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ABSTRACT: Blood Pressure (BP) waveform is a result of the response of the arteries to the blood ejection
produced by the heart and, therefore, it is an important indicator of the state of the cardiovascular system.
Currently, its measurement is performed invasively in critically ill patients who need a continuous and
real time monitoring of their treatment response, however, it is possible to measure the BP, continuously
and non-invasively, in non-critical patients to detect, monitor and control possible hypertensive events.
Nevertheless, current non-invasive techniques can cause discomfort in patients and they are not used in
critically ill patients. Consequently, non-Invasive and minimally-Intrusive methodologies (nImI) are
required to estimate BP and its waveform. In the current study, the performance of machine learning
algorithms, specifically the Extreme Learning Machine (ELM) algorithm, is evaluated to estimate both
Blood Pressure and its waveform from the Photoplethysmography (PPG) signal and its first derivative’s
(VPG) waveforms. A total of 15 healthy volunteers participated in this study. They performed two
handgrips, which is isometric maneuver to induce controlled BP rises. The first handgrip is used to
train ELM and the second handgrip is used to test the ELM. Our results show that there are high
correlation performances (0.98) between the estimated and measured BP waveforms, and a relative error
of 3.3 ± 1.4%. An arterial volume-clamp at the middle finger is used as the gold-standard measurement.
Meanwhile, BP extreme values estimations, Systolic BP (SBP) and Diastolic BP (DBP), are also performed.
ELMs have a performance with an average RMSE of 5.9 ± 2.7 mmHG for SBP and 4.8 ± 2.0 mmHg for
DBP and, an average relative error of 5.0 ± 2.7% for SBP and 7.0 ± 4.0% for DBP.

KEYWORDS Extreme Learning Machines, Adaptive Estimation, Biomedical Measurement, Photo-
plethysmography, Noninvasive treatment, Medical Devices.

1. Introduction

Arterial Hypertension (AHT) is a deadly disease that affects
70 million in the USA and 1,000 million people worldwide.
AHT is still the most common risk factor and it is responsi-
ble for 54% of strokes and 47% of ischemic heart diseases
worldwide [1].

Invasivemethods have been used for Blood Pressure (BP)
monitoring in critically ill patients for more than 50 years
because they facilitate rapid diagnoses and allow us to mon-
itor treatment responses in real-time. Medical procedures
are said to be invasive when they require that the external
natural protective barriers of the body, such as skin, are
pierced, either through cuts or by inserting a medical device
into the body. These measurements are more accurate than
non-invasive methods because they introduce a cannula in
the arterial system tomeasure BP directly from the artery [2].
Nevertheless, these methods require medical supervision
to avoid injuries in the patient.

Medical devices are said to be intrusive when the pro-
cedures generate discomfort in patients, decreasing the
adherence to the procedure. In particular, non-invasive
procedures to measure BP, such as ambulatory blood pres-
sure monitoring, are perceived by the patients as intrusive,
the procedure is frequently abandoned, and the detection,
monitoring and control of AHT remain elusive [3].

Although the morphology and detail of the arterial pres-
sure waveform can provide useful diagnostic information,
modern physicians pay little attention to it [4]. This results
in an important waste of a potential diagnostic aid whose
usefulness was first recognised over 100 years ago [5]. Ma-
homed used sphygmography in his studies to analyse the
arterial pressurewaveform, a technologywith levers hooked
to a scale-pan in which weights were placed to determine
the amount of external pressure needed to stop blood flow
in the radial artery [6]. According to [7], sphygmography
lapsed with the introduction of the cuff sphygmomanome-
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ter, which only provides the extreme values of the arterial
pressure pulse.

Although the measurement of the difference between
systolic and diastolic pressures from a single pulse has been
used to assess arterial stiffness and cardiovascular risk [8],
important additional information is contained within the
pressure waveform [9], such as augmentation index, left
ventricular workload, cardiac output and, in a lower level,
arterial stiffness [10]. Consequently, the use of pulse wave
analysis may serve as a guide for physicians when making
choices about blood pressure treatment in prehypertensive
or hypertensive patients [11].

The pressure wave is generated by the contraction of the
left ventricle, which imparts its contractile energy on the
bloodmass that it contains, raising the pressure to overcome
the diastolic pressure in the aorta to open the aortic valve,
ejecting the blood and deforming the radius of the aorta
lumen [9]. As the ventricle ejects the blood mass into the
aorta with each systole, it creates a pulsatile pressure and
flow. The pressure wavefront is propagated to most of the
peripheral arteries at 8 to 10 m/s, although the blood that
leaves the left ventricle takes several cardiac cycles to reach
the same distance [7].

The acronym nImI is proposed to summarise a concept
that could be applied to medical devices—a device would
be nImI if and only if it is non-invasive and it is minimally-
intrusive. Non-invasive devices are able to monitor the
arterial pressure waveform, such as those based on the
volume clamp [12] technique (FINAPRES, CNAP, etc.) and
those based in applanation tonometry techniques. Both of
these techniques measure blood pressure waveform in a
specific point of the body and they then reconstruct brachial
and aortic BP waveforms, respectively, with validated algo-
rithms. Nevertheless, analysis from the brachial pressure
waveform is not considered to be a suitable indicator for car-
diovascular risks [13] and applanation tonometry is not yet
a reliable tool to monitor pressure waveform in long-term
clinical interventions [14].

Photoplethysmography (PPG) has been studied to esti-
mate and monitor BP non-invasively, measuring the Pulse
Transit Time (PTT) and, therefore, the Pulse Wave Velocity
(PWV), which are directly related to BP. PTT can be easily
measured from a PPG waveform, and it is less expensive
and cumbersome than the previously described devices [15].
Nevertheless, the normal use of PPG carries artifacts that
interfere with a proper signal preprocessing [16]. However,
new clinical applications have been proposed that are sup-
ported by computational solutions [17] and novel wearable
devices such as smartwatches [18].

The relationship between the PTT and BP is so strong
that a device which estimates BP from PTT was patented
at the beginning of the 21st century, where two parameters
were consider for each subject [19]. Furthermore, the cor-
relation between the BP and PTT has been proven under
exercise and drug administration conditions [20]. In previ-
ous works by [21] and [22], new approaches were tested to
relate PPG and BP. In the first, machine learning has been
used to classify PPG waveforms corresponding to high and
normal BP in healthy subjects. In the second, PPG is fitted
to the finger Arterial Pressure (fiAP).

Recently, some authors have proposed the application
of machine learning methods to estimate the BP waveform
(see [23]–[25]). In [23], the author proposed an ensemble
of support vector regression SVR models to predict the BP
[24] have applied SVR combined with genetic algorithms to
estimate systolic BP and diastolic BP. In [25], the author pro-
posed the Deep Boltzmann machine to estimate the blood
pressure.

The main goal of this work is to validate the mExtreme
Learning Machine (ELM) as a model that relates the PPG
to fiAP and brachial reconstructed Blood Pressure (reBP)
waveforms. This work is structured as follows. In section
2, we introduce the Extreme Learning Machine, the main
model used in this article. In section 3, we describe the data
acquisition process, the signal processing process and the
ELM architectures. The performance results are given in
section 4 and we give a discussion in section 5. Finally, some
concluding remarks are given in section 6.

2. Theoretical Framework: Extreme Learning Machine
(ELM)

ELM [26] has been proposed for training single hidden layer
Feedforward Neural Networks (SLFN) [27], as shown in
Figure 1. Feedforward Neural Networks (FNN) have been
widely used since the introduction of the back propagation
algorithm [28], which is essentially a first order gradient
method for parameter optimisation and, therefore, has slow
convergence problems. In addition, ELM has much lower
computational complexity and is particularly attractive for
high dimensional and large data applications. In this paper,
the ELM algorithm is used for nImI BP estimates from three
different inputs PPG andVPG signals, and for a combination
of them.

Figure 1: Fully connected architecture of a single hidden layer feed-forward
neural network, where the input neurons are fully connected with the
hidden layer, and the hidden layer with the output neurons layer.

The main characteristic of ELM is that once the input
weights and biases, from input to the hidden layer, are ran-
domly defined, they are not further modified in the learning
process. Consequently, ELM has a very short training time.
Furthermore, ELM is remarkably efficient and tends to reach
global optimum [29]. Various extensions have been made
to the original ELM model to make it more efficient and
suitable for specific applications [26].

These types of algorithms are suitable for the new era
of big data processing, where large amount of data need to
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be processed in short time. ELM, as a learning technique,
is able to provides efficient unified solutions to generalised
FNN, including single and multi-hidden layers neural net-
work. This algorithm has both universal approximation and
classification capabilities [30].

The input vector is mapped to L-dimensional ELM ran-
dom feature space, let xi x1, x2, ..., xd be the input vector
shown in Figure 1, xi ∈ χ ⊆ R

d and T t1, t2, ..., tN the targets
values, (i 1, 2, ...,N). The parameters of the j-th hidden node
are w j corresponding to the weight vector connecting the j-
th hidden node to the input nodes, where w j w1 j,w2 j, ...,wL j
and b j, corresponding to the threshold or bias. ( j 1, 2, ..., L)
and L is the number of nodes in the hidden layer. These con-
nections are randomly assigned and they remain unchanged
during the learning process.

The k-th output function of ELM for generalised SLFN
is:

ykxi
L

j1
β jkh jw j, b j, xi hxiβk, i 1, ...,N, k 1..K (1)

where the vector βk β1k, ...βLk
T contains theweights between

the hidden nodes and the k-th output node. H is the hidden
layer output matrix of the neural network, where the i-th
column of H is the output of the j-th hidden node with
respect to the input xi:

H

 f w1, b1, x1 ... f wL, bL, x1
... ... ...

f w1, b1, xN ... f wL, bL, xN

 (2)

where f w j, b j, xi is an activation function that satisfies the
ELM universal approximation capability theorem [26]. In
this paper, the threshold function was used:

f w, b, x

1, if w · x b ≤ 0
0, otherwise

(3)

The ELM learning process consists in solving matrix
equation on vector beta:

Hβ T (4)

In theory, if the number of the L neurons in the hidden layer
is equal to the number of the possible samples that constitute
a problem and, furthermore, H is invertible, then the solu-
tion for β will be found multiplying by H−1 at the left-hand
of the equation and solving it by linear least squares method
[29]:

H−1Hβ H−1T → β H−1T (5)

Nevertheless, the vector H will generally not be square
and invertible and, for this reason, the values of βwill be:

β H†T (6)

where H† is the generalised Monroe-Penrose inverse of the
matrix H and, therefore, the values of weights connecting
the hidden layer with output neurons layer (β) can be found
multiplying it by the T vector [31], [29] and [26].

3. Materials and Methods

In this paper, new methodologies are tested to estimate
either fiAP and reBP waveforms or SBP and DBP values
from PPG. Signals from 15 healthy subjects are recorded
and ELM machine learning algorithms are trained to do
these BP estimations for each subject.

The required cardiovascular signal acquisition is per-
formed in each subject. The subjects are asked to answer a
questionnaire that is adapted from the AHT Clinical Guide
of the Chilean Ministry of Health and to sign an informed
consent that is approved by Bioethics Institutional Com-
mittee for Human Beings Research of the Universidad de
Valparaíso (CIBI-SH UV for its acronym in Spanish), accept-
ing to perform the clinical essay.

BP is measured with an oscillometric technique in each
subject twice before performing the clinical essay to ensure
that the subjects do not have a SBP greater than 140 mmHg
or a DBP greater than 90 mmHg. If they declare that they
have a cardiovascular disease, then they are excluded from
the study.

3.1. The Subjects’ Characteristics

Table 1 shows the characteristics of the 15 healthy subjects
that participated in this study. Data from these subjects can
be found in [32], within the Readme file in section “Get-
ting the Dataset” of “About nImI”. Column 2 shows the
corresponding code name for each subject of column 1.

In this study, the data were gathered from 10 females
and 5 men with a mean age of 31.3 ± 10.8 years old. The
youngest subject is 18 years old and the oldest is 50 years
old. As is explained on the website, different essays that
are performed by volunteers in the project and different
configurations for data recordings are used, depending on
the essay. Consequently, only those subjects that performed
a particular essay are studied in this article. Each subject
performs an isometric handgrip maneuver twice to induce
BP rises in SBP and DBP while the signals are recorded.

Two oscillometric BP measurements are performed in
each subject to obtain their SBP and DBP values for two
reason. The main reason is to corroborate that the subject
is normotensive and can perform the clinical essay and the
second reason is to calibrate the Finapres NOVA.

3.2. Data Acquisition

A detailed description of the data acquisition, signal pro-
cessing and segmentation is given in [22]. Briefly, PPG and
ECG signals are recorded, respectively, in the bandwidth
from DC to 10 Hz and from 0.3 to 35 Hz using the BIOPAC
system. The fiAP waveform is recorded using Finapres
NOVA (FN) of [33]. The brachial blood pressure waveform
(reBP) is reconstructed by FN from fiAP and its extreme
values correspond to SBP and DBP. The signals are sampled
at 200 Hz.

Once the signals have started to be recorded, the hand-
grip maneuver is performed after a resting time of 10 min-
utes. During this period, the FN is calibrated (with the
two oscillometric BP measurements shown in Table 1) and
the subject can relax and receive instructions about the
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handgrip maneuver. Then, the subject must press a device
in a sustained manner during a standardised time. The
maneuver is performed twice, with a resting time of 10
minutes between them.

Table 1: Characteristics of the subjects (S) participating in the study, which
shows their ages, sex and their two oscillometric BP measurements (M1
and M2) performed to obtain DBP and SBP mmHg.

Subjects Characteristics
S Code AGE SEX DBP SBP

Name M1 M2 M1 M2
1 S03 18 F 69 78 107 120
2 S04 49 M 81 100 129 161
3 S05 29 F 78 84 117 129
4 S06 28 M 63 92 111 149
5 S07 40 F 73 93 106 141
6 S08 33 F 81 94 130 139
7 S09 50 M 61 109 115 207
8 S10 45 F 63 69 90 100
9 S11 26 F 59 71 102 113
10 S12 26 M 64 102 120 155
11 S13 38 F 75 81 122 134
12 S14 20 F 62 88 117 154
13 S15 29 M 76 108 122 170
14 S16 19 F 60 79 108 138
15 S17 20 F 72 85 115 121

During each handgrip, the subject steadily grips a cuff
with his or her deft hand for 3 minutes. The pressure over
the cuff is at one third of the subject’s maximal strength.
After the 3 minutes, the subject releases the cuff and rests
for three additional minutes. Afterwards the recording
is stopped. These essays were conducted at the School
of Biomedical Engineering (EICB), Faculty of Engineering,
Universidad de Valparaiso (Chile).

3.3. Photoplethysmography signal processing

Photoplethysmography (PPG) is sensitive to thermal
changes, movements and respiration [16]. Consequently,
the raw PPG is processed with two FIR filters (detailed
description in [22]). Later, PPG first derivative, or velocity
of PPG, VPG, is evaluated using a five point stencil algo-
rithm. PPG is segmented beat to beat using ECG and it
is then processed to extract the sections that have suffered
interference from spiky blocking noise.

3.3.1. Pre-processing of the PPG

The PPG is preprocessedwith two symmetric Finite Impulse
Response (FIR) filters of order 17 and 799. The low order
FIR low passes the signal at 6.5 Hz, smoothing the PPG and
decreasing energy in quantisation error frequency band.
The high order FIR high passes the signal at 0.2 Hz, stabilis-
ing PPG’s DC component. VPG is calculated after the two
FIR filters have been applied. It is performed with five point
stencils (7) instead of the more conventional L’Hopital rule,
which is known to produce noisy derivatives.

yn
−xn 2 8xn 1 − 8xn − 1 xn − 2

0.06
(7)

3.3.2. PPG Signal Segmentation

Segmentation of PPG, VPG, fiAP and reBP during each
heartbeat is needed to estimate fiAP and reBP waveform,
and their BP values beat to beat.

A modified Pan-Tompkins Algorithm (PTA) [34], is used
to detect R waves from ECG and to segment each cardiac
cycle, which is the unit of study in this work. To accomplish
this, the PTA’s band-pass filter in cascade with a Continuous
Wavelet Transform (CWT) with a Mexican-Hat wavelet was
applied. From CWT’s results, a threshold is established
at 30% of the maximum amplitude in a R wave of the sig-
nal, which is chosen arbitrarily. Furthermore, a refractory
time of 0.3 seconds is established [35], which represents the
minimal period before the next QRS complex appears.

3.3.3. Noisy PPG Extraction

While PPG is transmitted from the sensor module to the
Biopac system, an algorithm is implemented to detect and
remove the PPG segments that have suffered interference
from blocking noise [22] if a spiky communication inter-
ruption occurs and the signal is blocked. The unaffected
segments are isolated and saved.

3.4. Signal Normalisation

Signals are normalised in amplitude and in time duration,
or period. Period normalisation is necessary because a fixed
number of inputs neurons are needed to train the ELM
algorithms. Due to heart rate variability, each heartbeat has
a different period and this results in a different numbers of
samples in each. Consequently, 180 samples (0.9 seconds)
are considered for each heartbeat.

Amplitude is normalised to estimate BP only using PPG
and VPG waveforms and not their extreme values. Normal-
isation is applied on each signal by:

xi
xi −minxi

maxxi −minxi
(8)

where xi is the normalised signal.

3.5. Derivative Approaches

The standard terminology for photoplethysmogram signals
presented in [36] is used in this paper. VPG and the second
derivative of PPG (APG) have been studied in relation with
Blood Pressure in [37].

Figure 2 shows an example of PPG (blue), its first deriva-
tive (red) and an example of the corresponding fiAP and
reBP waveform for each heartbeat in black. In previous
work [22], the relationship between PPG and fiAP has been
studied in four subjects with two different approaches. The
first approach is a Linear Combination of Derivatives (LCD):

LCDi αPPGi 1 − αPPGi1 (9)
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Figure 2: Examples of signals used in this paper, from top to bottom: PPG
in blue, VPG in red and fiAP waveform with reBP waveform in black.

where PPGk is the kth order temporal derivative of the
PPG, and α is a single parameter to fit PPG to fiAP and if
LCD LCD0 then:

LCD αPPG 1 − αVPG. (10)

Figure 3: Linear combination of derivatives [22]. Combination of the PPG
and VPG to adjust the fiAP waveform by modifying a parameter α.

As shown in Figure 3, by modifying α, the PPG signal
(blue) can be fitted in the fiAP signal (black), normalising the
LCD result and “de-normalising” it within the BP extreme
values of fiAP. Nevertheless, even though the fitting shows
a strong relationship between these two signals, it does not
have an estimate value because α for the best fit must be
evaluated from each PPG waveform using its respective
fiAP waveform. In Salinas et al. [38] we have introduced a
fractional derivative method applied to the PPG to obtain
the fiAP signal. In this study, machine learning is used
to estimate the fiAP and reBP waveform from different
combinations of PPG and VPG waveforms.

3.6. ELM Training and Testing Sets to estimate BP

Each subject performs the handgrip maneuver twice. The
signals from the first recording are used as the training set
and the signals from the second recording are used as the
testing set.

Figure 4: At the left: PPG (blue) and VPG (red) are the two types of input
used in this study. Each sample of the signal correspond to a input neuron.
At the right: reBP (blue) and fiAP (red) are the two types of targets for the
ELM training.

Different ELMs are trained in each subject to estimate
different targets: fiAP, reBP and the pair SBP/DBP. Fur-
thermore, three ELMs are trained per target, with different
inputs vectors: PPG, VPG and a modular combination of
them. In summary, nine ELM algorithms are trained per
subject.

To compensate the loss of physiological information
produced by signals segmentation and normalisation, the
estimation of SBP/DBP includes a second input vector mod-
ule for each ELM network. This module has two input
neurons, one with Pulse Transit Time (PTT) and the other
with the Heart Rate (HR) of the corresponding signal’s
heartbeat.

Figure 4 shows an example of the input and target wave-
forms. On the left-hand, the PPG signal (blue) and VPG
signal (red) are illustrated. On the right-hand, the fiAP
signal (blue) and reBP signal (black) are illustrated.

It is important to mention that, only normalised wave-
forms are considered to estimate fiAP and reBP. Thereafter,
ELM outputs are denormalised into SBP and DBP values of
the corresponding fiAP or reBP waveform and the results
are then evaluated.

3.7. ELM Architectures

Two main approaches are used, depending on whether
BP waveforms or systolic and diastolic values are to be
estimated.

Figure 5: ELM1 and ELM2: General architecture used separately with the
PPG (ELM1) and VPG (ELM2) as inputs to train ELMs for fiAP and reBP
waveform estimation. In both cases, as an example, only fiAP waveform at
the output is shown.
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Figure 6: ELM3: Architecture with two modules at the input, inspired
on LCD from a previous work [22]. The two types of inputs are not fully
connected to the hidden layer, which is fully connected to the output
neurons. The same type of architecture is used to estimate fiAP and reBP
waveform.

3.7.1. Approach 1: Finger and Brachial BP Waveform Estimates

Both fiAP and reBP waveform estimation use similar ELM
architectures, only the target vector is changed. Conse-
quently, the following explanation applies to estimate fiAP
or reBP. Architectures illustrated in Figures 5 and 6 are used
to estimate either fiAP or reBP.

As mentioned, three types of input vectors—PPG, VPG
and combination of them—are used to train ELMalgorithms
to estimate fiAP or reBP waveform. ELMwith either PPG or
VPG as input vector use the architecture illustrated in Fig-
ure 5, which will referred as ELM1 and ELM2, respectively.
ELM1 or ELM2’s output vector is obtained in (11):

yk g
(

M

j1
f
(

N

i1
w jixi b j

)
βk j

)
(11)

where k 1, 2, ...,N, yk is the kth value of the output vector,
g is a linear activation function, f correspond a hardlim
activation function, and X x1, x2, ..., xN is the PPG or the
VPG input vector.

A third architecture ELM3, is used, which has a modular
combination of PPG and VPG as input vector. As shown in
Figure 6, ELM3 has two types of input vectors in separate
modules and, because the hidden layer is not fully connected
to all input neurons, they allow a different influence of PPG
and VPG in fiAP or reBP estimation. In both cases, all of the
neurons of the hidden layer are fully connected with all of
the output neurons. ELM3’s output is represented in (12):

yk g
([

M

j1
f
(

N

i1
w jixi b j

)
βk j

2M

lM1
f
(

N

i1
wlix′i bl

)]
βkl

)
(12)

where g and f are the same activation functions of the
previous case and X x1, x2, ..., xN is the sampled PPG and
X′ x′1, x

′
2, ..., x

′
N is the sampled VPG.

3.7.2. Approach 2: SBP and DBP Estimates

SBP and DBP values are used as targets to train ELM4,
ELM5 and ELM6. They correspond to reBP signal extreme
values. To build the ELMmodels, we have used an ensemble
approach to combine the inputs of different signals [39, 40].

The input vectors are those used in BP waveform estimation;
except for PTT and HR, which are added as a second input
vector module in ELM4 and ELM5, and as a third input
vector module in ELM6. The output vectors are represented
in two neurons, which codify SBP and DBP values.

Figure 7 illustrates ELM4, which a modified architecture
from ELM1. In addition to the sampled PPG waveform, a
second module with the PTT and HR values is added. The
same architecture is used with ELM5, which uses sampled
VPG signals instead of those of the PPG. The ELM4 and
ELM5 output vectors are obtained with (13):

yk g
(

M

j1
f
(

N

i1
w jixi b j

)
βk j

L

lM1
h
(

Q

i1
wlizi bl

)
βkl

)
(13)

where the input signal X is the sampled PPG for the ELM4,
and the sampled VPG for the ELM5. The input Z consists of
two neurons for the PTT and HR values as input. Finally, f
and h are linear activation functions.

Figure 7: Architecture of ELM4 and ELM5, which are trained to estimate
SBP and DBP, which has two modules as inputs—one is the module with
PPGwaveform ELM4 or VPGwaveform (ELM5), and the other module has
two neurons: Heart Rate (HR) and Pulse Transit Time (PTT) corresponding
to the waveform of the first module. In this figure, ELM5 is shown as an
example.

Figure 8: ELM6: A second type of architecture to estimate SBP and DBP
from three modules, one module for PPG waveform, the second module to
VPG waveform and the third module to PTT with the HR.
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Finally, ELM6, which is the last architecture used, is
illustrated in Figure 8. In this case, a modular combination
of PPGwith VPG, together with a third module for PTT and
HR, are input vectors. The output vector is obtained in (14):

yk g
(

M
j1 f

(
N
i1 w jixi b j

)
βk j

P
pM1 f

(
N
i1 wpix′i bp

)
βkp

L
l2M1 h

(
Q
i1 wlizi bl

)
βkl

) (14)

where P 2M, X represents the PPG, X′, is the VPG and Z
correspond to input neurons for PTT and HR.

3.8. Hidden Layer Dimensionality

We use six different architectures of ELM to estimate BP in
each subject. Our aim is to compare the capacity of ELM
to estimate fiAP and reBP waveforms either from the PPG
and VPG signals, and their combination, or to estimate SBP
and DBP from the same signals. Nevertheless, a common
problem in the design of the architecture of the multilayer
perceptron is how to determine the number of neuron in
the hidden layer [41]. This issue is considered in this pa-
per by varying the number of neurons in the hidden layer
for each of the ELM architectures and the performance for
each architecture was tested. The dimension of the layer
producing the smaller error for the test set is selected.

This procedure is especially powerful because one of the
main advantages of ELM is its short training times. This
characteristic allows us to perform exploratory studies to
determine the suitable number of neurons to be used in the
hidden layer. Tests in the range of 1–200 neurons in the
hidden layer were performed. These tests showed that the
best performance is achieved in the range of 14–23 neurons.
This range of neurons is used in this work to search for the
best architecture for each subject.

4. Results

4.1. Training and Testing Sets

Table 2 shows the number of heartbeats that are used to
train and test ELM algorithms per subject. Each number is
the result of signal processing and artifacts extraction from
ECG, reBP, fiAP and PPG.

Table 2: Number of signals per subject that were used to train and test the
ELM models

Subject Training Set Testing Set
S03 518 470
S04 430 415
S05 367 282
S06 395 476
S07 439 334
S08 325 107
S09 281 333
S10 493 465
S11 469 474
S12 404 389
S13 501 454
S14 334 179
S15 377 195
S16 380 205
S17 401 219

Average 408 333
Minimum 281 107
Maximum 518 476

Figure 9: At the top: one fiAP waveform measured by FINAPRES (blue)
and an estimated waveform with ELM3 (red), which corresponds to one
heartbeat. At the bottom: a train of 13 pressure pulses and their respective
estimated waveform by ELM.

4.2. Fitting the fiAP Waveform

The LCD performance is shown in the last column of Table
3. These results are an extension of those in [22]. The main
difference with the previous work is that only 160 heartbeats
of 4 subjects are considered to fit PPG to the corresponding
fiAP in that case, whereas in the current work PPG is fitted
to fiAP during 4997 heartbeats of 15 subjects, which are
taken from signals in the testing set. Amean relative error of
5.7 ± 1.6 with a mean r 0.95 are achieved for the 15 subjects.

4.3. Estimating the fiAP Waveform

The fiAP waveform (in blue) and the ELM3 estimated wave-
form (in red) is shown in the upper part of Figure 9. A strong

similarity between them can be observed, with error < 5%.
At the bottom of the figure, a train of fiAP waveforms (in
blue) is shown with the ELM estimation (in red) above
it. The estimation of the waveforms within the observed
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Table 3: Relative Error, its standard deviation (σ) and the correlation (r) from fiAP waveform estimation by ELMs with three types of training set: PPG
waveform (ELM1); VPG waveform (ELM2) and a combination of PPG and VPG (ELM3). Finally a comparison with LCD fitting methodology

fiAP Waveform Estimate
ELM1 ELM2 ELM3 LCD

Subject Relative σ r Relative σ r Relative σ r Relative σ r
Error (%) Error (%) Error (%) Error (%)

S03 3.9 0.7 0.97 4.2 0.7 0.96 3.2 0.5 0.98 7.2 0.7 0.90
S04 6.0 1.1 0.94 7.1 1.3 0.93 6.0 1.4 0.96 4.3 0.6 0.96
S05 4.1 1.8 0.97 4.9 2.4 0.97 4.6 2.0 0.98 3.8 1.1 0.96
S06 3.6 1.0 0.98 4.0 1.2 0.98 5.2 1.2 0.98 4.6 0.7 0.96
S07 3.3 1.4 0.98 3.9 1.2 0.98 3.7 1.8 0.98 3.5 1.4 0.97
S08 3.5 1.9 0.98 3.9 1.9 0.98 4.0 1.7 0.97 4.0 1.4 0.96
S09 5.9 2.1 0.98 4.2 1.5 0.98 5.6 1.6 0.98 7.6 1.5 0.94
S10 3.9 1.2 0.97 4.1 1.3 0.97 3.8 1.3 0.98 5.4 1.1 0.95
S11 3.7 0.5 0.98 4.1 0.6 0.97 3.2 0.8 0.98 5.1 1.7 0.94
S12 4.1 1.9 0.98 5.8 2.3 0.97 4.0 2.1 0.97 7.1 3.8 0.91
S13 5.0 2.3 0.98 4.7 2.3 0.98 4.8 1.8 0.97 4.7 1.5 0.97
S14 6.0 2.4 0.96 5.4 1.9 0.96 5.3 1.6 0.97 10.4 1.5 0.92
S15 5.3 2.1 0.96 5.3 2.2 0.96 5.0 2.0 0.96 4.8 2.6 0.96
S16 4.9 2.2 0.97 4.9 2.2 0.98 4.8 2.1 0.97 5.4 1.9 0.95
S17 6.4 2.7 0.97 5.4 2.4 0.97 5.7 2.1 0.97 7.0 2.3 0.96

MEAN 4.6 1.7 0.97 4.8 1.7 0.97 4.6 1.6 0.97 5.7 1.6 0.95

period is performed independently, beat to beat, and is then
concatenated to form the train of BP pulses.

Table 3 shows the relative error, with its standard devia-
tion, and the correlation between measured fiAP waveform
and ELM estimates for the 15 subjects. After applying the
statistical t-test with a resulting p-value bigger than 0.05, we
cannot conclude that a significant difference of the relative
error exists between the ELM1, ELM2, ELM3 and LCDmod-
els. However, with our data, the ELM models obtained the
lowest mean relative error compared to the LCD. Moreover,
there is no statistical significant difference in the correlations
between the waveforms achieved by the models. The ELM
models reach a correlation higher than 0.93 with an average
of 0.97 ± 0.01.

4.4. Estimating the reBP Waveform

Figure 10 shows at the top a reBP waveform (in blue) and
the estimated waveform (in red) from the ELM with archi-
tecture of Figure 6. A strong similarity can be seen. A train
of reBP waveforms is shown at the bottom of Figure 10,
with the ELM estimation above it. The estimation of each
waveform is performed independently, beat to beat, and
then concatenated to form the train of BP pulses.

Table 4 shows the relative error, with its standard devia-
tion, and correlation between measured reBP waveform and
ELMs estimates for the 15 subjects. The best result is slightly
achieved by ELM3 (combination of PPG and VPG). After

applying the statistical t-test with a resulting p-value bigger
than 0.05, we cannot conclude that a significant difference
of the relative error exists between the ELM1, ELM2, and
ELM3 models. However, with our data, the ELM3, that
combines PPG and VPG, obtained the lowest mean relative
error of 3.33%. The ELM models reach a correlation higher
than 0.96 with an average of 0.98 ± 0.01.

Figure 10: At the top: one reBP waveform reconstructed by FINAPRES
from fiAP waveform (blue) and an estimated waveform with ELM6 (red),
which corresponds to one heartbeat. At the bottom: a train of 13 pressure
pulses and their respective estimated waveform by ELM.

4.5. Estimating SBP

Table 5 shows the results of estimating SBP. After applying
the statistical t-test with a resulting p-value bigger than
0.05, we cannot conclude that a significant difference of the
relative error exists between the ELM4, ELM5, and ELM6
models. However, with our data, the ELM6 achieves the

lowest mean relative error of 5.01% and the lowest average
of the Root Mean Square Error of 5.86 mmHg. The mini-
mum error is achieved for subject S 04 in all ELMs, having
in ELM6 a RMSE: 2.6 mmHg and a relative error: 2.0%. The
worse result is obtained in subject S 16 in all ELMs, having
in ELM6 a RMSE: 12.6 mmHg and relative error: 13.5%.
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Table 4: Relative Error, its standard deviation (σ) and the correlation (r) from reBP waveform estimation by ELMs with three types of training set: PPG
waveform (ELM1); VPG waveform (ELM2) and a combination of PPG and VPG (ELM3)

reBP Waveform Estimate
ELM1 ELM2 ELM3

Subject Relative σ r Relative σ r Relative σ r
Error (%) Error (%) Error (%)

S03 2.1 0.8 0.99 2.9 0.8 0.97 1.9 0.4 0.99
S04 3.7 1.0 0.96 3.7 0.7 0.96 3.3 0.7 0.97
S05 2.4 1.4 0.98 2.6 1.1 0.98 2.1 1.0 0.98
S06 4.1 1.5 0.98 4.0 1.5 0.98 3.8 1.0 0.97
S07 2.8 1.7 0.99 2.9 1.8 0.98 3.1 1.4 0.99
S08 3.0 1.7 0.99 3.0 2.1 0.98 3.6 1.5 0.98
S09 3.8 1.3 0.98 3.3 1.6 0.98 3.8 1.2 0.98
S10 2.3 1.1 0.98 2.1 1.2 0.98 1.8 1.3 0.99
S11 2.6 0.6 0.99 3.1 0.8 0.98 2.0 0.6 0.99
S12 3.9 1.4 0.98 4.3 1.7 0.97 3.4 1.5 0.98
S13 4.0 2.4 0.98 3.6 2.4 0.99 3.9 2.1 0.99
S14 5.0 2.6 0.97 5.0 3.0 0.97 4.2 1.8 0.98
S15 4.1 2.3 0.97 3.4 2.2 0.98 3.7 2.1 0.98
S16 4.8 2.4 0.98 4.6 2.9 0.98 5.2 2.5 0.98
S17 4.0 2.5 0.98 3.6 2.4 0.98 4.1 2.5 0.98

MEAN 3.51 1.65 0.98 3.47 1.75 0.98 3.33 1.44 0.98

Table 5: Root Mean Square Error (RMSE) and relative error from systolic BP estimation by ELMs with three types of training set: PPG waveform (ELM4);
VPG waveform (ELM5) and a combination of PPG and VPG (ELM6). All of them plus PTT and HR correspond to each waveform

Systolic Blood Pressure Estimate
ELM4 ELM5 ELM6

Subject RMSE Relative RMSE Relative RMSE Relative
(mmHg) Error (%) (mmHg) Error (%) (mmHg) Error (%)

S03 6.3 5.1 5.5 4.5 3.6 2.9
S04 3.3 2.5 2.8 2.2 2.6 2.0
S05 5.5 4.7 5.5 4.7 5.3 4.6
S06 11.3 8.5 11.5 7.9 8.5 6.2
S07 5.9 5.5 5.9 5.4 5.7 5.3
S08 6.6 4.9 9.2 6.4 6.1 4.5
S09 12.7 9.8 13.3 10.3 9.8 7.4
S10 4.0 4.1 3.9 4.0 3.4 3.5
S11 4.4 4.5 4.4 4.4 4.1 4.2
S12 10.0 7.0 10.4 7.3 7.8 6.3
S13 7.6 5.5 7.4 5.5 5.7 4.3
S14 6.1 4.9 5.2 4.3 5.1 4.1
S15 8.0 6.5 4.8 3.9 4.3 3.4
S16 13.6 15.2 13.0 14.1 12.6 13.5
S17 3.5 3.1 4.2 3.7 3.4 2.9

MEAN 7.25 6.12 7.13 5.91 5.86 5.01

4.6. Estimating DBP

Table 6 shows the results of estimating DBP. After applying
the statistical t-test with a resulting p-value bigger than
0.05, we cannot conclude that a significant difference of the
relative error exists between the ELM4, ELM5, and ELM6
models. However, with our data, the ELM6 achieves the

lowest mean relative error of 7.04% and the lowest average
of the Root Mean Square Error of 4.78 mmHg.

The minimum error is achieved for subject S 04 in all
ELMs, having in ELM6 a RMSE: 2.3 mmHg and relative
error: 2.7%. The worse result is achieved in subject S 016 in
all ELMs, having in ELM6 a RMSE: 9.3 mmHg and relative
error: 19.1%.
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Table 6: RMSE and relative error from diastolic BP estimation by ELMs with three types of training set: PPG waveform (ELM4); VPG waveform (ELM5)
and a combination of PPG and VPG (ELM6). All of them plus PTT and HR correspond to each waveform

Diastolic Blood Pressure Estimate
ELM4 ELM5 ELM6

Subject RMSE Relative RMSE Relative RMSE Relative
(mmHg) Error (%) (mmHg) Error (%) (mmHg) Error (%)

S03 3.7 4.3 3.9 4.5 2.6 3.1
S04 2.3 2.7 2.2 2.6 2.3 2.7
S05 3.9 5.3 3.9 5.4 4.3 5.8
S06 7.3 9.7 5.9 7.5 5.5 7.6
S07 4.3 6.8 4.2 6.7 4.5 7.2
S08 6.0 6.1 9.3 9.3 5.9 6.4
S09 8.7 11.8 9.9 14.3 7.5 12.0
S10 3.2 4.9 3.4 5.1 3.1 4.7
S11 3.1 5.6 3.4 5.9 3.2 5.8
S12 6.6 9.1 7.7 10.9 7.5 9.4
S13 5.5 6.9 4.6 6.1 4.0 5.3
S14 3.2 4.3 2.5 3.6 2.9 4.2
S15 4.5 6.1 4.4 5.6 4.6 5.8
S16 9.0 19.7 9.0 20.1 9.3 19.1
S17 4.4 6.2 4.5 6.3 4.5 6.5

MEAN 5.05 7.30 5.25 7.59 4.78 7.04

5. Discussion

This work was inspired by a previous work [22], where in
the LCD fitting process, 4997 signals are evaluated instead
of the 160 signals per subject and the results are still sur-
prising. They show a mean relative error RE 5.7 ± 1.6%
and mean correlation r 0.95. These results allow us to as-
sume that LCD really works and that derivative approaches
are a suitable tool to fit the PPG waveform into the fiAP
waveform.

However the ELM methods outperforms the perfor-
mance of the LCD fitting process, where the ELM models
reach a correlation higher than 0.96 with an average of
0.98 ± 0.01. Moreover, the ELM3 that consists in a modular
combination of the PPG and VPG input signals, obtained
the lowest mean relative error of 3.33%. Nevertheless, PPG
and VPG were tested as inputs without being separated in
two modules and the results were no better than PPG or
VPG as independent inputs (ELM1 and ELM2).

Considering that PPG is measured with the index finger
tip, it is surprising that ELM has better results estimating
the reconstructed brachial BP waveform than fiAP wave-
form. The fiAp is measured in the digital artery of the
middle finger, next to the finger where PPG is measured.
Consequently, it is expected that fiAP waveform estimates
should be better than reBP waveform estimates because
digital artery is a distal branch of the brachial artery and,
therefore, it could be assumed that it is more complex to
estimate reBP waveform than fiAP waveform.

Lee et al. [25], Chen et al [24] and Kei Fong et al. [23]
have evaluated the performance of the Deep Boltzmann ma-
chine and Support Vector Regressions as machine learning
models used to estimate the Blood Pressure. These models
were tested with BP and PPG waveforms of subjects whose
datasets were randomly combined and separated in training
and test sets afterwards (Similar signals appears in training

and test sets). Moreover, they have not induced a blood
pressure rise. Under this scenario, the models show a good
performance. On the other hand, our proposed model is
able to estimate high pressure data obtained by induced
handgrip maneuver, this data is a realistic simulation of
high pressure events. Our results shows an acceptable mean
relative error.

Improving the results in SBP, DBP and waveform estima-
tions may help to start the development of a new technique
in BP estimation, which combines two very important as-
pects in BP studies: its extreme values and its waveform
(See [42] for naming standards of these features).

In addition, in a preliminary way, several tests were
carried out with inter-subject data and ELM obtained poor
results when the subjects have very different biometric
characteristics. However, with two similar subjects, good
estimates were obtained, which are: healthy male subjects,
aging 26 and 27 years old, and BodyMass Index close to 22.5
[Kg / m2]. In this case, ELM achieved SBP and DBP values
estimates with errors less than 10%. This suggests that, as
expected, more data needs to be collected to achieve the
different existing clusters, each of which with sufficient data
size. This may allow the demands for completeness and
consistency of the training and testing data to be satisfied.
Therefore, following the theorem applicable to single inter-
mediate layer artificial neural networks that can perform
as universal Approximators [43], the achievement of nImI
methods to estimate BP from PPG is granted for all subjects
belonging to any cluster.

This research provides the following contributions and
improvements:

• The main goal was to develop a machine learning
method to estimate the arterial blood pressure from
PPG and VPG signals measured from healthy subjects.

• We have validated the Extreme Learning Machine
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(ELM) as a model that relates the PPG to fiAP and
brachial reconstructed Blood Pressure (reBP) wave-
forms.

• We have validated the Extreme Learning Machine as
a model used to estimate the Systolic and Diastolic BP
values.

• We have evaluated how a combination of PPG and its
derivatives can improve the performance compared
to using only the signal by itself.

• We have evaluated how the incorporation of signif-
icant parameters extracted from the original signal
such as PTT and HR can enhance the performance of
the ELM.

• We have conducted a clinical essay approved by the
Bioethics Institutional Committee for Human Beings
Research of the Universidad de Valparaiso. In the
procedure, the volunteers performed two handgrips,
which is isometric maneuver to induce controlled
Blood Pressure rises.

6. Conclusions

In this work, ELM is conclusively shown to be a suitable tool
to estimate BP from PPGwhen input vectors are PPG related
data, and target vectors, either, fiAP and reBP waveforms,
or, SBP and DBP values that belong to the same subject.

These are promising results and they suggest that we
should continue our research into machine learning and
its potential in health applications. ELM has good results
estimating the brachial BPwaveform and othermain arteries
can perhaps be studied with this type of architecture and
method, such as the aorta, which a very important artery in
cardiovascular studies.

Although both SBP and DBP estimations show promis-
ing results, they still need to be more precise because a
maximum error of ±3 mmHg is accepted for BP medical
devices. Nevertheless, different architectures and inputs
from PPG, and its derivative approaches, can be evaluated
to help the ELM learning process.

We have also tested the inter-subject Blood pressure
estimation, however more work and research are required
to enhance the performance. We think that if the number of
subjects recruited is increased considerable, then there will
be a chance to have a global model instead of a individual
ad-hoc subject model.

Future work is required in order to increase the number
of subjects and thus increase the variability of the signals.
Furthermore, it would be interesting to explore other meth-
ods such as neuro-fuzzy models [40, 44], machine learning
models [45], and deep learning techniques [46]. Moreover,
analysing the wavelet domain of the signals could be rele-
vant for healthcare applications [47, 48]. On the other hand,
information from experts could be included in the models
[49] and potential biomarkers could be found usingmachine
learning techniques [50].
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