result of the non-dimensional 

critical buckling load SSFS rectangular thick plate using 

the established exact polynomial displacement function. 

The value of the critical buckling load Nxcr decreases as 

the aspect ratio of the plate increases, as shown in Figure 

3 to Figure 11, the value of critical buckling load decreases. 

This means that the failure in a plate structure is bound to 

occur as the in-plane load on the plate increases and gets 

to the critical buckling.  

 
Figure 3: Graph of Critical buckling load (Nxcr) versus span-thickness ratio of 

a rectangular plate at aspect ratio of 1.0 

 
Figure 4: Graph of Critical buckling load (Nxcr) versus span-thickness ratio of 

a rectangular plate at aspect ratio of 1.5 
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Figure 5: Graph of Critical buckling load (Nxcr) versus span-thickness ratio of 

a rectangular plate at aspect ratio of 2.0 

 
Figure 6: Graph of Critical buckling load (Nxcr) versus span-thickness ratio of 

a rectangular plate at aspect ratio of 2.5 

 
Figure 7: Graph of Critical buckling load (Nxcr) versus span-thickness ratio of 

a rectangular plate at aspect ratio of 3.0 

 
Figure 8: Graph of Critical buckling load (Nxcr) versus aspect ratio of a 

rectangular plate at length-width ratio of 3.5 

 
Figure 9: Graph of Critical buckling load (Nxcr) versus span-thickness ratio of 

a rectangular plate at aspect ratio of 4.0 

 
Figure 10: Graph of Critical buckling load (Nxcr) versus span-thickness ratio 

of a rectangular plate at aspect ratio of 4.5 
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Figure 11: Graph of Critical buckling load (Nxcr) versus span-thickness ratio 

of a rectangular plate at aspect ratio of 5.0 

The results obtained in the Figures reveals that the 

values of critical buckling load increase as the span- 

thickness ratio increases. This reveals that as the span or 

the depth of the plate is altered, it affects the performance 

in terms of the serviceability of the plate. Thus, caution 

must be taken when selecting the depth and other 

dimensions along the x and y co-ordinate of the plate to 

ensure safety and accuracy of the analysis. 

The present theory predicts the buckling load of 1.29, 

1.50, 1.52, 1.53, 1.54, 1.54, 1.54, 1.54, 1.54, 1.54, 1.54, 1.54, 

1.54 and 1.54 for a square plate in the span to thickness 

ratio of 4, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1000 and 

1500. Looking closely at the result of buckling load for the 

present study at the span to thickness ratio of 30 and 

beyond, it is seen that the value of critical buckling load 

of the plate maintained a constant value of 1.54 for square 

plate, 1.22 for aspect ratio of 1.5, 1.11 for aspect ratio of 2.0, 

1.07 for aspect ratio of 2.5, 1.04 for aspect ratio of 3.0, 1.03 

for aspect ratio of 3.5, 1.02 for aspect ratio of 4.0, 1.01 for 

aspect ratio of 4.5, 1.01 for aspect ratio of 5.0. This shows 

that the result of the critical buckling load of thin and 

moderately thick plate using the 3-D theory is the same 

for the stability analysis of rectangular plate under the 

SSFS boundary condition. The Figures 3 to 12 proofs that 

the value of critical load for thin plate and thick plate (see 

[29]) which described the thin and moderately thick plate 

as the one whose span to thickness ratio is equal or less 

than 30.  

It can be deduced that the present model using a 

derived shape function is safer and more credible to use 

as it considered the six stress elements to yield the exact 

solution for the analysis of thick plate that is freely 

supported at the third edge and other three edges simply 

supported (SSFS). Hence, the result of the present analysis, 

which contains all the stress element and ensured that the 

variation of the stresses through the thickness of the plate 

which induced buckling are uniformly distributed, 

showed that the present method can be used with 

confidence for stability analysis of plate. 

5. Conclusion 

The buckling of an isotropic thick plate that is freely 

supported at the third edge and other three edges simply 

supported (SSFS), was investigated. The 3-D theory using 

energy methods with polynomial shape function was 

employed. The solution obtained showed a good 

agreement with results from previous works.  It is 

observed that the classical plate theories give reliable 

results for thin plates, refined plate theories the 2-D 

refined plate theory (RPT) is only an approximate relation 

for buckling analysis of thick plate and when applied to 

the thick plate will under-predicts buckling loads as they 

neglect the transverse normal stresses along the thickness 

axis of the plate while 3-D theory with exact shape 

functions developed in this study yield exact solution for 

the buckling analysis of thick plates.  

6. Recommendation  

The polynomial displacement function developed in 

this study produces an exact solution as they emanated 

from a complete three-dimensional theory which is more 

reliable solution in the stability analysis of plates and, can 

be recommended for analysis of any type of rectangular 

plate subjected to such loading and boundary condition. 

7. Contribution to Knowledge 

The major contribution to knowledge in this study is 

the novel formula for calculating the critical buckling load 

of the plate which was derived from the principle of 

elasticity and satisfied SSFS boundary condition when 

solved with polynomial shape function.  

The exact deflection and slope model which was 

established from the 3-D stability analysis derived from 

equilibrium equation using static elastic theory to get 

exact polynomial displacement functions of the plate. 

References 

[1]. F. C. Onyeka, B. O. Mama, T. E. Okeke, “Elastic Bending Analysis 

Exact Solution of Plate using Alternative I Refined Plate Theory,” 

Nigerian Journal of Technology (NIJOTECH), vol. 40, no. 6, pp. 1018 –

1029, 2021. doi: http://dx.doi.org/10.4314/njt.v40i6.4 

[2]. F. C. Onyeka, B. O. Mama, “Analytical Study of Bending 

Characteristics of an Elastic Rectangular Plate using Direct 

Variational Energy Approach with Trigonometric Function,” 

Emerging Science Journal, vol. 5, no. 6, pp. 916–926, 2021. 

doi: 10.28991/esj-2021-01320 

[3]. K. Chandrashekhara, Theory of Plates, University Press (India) 

Limited, 2000. 

[4]. F. C. Onyeka, F. O. Okafor, H. N. Onah, “Application of Exact 

Solution Approach in the Analysis of Thick Rectangular Plate,” 

International Journal of Applied Engineering Research, vol. 14, no. 8, 

pp. 2043-2057, 2019. 

[5]. F. C. Onyeka, E. T. Okeke, “Analytical Solution of Thick Rectangular 

Plate with Clamped and Free Support Boundary Condition using 

Polynomial Shear Deformation Theory,” Advances in Science, 

Technology and Engineering Systems Journal, vol. 6, no. 1, pp. 1427-

1439, 2021, doi:10.25046/aj0601162..  

[6]. A. Hassan, N. Kurgan, “Modeling and Buckling Analysis of 

Rectangular Plates in ANSYS,” International Journal of Engineering 

4 5 10 15 20 30 40 50 60 70 80 90
10
0

10
00

15
00

Nx 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.9

0.95

1

1.05

1.1

1.15

1.2

C
R

IT
IC

A
L

 B
U

C
K

L
IN

G
 L

O
A

D
 

(N
X

)

SPAN TO THICKNESS RATIO (A/T)

NX

http://www.jenrs.com/
http://dx.doi.org/10.4314/njt.v40i6.4
https://doi.org/10.28991/esj-2021-01320


 O.F. Chukwudi et al., Study on Stability Analysis of Rectangular 

www.jenrs.com                           Journal of Engineering Research and Sciences, 1(4): 28-37, 2022                                      36 
 

& Applied Sciences (IJEAS), vol. 11, no. 1, pp. 310-329, 2019. doi: 

http://dx.doi.org/10.24107/ijeas.531011. 

[7]. F. C. Onyeka. B. O. Mama, C. D. Nwa-David, “Analytical Modelling 

of a Three-Dimensional (3D) Rectangular Plate Using the Exact 

Solution Approach,” IOSR Journal of Mechanical and Civil 

Engineering (IOSR-JMCE), vol. 19, no. 1 Ser. I, pp. 76-88, 2022. doi: 

10.9790/1684-1901017688. 

[8]. F. C. Onyeka, F. O. Okafor, H. N. Onah, “Buckling Solution of a 

Three-Dimensional Clamped Rectangular Thick Plate Using Direct 

Variational Method,” IOSR Journal of Mechanical and Civil 

Engineering (IOSR-JMCE), vol. 18, no. 3, pp. 10-22, 2021, doi: 

10.9790/1684-803031022. 

[9]. S. P. Timoshenko, J. M. Gere, W. Prager, Theory of Elastic Stability, 

Second Edition. In Journal of Applied Mechanics (2nd ed.), vol. 29, 

no. 1, McGraw-Hill Books Company, 1962. doi:10.1115/1.3636481. 

[10]. F. C. Onyeka, D. Osegbowa, E. E. Arinze, "Application of a New 

Refined Shear Deformation Theory for the Analysis of Thick 

Rectangular Plates," Nigerian Research Journal of Engineering and 

Environmental Sciences, vol. 5, no. 2, 901-917, 2020. 

[11]. C. C. Ike, “Kantorovich-Euler Lagrange-Galerkin’s Method for 

Bending Analysis of Thin Plates,” Nigerian Journal of Technology 

(NIJOTECH), vol. 36, no. 2, pp. 351-360, 2017. 

[12]. J. N. Reddy, Classical Theory of Plates, In Theory and Analysis of 

Elastic Plates and Shells, CRC Press, 2006. doi: 

10.1201/9780849384165-7. 

[13]. F. C. Onyeka, O. M. Ibearugbulem, “Load Analysis and Bending 

Solutions of Rectangular Thick Plate,” International Journal of 

Emerging Technologies, vol. 11, no. 3, pp. 1030-1110, 2020. 

[14]. R. D. Mindlin, “Influence of Rotatory Inertia and Shear on Flexural 

Motions of Isotropic, Elastic Plates,” J. Appl. Mech. Trans. ASME, vol. 

18, no. 1, pp. 31-38, 1951.  

[15]. F. C. Onyeka, E. T. Okeke, J. Wasiu, “Strain–Displacement 

Expressions And Their Effect On The Deflection And Strength Of 

Plate,” Advances in Science, Technology and Engineering Systems, vol. 

5, no. 5, pp. 401-413, 2020, doi:10.25046/AJ050551. 

[16]. A. S. Sayyad, Y. M.  Ghugal, “Bending and Free Vibration Analysis 

Of Thick Isotropic Plates By Using Exponential Shear Deformation 

Theory,” Journal of Applied and Computational Mechanics, vol. 6, pp. 

65-82, 2012. 

[17]. F. C. Onyeka, B. O. Mama, C. D. Nwa-David. “Application of 

Variation Method in Three Dimensional Stability Analysis of 

Rectangular Plate Using Various Exact Shape Functions.” Nigerian 

Journal of Technology, vol. 41, no. 1, pp. 8-20, 2022. doi: 

http://dx.doi.org/10.4314/njt.v41i1.2 

[18]. J. N. Reddy, N. Phan, “Stability and Vibration of Isotropic, 

Orthotropic and Laminated Plates According to a Higher-Order 

Shear Deformation Theory,” Journal of sound and vibration, vol. 98, 

no. 2, pp. 157-170, 1985.  

[19]. F. C. Onyeka, O. T. Edozie, “Application of Higher Order Shear 

Deformation Theory in the Analysis of thick Rectangular Plate,” 

International Journal on Emerging Technologies, vol. 11, no. 5, pp. 62-

67, 2020.  

[20]. F. C. Onyeka, T. E. Okeke, “New Refined Shear Deformation 

Theory Effect On Non-Linear Analysis of A Thick Plate Using 

Energy Method.” Arid Zone Journal of Engineering, Technology and 

Environment, vol. 17, no. 2, 121-140, 2021. 

[21]. D. O. Onwuka, U. G. Eziefula, O. M. Ibearugbulem, “Inelastic 

Buckling of Rectangular Panel with a Simply Supported Edge and 

Three Clamped Edges,” International Journal of Applied Science and 

Engineering, vol. 14, no. 1, pp. 39-48, 2016. 

[22]. S. E Iwuoha, “Biaxial Buckling Coefficients of Thin Rectangular 

Isotropic Plates, Having One Edge Simply Supported and The 

Other Edges Clamped,” International Journal of Scientific & 

Engineering Research, vol. 9, no. 7, pp. 1918-1925, 2018. 

[23]. S. M. Gunjal, R. B. Hajare, A. S. Sayyad, M. D. Ghodle, “Buckling 

Analysis of Thick Plates Using Refined Trigonometric Shear 

Deformation Theory,” Journal of Materials and Engineering 

Structures, vol. 2, pp. 159-167, 2015. 

[24]. A. S. Sayyad, Y. M. Ghugal, “Buckling Analysis of Thick Isotropic 

Plates by Using Exponential Shear Deformation Theory,” Applied 

and Computational Mechanics, vol. 6, pp. 185-196, 2012. 

[25]. J. C. Ezeh, I. C. Onyechere, O. M. Ibearugbulem, U. C. Anya, L. 

Anyaogu, “Buckling Analysis of Thick Rectangular Flat SSSS Plates 

using Polynomial Displacement Functions,” International Journal of 

Scientific & Engineering Research, vol. 9, no. 9, pp. 387-392, 2018. 

[26]. F. C. Onyeka, B.O. Mama, T. E. Okeke, “Exact Three-Dimensional 

Stability Analysis of Plate Using A Direct Variational Energy 

Method,” Civil Engineering Journal, vol. 8, no. 1, pp. 60–80, 2022. 

DOI: http://dx.doi.org/10.28991/CEJ-2022-08-01-05. 

[27]. V. T. Ibeabuchi, O. M. Ibearugbulem, C. Ezeah, O. O. Ugwu, 

“Elastic Buckling Analysis of Uniaxially Compressed CCCC 

Stiffened Isotropic Plates,” Int. J. of Applied Mechanics and 

Engineering, vol. 25, no. 4, pp. 84-95, 2020. doi: 10.2478/ijame-2020-

0051. 

[28]. F. C. Onyeka, F. O. Okafor, H. N. Onah, “Buckling Solution of a 

Three-Dimensional Clamped Rectangular Thick Plate Using Direct 

Variational Method,” IOSR Journal of Mechanical and Civil 

Engineering (IOSR-JMCE), vol. 18, no. 3 Ser. III, pp. 10-22, 2021.  doi: 

10.9790/1684-1803031022. 

[29]. F. C. Onyeka, F. O. Okafor, H. N. Onah, “Application of a New 

Trigonometric Theory in the Buckling Analysis of Three-

Dimensional Thick Plate,” International Journal of Emerging 

Technologies, vol. 12, no. 1, pp. 228-240, 2021. 

[30]. S. Uzoukwu, O. M. Ibearugbulem, C. E. Okere, J. I. Arimanwa, 

“Stability Analysis of Rectangular CCSS and CCCS Isotropic Plates 

using 3rd Order Energy Functional,” Global Scientific Journals, vol. 

9, no. 1, pp. 637-649, 2021. 

[31]. F. C. Onyeka, C. D. Nwa-David, E. E. Arinze, “Structural Imposed 

Load Analysis of Isotropic Rectangular Plate Carrying a Uniformly 

Distributed Load Using Refined Shear Plate Theory,” FUOYE 

Journal of Engineering and Technology (FUOYEJET), vol. 6, no. 4, pp. 

414-419, 2021. doi: http://dx.doi.org/10.46792/fuoyejet.v6i4.719. 

[32]. F. C. Onyeka, “Critical Lateral Load Analysis of Rectangular Plate 

Considering Shear Deformation Effect,” Global Journal of Civil 

Engineering, vol. 1, pp. 16-27, 2020. 

doi:10.37516/global.j.civ.eng.2020.0121. 

 

Copyright: This work is licensed under a Creative Commons 

Attribution 4.0 License. For more information, see 

https://creativecommons.org/licenses/by/4.0/  

 

Engr. Dr. F. C. Onyeka has done his 

bachelor's degree (B.Eng) in Civil 

Engineering from Anambra State 

University, Uli, Nigeria in 2006. He has 

done his master’s degree (M.Eng) and 

doctorate degree (Ph.D) in Structural 

Engineering from University of Nigeria 

Nsukka in 2010 and 2018 respectively. His 

research area includes; Structural 

Engineering Mechanics, Plates and Shell theory and Theory of Elasticity, 

Variation Calculus and Stability of structures.  

He is a University lecturer and a renowned researcher in the area of 

Structural Engineering Mechanics. He has about 54 publications which 

includes journals and conferences both locally and internationally with 

awards in some research breakthrough. 

He is a member of professional bodies which includes; corporate 

member of Nigeria Society of Engineers (NSE) and member Nigeria 

Institute of Civil Engineers (NICE), a registered engineer in Council for 

regulation of Engineering in Nigeria (COREN). 

 

 

 

 

 

http://www.jenrs.com/
http://dx.doi.org/10.24107/ijeas.531011
http://dx.doi.org/10.28991/CEJ-2022-08-01-05
https://creativecommons.org/licenses/by/4.0/


 O.F. Chukwudi et al., Study on Stability Analysis of Rectangular 

www.jenrs.com                           Journal of Engineering Research and Sciences, 1(4): 28-37, 2022                                      37 
 

Engr.  Okeke, Edozie Thompson obtained 

bachelor’s degree (B.Eng) in civil engineering 

from Enugu state University of Science and 

Technology in 2006. He got master’s degree 

(M.Eng) in structural engineering at 

University of Nigeria Nsukka, in 2014. He 

currently undergoing Ph.D program at the 

University of Nigeria Nsukka. He is a 

University lecturer and a renowned researcher in the area of Structural 

Engineering Mechanics with about 12 publication which includes 

journals and conferences both locally and internationally. He is a 

member of professional bodies which includes; corporate member of 

Nigeria Society of Engineers (NSE) and member Nigeria Institute of 

Civil Engineers (NICE), a registered engineer in Council for regulation 

of Engineering in Nigeria (COREN). 

Engr. Nwa-David, Chidobere David 

obtained B. Eng (First class honors’ in Civil 

Engineering) from Michael Okpara 

University of Agriculture, Umudike, M. 

Eng (Structural Engineering) from 

Department of Civil Engineering, Federal 

University of Technology, Owerri. He is a 

University lecturer and a renowned 

researcher and his area research interests 

cut across all areas of civil engineering with specialized focus on 

structural engineering particularly in dynamics of structures, elasticity 

theory of plates, structural mechanics, concrete materials, variational 

calculus, sustainable structural systems, sustainable construction 

materials and studies with soft computing techniques. He is a Registered 

Engineer, Council for the Regulation of Engineering in Nigerian 

(COREN).  He has participated in conferences where he presented 

papers. He has several scholarly articles published in local and 

international journals.  

 

 

 

 

 

 

http://www.jenrs.com/

