
Special Issue on Multidisciplinary Sciences and Advanced Technology

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 88

Received: 28 February 2022, Accepted: 27 April 2022, Online: 12 May 2022

DOI: https://dx.doi.org/10.55708/js0105010

Layer Based Firewall Application for Detection and Mitigation
of Flooding Attack on SDN Network
Yubaraj Gautam 1, Kazuhiko Sato 1, Bishnu Prasad Gautam 2,*

1 Division of Information and Electronic Engineering, Muroran Institute of Technology, Muroran, 050-0071, Japan
2 Department of Economic Informatics, Kanazawa Gakuen University, Kanazawa, 920-1392, Japan
*Corresponding author: Bishnu Prasad Gautam, Kanazawa Gakuen University, Kanazawa, 920-1392, Japan, gautam@kanazawa-gu.ac.jp

ABSTRACT: Software-Defined Networking (SDN) is an emerging Network technology that can
augment the data plane with control plane by using programming technique. However, there are a
numbers of security challenges which are required to address to achieve secured communication.
Flooding attack is one of the most common threats on the internet for the last decades which is
becoming the challenging issues in SDN networks too. To address these issues, we proposed a novel
firewall application developed based on the multiple stages of packets filtering technique to provide
flooding attack prevention system and layer-based packets detection system. In this research, we are
using two main stages to detect the flooding attack and mitigate the flooding packets. The first stage
is to identify the attacks and, the second stage is to identify the attacker’s information and act them
based on layer-based packet header entity. The system contains two security entities to identify the
flooding attacks, one is by measuring the packet size, and the other is by counting the packets flow.
We used the details of packets flow to control over the flow and to identify the attacks being occurred
or not. Along with, to identify the attacker’s information, we used layers (layer 2 to layer 4) based
packet header entities by using multi-table architecture. The proposed solution was tested for different
attack scenarios and successfully reduced the flow of volume-based bulk-size flooding attack and
infinite packets flooding attack in SDN network.

KEYWORDS: Software Defined Network, Flooding Attack, Layer Based Security Architecture

1. Introduction

Traditional network refers to the network architecture
based on old conventional way of networking which uses
fixed and dedicated hardware devices to control the flow
of network traffic. With the growth of the traffic or data
in network, the network expansion takes place, and it may
lead to inefficiencies in monitor or control over the
network traffic. In order to meet the growing traffic
demands, network expansion may require and much of
the efforts go towards configuring switches and routers
even for changes in a smaller segment of a local area
network that may contain hundreds of nodes. Therefore,
SDN network are desired that would control routing of
flows in more efficient way. SDN separates the control
plane from the data plane and single control plane can
control all the network flows. There are different

controllers available to use for the different purposes.
Among them, widely used SDN controllers are Ryu, POX,
ODL, and Floodlight etc. Specifically, the python-based
Ryu controller is mostly used SDN controller for the
research proposes [1]. Therefore, in this research we used
the Ryu controller as an SDN controller.

In SDN network, the lack of efficient solution of
packets flow control is the measure issue. To overcome
those issues, we focused on the measurement of flow
control based on counting the number of packets and
their size. SDN has basically three layers which are
infrastructure layer, control layer and application layer.
Infrastructure layer contains the physical devices such as
router, switch, hub etc. and control layer contains the
controller which control all the network flows therefore,
it is also called as brain of the SDN Network. And

http://www.jenrs.com/
https://dx.doi.org/10.55708/js0105010

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 89

application layer contains the applications to operate the
whole SDN network through controller. There are
different controllers available to use for the different
purposes. Among them, widely used SDN controllers are
Ryu, POX, ODL, and Floodlight etc. Specifically, the
python-based Ryu controller is mostly used SDN
controller for the security-based research proposes.
Therefore, in this research we used the Ryu controller as
an SDN controller for SDN security research.

2. Literature Review

SDN system is an emerging network system for the
general user and the network administrator also. It has
centralized controlling system, faster and programmable
features, which were lacking in traditional network
system. However, it has high chances to be attacked by
the attacker in various ways also. Research paper in [2]
presents the evidence for three sides of the security
pyramid that SDN possesses in its architecture. One side
of the security pyramid consists of the advancement and
other two sides consist of inherited vulnerability and its
consequences on information security [2]. To address
these attacks, we focused on the weak information
security on SDN network architecture. For example, the
attacker could easily spoof new flows in the controller
and would forward specific types of traffic that should be
rejected across the network. To minimize such kind of
attack, we have developed a prototype application that
can handle different types of flooding attacks in SDN
network. Layered based security approaches are taken in
many previous researches. Gautam and Shrestha [3] have
presented a model for cloud computing security which
are proposed in a layer based architecture. The authors
propose different solutions and security policies to
promote a common level of understanding between the
users, business communities, and necessary security
requirements for the Jyaguchi (it is a cloud system in
which daily activity of the users and services are mined
by considering time factor to analyze behavior of users)
application. In SDN network, the vulnerability of network
traffic in data centers under various kinds of attacks
researches [4], [5] and [6] provide us some detail of SYN
flood and DNS attack monitoring and analysis of network
traffic by using TCP dump and Wireshark using Ryu
controller [7], [8]. The vulnerability of network traffic in
the data center under various kinds of attacks like
DoS/DDoS attack is the biggest issue in traditional
network system. To minimize this, there were some
experiments and analysis to reduce such kinds of attacks
by highlighting the major security threats based upon
SYN floods followed by currently faced real working

scenario by giving an example for DNS attack. It is also a
fact that many organizations have not adequately secured
there DNS servers. If the network system is centralized,
then the analysis of network traffic will be easier to do.
Providing a security policy for such a network system is
our research objective. Previously, we have done some
experiments on SDN system by developing the SDN hub
application into different manners and checked the
quality of service (QoS) based on its bandwidth, latency,
and packet loss [9], [10]. The limitation of this research
was that we had not considered the security issues in the
SDN control plane. In the research of [11], the authors
proposed an SDN design with star topology. Here,
authors have argued that by using SDN multi-controller,
it is effective to secure the network environment which is
the better architecture for preserving or holding time than
other works in the literature. In the SDN network system,
DoS and DDoS attacks are the major issues like traditional
network. The article in [12] provides the solution of the
defending system for attack where the number of packets
could either be high or low. The article of the effect of
input-output buffering to minimize flow control blocking
[13], [14] analyzes the different input-output buffering
strategies which affects the flow control blocking in a
SDN system. The network architecture of the SDN based
5G network system [15] with a centralized security
controller that communicates with the SDN controller has
been conducted previously. Related to the IoT security,
authors in [16] have analyzed IoT security requirements,
challenges, and their countermeasures via software
defined security. Furthermore, they have highlighted
some future research directions of SDN based IoT security
technologies. They have mentioned that an adaptive,
novel and worthy IoT security system is required to tackle
the current security landscape which should be proactive
in nature providing baseline security to end users,
network, applications, data and devices. To overcome
such issues, proactive switches are one of the solutions as
we have implemented in this research. There are few
other relevant researches in the SDN system security [17],
[18]. The authors are mentioning different applications
for working at different layers to block unwanted packets.
Research papers of [19]-[21] have provided us some DoS
or DDoS attacked based firewall application with load
balancing.

3. Proposed Solution

We realized that there are some research gaps in SDN
security if we analyze it on the perspective of layer-wise
security or quantity-based flooding attack. In this
research, we focused on layer-based security and flooding

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 90

attack detection in the SDN (i.e. control plane) briefly to
provide more protection by using multiple stages of
filtering with multi table method. In order to address this
issue, we have done some works in our previous
researches [1], [22]. This is the continuity of our previous
work in SDN to improve the security. Thus, we have
found gap in the literature specifically in preventing
flooding attacks based on bulk-size packets flooding and
infinite packets flooding and, the flow control to provide
SDN layer-base security. In this attack, an attacker can
flood the unwanted packets to the network server to spoil
the SDN network server. In such an attack, there is no
satisfactory solution in SDN and conventional network
systems.

Thus, in this research, we proposed an SDN network
firewall application with having the features of layered
based security architecture to detect the details of flows
and flooding detection technique that can overcome the
security issue of SDN network. We argue that by
providing packet evaluation scheme based on security
rules, security vulnerabilities of SDN network can be
reduced sharply. Particularly, we would like to develop
an application implemented by multiple filtering system
to monitor the flow. We designed a firewall application
applicable for the SDN control plane and conducted a
number of experiments by flooding the packets. We
defined specific rules and policies into the program by
which the incoming packets are compared as per the
firewall rules. If the flow matches with the defined rules,
the packets will be allowed to flow to the targeted
destination. Otherwise, firewall program declares those
flows as a harmful flow and the system rejects them by
minimizing the flooded packets and take actions to the
attackers accordingly.

4. Research Methodology

In Figure 1, the system is categorized according to the
SDN layers. The infrastructure layer represents the
senders or receiver hosts and Open vSwitches It is the
physical layer responsible for collecting the network
statuses such as traffic statistic, network topology,
network usage, etc. and send them to the control plane.
Control plane is the mid-layer that connects the
applications layer and infrastructure layer. This layer
processes the instructions and requirements sent by the
application layer and proceeds them to the network
components. It also communicates back necessary
information extracted from the networking devices to the
application for it function optimally. There are already
many controllers which were developed by different
peoples for different purposes, but, for this research, we

used Ryu controller as an SDN controller because, Ryu is
mostly used controller for the research proposes.

4.1. Flow Table and Controller

To stablish the connection between infrastructure
layer and control layer, we used OpenFlow protocol as a
southbound API. We designed and developed a firewall
application with multiple stages of filtering technique and
applied this in SDN controller to filter the packets. By
using this application, when Open vSwitch receives the
packets from the source hosts, it will add the flow to the
flow table on layer-based header entities and send the
PacketIn message to the controller. The controller and
switch perform three-way handshake by synchronizing
the packets to stablish the connection between them. After

Figure 1: Overview of Firewall Application

Figure 2: Packets Flow in Firewall Application

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 91

the completion of SYN process, the controller starts
monitoring the packets based on packets size and total
number of packets flow and send the PacketOut message
to the destination if flows are normal. When system
detects the flooding attack, it will minimize or drop those
packets and take an action to the attackers based on their
layer-based packets header entities. To perform these
whole actions, we used three applications by running on
the application layer. The rest API is used to stablish the
connection between application layer and controller.
‘Rest_qos’ and ‘Rest_conf_switch’ is used to provide switch
features to monitor the packets flow in Open vSwitch.
And we used our developed ‘Firewall Application’ to
identify the flooding attacks and an act to the attackers
accordingly.

4.2. Packets Flow Scenario

We designed a network scenario of packets flow as
shown in Figure 2. When the source generates the traffic
and send them to the destination, the traffic passes
through different Open vSwitches (depends on mininet
network architecture) and controller with being
monitored by the system on different stages. Mainly, we
categorized the flow of packets into two parts, one is the
flow of traffic in Open vSwitch (OVS) and the other is
traffic in controller. The OVS stores the details of flows on
layer-based packets header entities when it receives the
traffic from source, and when filtration completes, it
forwards the selected traffic to the destination. And
controller monitors the traffic flow to control over them
based on their flow size.

4.3. Algorithm of Flow Control

We presented here the algorithm of packets flow in
table 1 to detect the flooding attack and act to them based
on their flooded types. Where, all the flows have divided
into the four parts. The first stage of application adds the
flows on flow table based on their packet’s header entities
to categorize the flow more specifically. Second stage of
packets filtering measure the size of packets and act to
them based on their size of packets by forwarding
through different queues. Third stage of filtering counts
the number of packets in every second and act them based
on the defined rules on controller by sending the traffic
through different queues. We can see in Figure 2 that the
queues that counts the number of packets are Q4, Q5 and
Q6. And fourth stage of filtering used to take an action to
those packets flow which exceed the limits of numbers
and size of packets as defined rules. In this stage, the flow

Algorithm: Flow of traffic on proposed firewall
application to detect flooding attack
Results: Flooding attack detection and prevention by
monitoring the flow of traffic
Initialization;
Check table-miss entry
Check flow table
First Stage: Add flow based on layer-based header
If Flow exist Then
 Match with existing flow;
Else
 Add new flows
If Layer 2 packets Then
 Add flow with layer 2 packets header entities;
Elif Layer 3 packets
 Add flow with layer 3 packets header;
Elif Layer 4 packets
 Add flow with layer 4 packets header;
PacketIn
Check packets flow
Second Stage: Measure size of flow
If Size of packets flow is normal Then
 PacketOut
Else
 If Exceeding first stage of packets size filtering Then
 Send packets to queue 1;
 If Exceeding second stage of packets size filtering Then
 Send packets to queue 2;
 If Exceeding third stage of packet size filtering Then
 Send packets to queue 3;
Third Stage: Count No.of packets flow
 If Exceeding all the limits Then
 Send packets to Filter table;
If Flow of packets are normal Then
 PacketOut
Else
 If Exceeding first stage of packets count filtering Then
 Send packets to queue 4;
 If Exceeding second stage of packet count filtering

Then
 Send packets to queue 5;
 If Exceeding third stage of packet count filtering Then
 Send packets to queue 6;
Fourth Stage: Act based on packets header
 If Exceeding all the limits Then
 Send packets to Filter table;
Filter table data send to action table
If Layer 2 Then
 Act based on layer 2 action rules;
Elif Layer 3
 Act based on layer 3 action rules;
Elif Layer 4
 Act based on layer 4 action rules;
End

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 92

will be stopped by using layer-based packets header
entities.

5. Experimental Scenario

5.1. Lab Setup

To conduct experiments, we created the laboratory as
like Figure 3. We installed the virtual machine (Ubuntu
20.04) in the VirtualBox, and created the experimental
scenario by installing mininet emulator on this machine.

5.2. Experimental Setup

5.2.1. Single Mininet Network

Figure 4 shows that the single mininet network
topology which has single switch and multiple hosts
connected to the OpenvSwitch. To create this network
topology, we used one switch with ten mininet hosts (h1
to h10). All hosts are connected directly to the switch (s1)
and the switch is connected with the Ryu controller
remotely. In this network topology, h1 is used as an
attacker and h10 is used as a victim machine. The flowing
packets from attacker to the victim will flow through the
switch s1.

5.2.2. Linear Mininet Network

To create linear mininet network topology, we used
ten switches and ten hosts connected in a linear way as
we can see in Figure 5. All switches are directly connected
to the remote controller (c0) to get the instruction from
controller. To conduct an experiment on linear mininet
network topology, h1 is used as an attacker and h10 is
used as a victim. When h1 sends packets to the victim, the
packets pass through all the switches that exists in
between source and destination. In our case, we used first
host as sender and last host as the receiver, therefore the
flooded packets will bypass all the existing switches in
our designed system.

5.2.3. Tree Mininet network

To create tree mininet network topology, we used
three depth and three fanout as we can see in Figure 6. We
created Open vSwitch from s1 to s13 and hosts from h1 to
h27. In tree topology of SDN network, three depth means
that the switches have three layers with the same number

Figure 3: Lab Scenario

Figure 4: Single Topology with Multiple Hosts

Figure 5: Linear Mininet Topology

Figure 6: Tree Topology with Three Depth and Three Fanout

Internet VirtualBox

OVSwitch

NATSDN Firewall
Application

H(1) H(2) H(n)

Controller

S(1) S(n)

IP: 127.0.0.1
Port: 6653

Router

S(2)

Table 1: Experimental Plans

Attacks Packets Type Tools Total Time Flows Type Time Interval
(seconds)

Bulk-Size
Flooding

UDP Iperf 90 to 95 1. Normal Flow
2. Flooded Flow

5

Packets
Flood

ICMP Hping3 90 to 95 1. Normal flow
2. Flooded flow

10

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 93

of fanouts. And, fanout means the number of children on
each switch. In our tree network topology, s1 have three
child switches (s2, s6 and s10) and further child switches
have three more child switches, and all three child
switches are connected with their parent switch. To
conduct an experiment on this network topology, we
used host s1 as an attacker host and s27 used as a victim
host. As like the previous network scenarios, the flooded
packets flow through the switches in between source and
destination by identifying the best path to reach to the
destination. In tree network topology, it forwards the
packet flows to their parent switch by using the best path
and reach to the targeted hosts.

5.3. Method of Data Collection

As shown in Figure 7 that OFPFlowStatsRequest are the
flows between controller and switches. We accessed the
size of packets flows by monitoring OFPFlowStatsRequest
and saved as an CSV file in every 10 seconds. Similarly, to
measure the flow of packets, we used the data of
OFPPortStatsReply. We measured the flow of
PortStatsReply that are directly connected to the attackers
hosts and the victim hosts and compare with them to get
the dropped packets. Moreover, we calculated the flow of
increased packets and the packets that are permitted to
enter the network as allowed packets.

To evaluate the system performance, mainly, we
analyzed the flow of flooded packets and the flow of
normal packets. We compared between those two

different types of packets flows and evaluate the system
based on how the controller takes an action to those
individual packets flow. We used time series analysis to
evaluate the system. Time series analysis is a statistical
technique used to identify trends of flow over time. We
used the sequence of data points which measure the same
variable at different points in time.

5.4. Experimental Setup

As shown in table , we prepared two different kinds
of attacks to collect the flow of data. One is by flooding
the bulk-size packets to the victim and the other is by
flooding the infinite packets. For Bulk-size flooding
attack, we used UDP packets because we can set the size
of UDP packets from low to the high range (8 to 65535
bytes). Specifically, to evaluate the packets flow, we sent
two different types of flow. One is normal flow with
smaller packets size, and another is flooded flow with
higher packets size on same network architecture.
Similarly, to evaluate the system performance with
infinite packets flooding, we send normal traffic with less
packets flow and flooded traffic with infinite packets in a

Figure 7: Figure of Packets Flow to Collect Data

Table 2: Simulation Scenario & Parameters Settings

Configuration Parameters

Mininet

Network Topologies
1. Single topology

Topo=single, Hosts=10, IP=127.0.0.1, Port=6633
2. Linear topology

Topo=linear, Hosts=10, IP=127.0.0.1, Port=6633
3. Tree topology

Topo=tree, depth=3, fanout=3, IP=127.0.0.1, Port=6633

Implemented Firewall
Application

Queues (Q):
Q0 = Normal Flow
Q1 = Max Rate 9000000, Q2 = Max Rate 7000000, Q3 = Max Rate 5000000
Q4 = Max Rate 500000, Q5 = Max Rate 400000, Q6 = Max Rate 300000
If Byte count < 60000000 or Packets count < 200000 (Q0 active)
Bulk-size Flooding Packets Flooding
If Byte count > 6000000 (Q1 active)
If Byte count > 7000000 (Q2 active)
If Byte count > 8000000 (Q3 active)
If Byte count > 9000000 (Drop all)

If Packet count > 200000 (Q4 active)
If Packet count > 300000 (Q5 active)
If Packet count > 400000 (Q6 active)
If Packet count > 500000 (Drop all)

Experiments
Tool: Iperf
Measured Time: 90 to 95 sec

Tool: hping3
Measured Time: 90 to 95 sec

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 94

second and evaluate the execution of SDN controller to
those different packets flow. We collected the data of
bulk-size flooding on every 5 seconds and 10 seconds to
monitor the data of infinite packets flooding.

5.5. Simulation Scenario and Parameter Settings

To evaluate our application, we used the simulation
parameters as shown in Table 2. We configured the
Mininet emulator by using 3 types of topologies (i.e.,
Single, Linear and Tree). These topologies satisfy our
experimental requirements of simple to complex
networks thus we did not apply other network topologies
such as star and mesh. Similarly, the parameters of
firewall application are given such that the normal
packets flow through Q0 when the size of packets flow is
less than 6000000 bytes. When the size of packets crosses
6000000 bytes continuously, the system considers it as the
flooded flow and forwards these flows to the different
queues (Q1, Q2 and Q3) depending on their flooded
packets size. Similarly, to detect the packets flooding, the
rules have defined in the controller that if the total
number of packets crosses the 200000, the system will
recognize it as a flooded flow and forward the flows to
the different queues (Q4, Q5 and Q6) based on their total
number of packets as show in table 2. Moreover, we used
iperf and hping3 to generate the flow of packets and

monitor them up to 90/95 seconds to evaluate the system
performance.

Table 3: Packets Size Detection in Single Topology

 Normal Flow Flooded Flow

Number of
Flows Time Interval Packets_Size

Throughput
(kbits/s) Packets_Size Throughput (kbits/s)

1 5 7560 14.1 8799840 10500

2 10 15120 11.8 15563016 10500

3 15 22680 11.8 22326192 10500

4 20 30240 11.8 29098440 10500

5 25 36288 11.8 35194824 10500

6 30 43848 11.8 41953464 10500

7 35 51408 11.8 48719664 10500

8 40 58968 11.8 55488888 10500

9 45 66528 11.8 62242992 7520

10 50 74088 11.8 66348072 5890

11 55 81648 11.8 70214256 5690

12 60 89208 11.8 73859688 4870

13 65 96768 11.8 77001624 5950

14 70 104328 11.8 80988768 5610

15 75 111888 11.8 84333312 4850

16 80 119448 11.8 87461640 4860

17 85 127008 11.8 90588456 1740

18 90 134568 11.8 0 0

Figure 8: Packets Size Monitoring in Single Topology

Figure 9: Flow of Packets in Single topology

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 95

6. Experiments and results

The designed network scenarios are shown in figures
3-6 which have the several number of virtual hosts and
switches to monitor the different packet flows. We set up
three different network scenarios (i.e., figure 4, 5 and 6) to
analyze the SDN network packets flow. To investigate the
performance of firewall application, we used four
different types of packet flows in each network scenario.
Among them, one is bulk-size packets flooding with the
flow rate of 10Mbps and compare with the normal
packets flow with the flow rate of 1Kbps. The other is by
flooding the infinite packets in a second with ten
thousand packets in a second and compare with the less
packets flow. We sent ten packets in a second as a normal
flow from source to destination.

6.1. Experiment 1: bulk-size flooding on Single mininet
network

To conduct this experiment, we collected the total of
18 flows in every 5 seconds time interval. In normal flow,
the throughput of the packet’s flows was constant but in
flooded flow, the throughput of the packets flow was
constantly decreasing as the flow of packets size goes
increases as we can see in Table 3.

Figure 8 shows the flow of packets with their flow size
and Figure 9 shows the flow of packets based on their
throughput. In Figure 9, we can see that only the flow of

flooded packets gets decreasing, whereas flow of normal
packets remained constant.

6.2. Experiment 2: Infinite packets flooding on single mininet
network

To conduct this experiment, we used the same
network architecture as of experiment 1 with single

Table 4: Packets Flooding in Single Mininet Topology

 Normal Flow Flooded Flow

Flows
Time

Interval Sender Receiver Dropped
Per

Flow
Allowed
Packets Sender Receiver Dropped

Per
Flow

Allowed
Packets

1 10 99 99 0 99 99 46209 46208 1 50581 50582

2 20 198 198 0 99 99 96790 96790 0 51158 51158

3 30 297 297 0 98 98 147948 147948 0 50129 50129

4 40 395 395 0 99 99 198077 198077 0 45616 29756

5 50 494 494 0 99 99 243693 227833 15860 50539 16756

6 60 593 593 0 98 98 294232 244589 49643 48618 18554

7 70 691 691 0 101 101 342850 263143 79707 53513 11582

8 80 792 792 0 99 99 396363 274725 121638 52977 12984

9 90 891 891 0 99 99 449340 287709 161631 52019 14910

10 100 990 990 0 99 99 501359 302619 198740 55931 5220

11 110 1089 1089 0 99 99 557290 307839 249451 59402 1

12 120 1188 1188 0 99 99 616692 307840 308852 21636 0

13 130 1287 1287 0 638328 307840 330488

Figure 10: Packets Size Monitoring in Single Topology

Figure 11: Flow of Packets in Single Topology

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 96

switch and ten hosts. We flooded ten thousand packets in
a second to get the flooded flow and ten packets in a
second to get the normal traffic flow and then analyzed
the response of firewall application over the different
types of flows. We compared with those different flows
and got the following results as shown in Table 4.

We collected the data of normal flow and flooded flow
by using OFPflOFPFlowStats provided by Ryu controller
API. We collected the data of 13 flow in every 10 seconds
time interval. In normal flows, there are 0 dropped packets
because the controller recognize that all the packets sent
by source hosts are under the defined policy therefore,
controller considers all the packets as a normal flow and
forwards those packets to the destination. But on the other
hand, in flooded flow, the controller detects that the
incoming packets are exceeding the controller’s limits and
recognizes as a flooding attack. As a result, the controller
controls over those flooded packets by dropping them. To
visualize the flow of packets, we prepared two graphs.
Figure 10 is the graph of packets flow before going
through our firewall application located in controller
whereas Figure 11 is the graph of allowed packet flow
after tested through our firewall rules targeted to the
destination. The flow of normal packets is flowing
constantly without any packets loss but if we observe the
flow of flooded packets, we can see that the flow of
allowed packets constantly decreasing and end up with 0

allowed packets. This shows the effectiveness of our
firewall application.

6.3. Experiment 3: Bulk-size flooding on linear network

Table 5: Packets Size Detection in Linear Topology

 Normal Flow Flooded Flow

Number of
Flows

Time
Interval Packets Size Throughput (kbits/s) packets Size Throughput (kbits/s)

1 5 3024 14.1 5821200 10500

2 10 10584 11.8 12593448 10500

3 15 18144 11.8 19361160 10500

4 20 25704 11.8 26124336 10500

5 25 33264 11.8 32210136 10500

6 30 40824 11.8 38976336 10500

7 35 48384 11.8 45733464 10500

8 40 55944 11.8 52489080 10500

9 45 63504 11.8 59253768 9530

10 50 71064 11.8 66016944 6290

11 55 78624 11.8 70409304 5290

12 60 86184 11.8 73994256 5450

13 65 93744 11.8 77440104 5230

14 70 101304 11.8 80876880 4440

15 75 108864 11.8 83876688 4250

16 80 116424 11.8 86660280 4290

17 85 123984 11.8 89445384 3410

18 90 131544 11.8 92157912 0

Figure 12: Packet's Size Monitoring in Linear Topology

Figure 13: Flow of Packets in Linear Topology

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 97

To conduct this experiment, we took h1 as a source and
h10 as a destination host. H1 is directly connected to the
switch s1 and h10 is directly connected to switch s10 as
shown in Figure 5. To collect the data, we monitored the
flow of packets passed by the controller and collect the size
of flows in every five seconds time interval. We monitored
the total of 18 flows and collected the data of normal and
flooded flow as shown in Table 5. We monitored the flows
up to 90 seconds and analyzed them based on throughput.
We monitored the flow size of normal packets and flooded
packets as shown in Table 5. To differentiate between
normal and flooded packets, we graphed the flow of
packets size before implementing the filtering system and
packets flow after the packet’s filtration. Figure 12shows
the flow of packets size monitored by the controller and
Figure 13 shows the packets flow with their flow’s
throughput.

6.4. Experiment 4: Infinite packets flooding on linear topology

 To conduct this experiment, we used the network
architecture of linear topology. To generate the traffic, we
used h1 as an attacker and h10 as a victim host. We
evaluated the system by collecting all the flowing data
based on the controller’s response to the traffic flows. To
collect the data, we monitored both ingress and egress
ports of source and destination. Based on those two
different flows, we collected the data of dropped packets,
and allowed packets etc.

After the experiments, we got the following data as
we can see in table 6. In normal flow, there are no dropped
packets, because all the packets sent by the source reached

to the destination with no issues. But, as we can see in
flooded flow, it has the dropped packets right from the
beginning. The allowed packets are getting lower and
lower as the flooded packets getting bigger. Eventually,
controller dropped the flooded packets completely. In
Table 6 this is indicated with 0 packets. Figure 14 shows

Figure 14: Packets Flow in Linear Topology

Figure 15: Allowed Packets Flow in Linear Topology

 Table 6: Packets Flow in Linear Topology

 Normal Flow Flooded Flow

Flows
Time
Interval Sender Receiver Dropped

Per
Flow Allowed

Sender Receiver Dropped

Per
Flow Allowed

1 10 84 84 0 100 100 28371 28244 127 45215 41642

2 20 184 184 0 99 99 73586 69886 3700 43767 43764

3 30 283 283 0 100 100 117353 113650 3703 50515 50519

4 40 383 383 0 100 100 167868 164169 3699 50763 50760

5 50 483 483 0 100 100 218631 214929 3702 45523 17107

6 60 583 583 0 101 101 264154 232036 32118 52938 11589

7 70 684 684 0 99 99 317092 243625 73467 49801 13737

8 80 783 783 0 99 99 366893 257362 109531 32628 20930

9 90 882 882 0 102 102 399521 278292 121229 41537 21261

10 100 984 984 0 99 99 441058 299553 141505 47997 15673

11 110 1083 1083 0 99 99 489055 315226 173829 54705 6782

12 120 1182 1182 0 100 100 543760 322008 221752 60909 1

13 130 1282 1282 0 100 100 604669 322009 282660 20706 0

14 140 1382 1382 0 625375 322009 303366

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 98

the flow of packets before the filtration and Figure 15
shows the allowed packets flow passes by the controller.
As we can see in Figure 15 that allowed packet of normal
flow remain constant in every time interval. But flooded
flows have the dropped packets therefore, the allowed
packets decreased and end up with 0 at the end.

6.5. Experiment 5: Bulk-size packets flooding on tree topology

To conduct the experiment on this network topology,
h1 is used as source host and h27 is used as a destination
host as shown in figure 6. In this topology, we got the total
of 19 flows in 95 seconds. As like earlier experiments,
normal packets have the constant flows with stable
throughput whereas the flooded flow was decreasing
constantly in their throughput as time went by. The
Figure 16 and Figure 17 shows the flow of packets and the
number of allowed packets respectively, and table 7
shows the details of collected data.

6.6. Experiment 6: Infinite packets flooding on tree topology

This is our last experiment to evaluate the
performance of firewall application. To conduct this
experiment, we sent 10 thousand packets per second as a
flooded packet and 10 packets per second as a normal
flow as like earlier experiments. The details of packets are

shown in table 8. In normal flow, all packets sent by the
source are delivered perfectly to the destination with 0

Table 7: Packets Size Detection in Tree Topology

 Normal Flow Flooded Flow

Number of
Flows Time Interval Packets_Size Throughput (kbits/s) Packets_Size

Throughput
(kbits/s)

1 5 3024 14.1 317520 10800

2 10 10584 11.8 7080696 10500

3 15 18144 11.8 13852944 10500

4 20 25704 11.8 20623680 10500

5 25 31752 11.8 27392904 10500

6 30 39312 11.8 34156080 10500

7 35 46872 11.8 40916232 10500

8 40 54432 11.8 47027736 10500

9 45 61992 11.8 53822664 10500

10 50 69552 11.8 60584328 8320

11 55 77112 11.8 66101616 6630

12 60 84672 11.8 70401744 5340

13 65 92232 11.8 73844568 6790

14 70 99792 11.8 78179472 6160

15 75 107352 11.8 82175688 4190

16 80 114912 11.8 84968352 4090

17 85 122472 11.8 87609816 3930

18 90 130032 11.8 90107640 348

19 95 137592 11.8 0 0

Figure 16: Packet’s Size Monitoring in Tree Topology

Figure 17: Packets Flow in Tree Topology

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 99

packet loss. On the other hand, the flooded flow has
dropped packets because, the controller is controlling
over the flooded packets by dropping them based on the
defined policy in controller. As a result, in flooded flow,
the total number of packets per flow and allowed packets
by the controller has differences. In Figure 18, we monitor
the flow of packets before reaching to the controller and
collect the data in every 10 seconds. Vertical-axis
represents the number of packets and horizontal-axis
represents the time interval in both Figures. In Figure 19,
we can see that the flow of allowed packets getting
reduced in flooded flow and flow of normal packets
remained constant over all the period of time.

7. Conclusions and Future Works

In this study, we proposed a new security firewall
application that can be deployed in an SDN. Our
application was designed based on layer-based security
filtering techniques to monitor the attackers and
strengthen the network-wide security in an SDN. We
presented security solutions based on measuring the flow
of packets and their size and managed them based on
different rule-based filtering tables, and briefly described
the rules associated with the security solution. The
defined rules control the limits of packets flow and flow
size based on the system need. We have conducted two
major experiments on four different network scenarios by
flooding UDP and ICMP packets as a network flow. To
analyze the performance of firewall application, we

analyzed the flow pattern of normal packets flow and
flooded packets flow. To evaluate the system, we
monitored packets flow and packets drop ratio while
reaching to the targeted destination. As a result, the
controller detected the flow of packets based on layer-
based packets headers entities and filtered those packets
flow by counting the flow of packets and their flow size.

Table 8: Packets Flow in Tree Topology

 Normal Flow Flooded Flow

Flows
Time
Interval Sender Receiver Dropped

Per
Flow Allowed

Sender Receiver Dropped

Per
Flow Allowed

1 10 78 78 0 99 99 17023 17023 0 50215 50211

2 20 177 177 0 99 99 67238 67234 4 49827 49831

3 30 276 276 0 99 99 117065 117065 0 50882 50878

4 40 375 375 0 99 99 167947 167943 4 49392 49396

5 50 474 474 0 99 99 217339 217339 0 49608 15305

6 60 573 573 0 99 99 266947 232644 34303 48269 15655

7 70 672 672 0 99 99 315216 248299 66917 52365 13580

8 80 771 771 0 100 100 367581 261879 105702 46520 15819

9 90 871 871 0 98 98 414101 277698 136403 48565 19644

10 100 969 969 0 99 99 462666 297342 165324 51482 12981

11 110 1068 1068 0 100 100 514148 310323 203825 60450 9

12 120 1168 1168 0 99 99 574598 310332 264266 60457 0

13 130 1267 1267 0 635055 310332 324723

Figure 18: Packets Flow in Tree Topology

Figure 19: Allowed Packets Flow in Tree Topology

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 100

Finally, we concluded that the proposed firewall
application is successful to minimize the bulk-size
packets flooding and infinite packets flooding.

The limitation of current implementation is that it
used single controller as a master controller which has all
of authorities to control over the network. It might have
issues of controller failure or other security issues which
would destroy whole SDN network. Therefore, in our
future work, we will apply the redundant controller to
address this issue with high performance computing
resources. The technique of load balancing would be
crucial in such kind of experiments; however, this task is
remained for our future works.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Y. Gautam, K. Sato, B. P. Gautam and N. Shiratori, "Novel Firewall
Application for Mitigating Flooding Attacks on an SDN Network,"
2021 International Conference on Networking and Network
Applications (NaNA), 2021, pp. 449-455, doi:
10.1109/NaNA53684.2021.00084.

[2] Raktim Deb and Sudipta Roy, “A comprehensive survey of
vulnerability and information security in SDN,” Computer
Networks, vol.206, 2022, doi: 10.1016/j.comnet.2022.108802.

[3] B. P. Gautam, D. Shrestha, “A model for the development of
Universal Browser for proper utilization of computer resources
available in service cloud over secured environment,” Proc. of the
International MultiConference of Engineers and Computer
Scientists 2010 (IMECS), 2010.

[4] D. Pun, A. Batajoo, B. P. Gautam, “Vulnerability of Network Traffic
in Data Centers under Various kinds of Attacks,” IPSJ SIG
Technical Report, Vol.2015-ITS-62, 2015.

[5] D. Kim, P. T. Dinh, S. Noh, J. Yi and M. Park, "An Effective Defense
Against SYN Flooding Attack in SDN," 2019 International
Conference on Information and Communication Technology
Convergence (ICTC), 2019, pp. 369-371, doi:
10.1109/ICTC46691.2019.8939937.

[6] P. Kumar, M. Tripathi, A. Nehra, M. Conti and C. Lal, "SAFETY:
Early Detection and Mitigation of TCP SYN Flood Utilizing
Entropy in SDN," in IEEE Transactions on Network and Service
Management, vol. 15, no. 4, pp. 1545-1559, Dec. 2018, doi:
10.1109/TNSM.2018.2861741.

[7] S. Asadollahi, B. Goswami and M. Sameer, "Ryu controller's
scalability experiment on software defined networks," 2018 IEEE
International Conference on Current Trends in Advanced
Computing (ICCTAC), 2018, pp. 1-5, doi:
10.1109/ICCTAC.2018.8370397.

[8] T. Hu, Z. Guo, P. Yi, T. Baker and J. Lan, "Multi-controller Based
Software-Defined Networking: A Survey," in IEEE Access, vol. 6,
pp. 15980-15996, 2018, doi: 10.1109/ACCESS.2018.2814738.

[9] Y. Gautam, K. Sato, B. P. Gautam and N. Shiratori, "Novel Firewall
Application for Mitigating Flooding Attacks on an SDN Network,"
2021 International Conference on Networking and Network
Applications (NaNA), 2021, pp. 449-455, doi:
10.1109/NaNA53684.2021.00084.

[10] D. Li et al., “Research on QoS routing method based on NSGAII in
SDN,” Journal of Physics: Conference Series, vol. 1656, no. 1, 2020,
doi: 10.1088/1742-6596/1656/1/012027.

[11] I. H. Abdulqadder et al., “Validating User Flows to Protect
Software Defined Network Environments,” Security and

Communication Networks, 2018, doi: 10.1155/2018/1308678.
[12] W. H. Muragaa, K. Seman, M. F. Marhusin, “Simulating DDoS

Attack in sdn Network Using POX Controller and Mininet
Emulator,” Proc. of 134th The IRES International Conference,
pp.39-41, 2018.

[13] M. I. Lali et al., “Effect of Input-Output (IO) Buffering to Minimize
Flow Control Blocking in Software Defined Networking,” Mobile
Information Systems, vol. 53, no. 3, pp.208-213, 2016.

[14] R. M. Thomas and D. James, "DDOS detection and denial using
third party application in SDN," 2017 International Conference on
Energy, Communication, Data Analytics and Soft Computing
(ICECDS), 2017, pp. 3892-3897, doi: 10.1109/ICECDS.2017.8390193.

[15] X. Liang and X. Qiu, "A software defined security architecture for
SDN-based 5G network," 2016 IEEE International Conference on
Network Infrastructure and Digital Content (IC-NIDC), 2016, pp.
17-21, doi: 10.1109/ICNIDC.2016.7974528.

[16] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf and Y. A. Bangash,
"An In-Depth Analysis of IoT Security Requirements, Challenges,
and Their Countermeasures via Software-Defined Security," in
IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10250-10276, 2020,
doi: 10.1109/JIOT.2020.2997651.

[17] D. He, S. Chan and M. Guizani, "Securing software defined
wireless networks," in IEEE Communications Magazine, vol. 54, no.
1, pp. 20-25, 2016, doi: 10.1109/MCOM.2016.7378421.

[18] A. M. AbdelSalam, A. B. El-Sisi and V. Reddy K, "Mitigating ARP
Spoofing Attacks in Software-Defined Networks," 2015 25th
International Conference on Computer Theory and Applications
(ICCTA), 2015, pp. 126-131, doi: 10.1109/ICCTA37466.2015.9513433.

[19] S. Morzhov, I. Alekseev and M. Nikitinskiy, "Firewall application
for Floodlight SDN controller," 2016 International Siberian
Conference on Control and Communications (SIBCON), 2016, pp.
1-5, doi: 10.1109/SIBCON.2016.7491821.

[20] S. Kaur, K. Kaur and V. Gupta, "Implementing openflow based
distributed firewall," 2016 International Conference on Information
Technology (InCITe) - The Next Generation IT Summit on the
Theme - Internet of Things: Connect your Worlds, 2016, pp. 172-
175, doi: 10.1109/INCITE.2016.7857611.

[21] N. Zope, S. Pawar and Z. Saquib, "Firewall and load balancing as
an application of SDN," 2016 Conference on Advances in Signal
Processing (CASP), 2016, pp. 354-359, doi:
10.1109/CASP.2016.7746195.

[22] Y. Gautam, B. P. Gautam and K. Sato, "Experimental Security
Analysis of SDN Network by Using Packet Sniffing and Spoofing
Technique on POX and Ryu Controller," 2020 International
Conference on Networking and Network Applications (NaNA),
2020, pp. 394-399, doi: 10.1109/NaNA51271.2020.00073.

Copyright: This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

 Yubaraj Gautam has done his bachelor's
degree from Wakkanai Hokusei Gakuen
University in 2020. He is currently doing his
master’s degree from Muroran Institute of
Technology. His research interest includes
Network management and security.

Kazuhiko Sato has done his bachelor's degree
from University of Aizu in 1997. He has done
his master’s degree from Graduate School of
University of AIZU in 1999. He has completed
his Ph.D. in Computer Science degree from
Graduate School of University of AIZU in 2002.
He is currently working as Professor
(Associate) in Muroran Institute of

Technology since 2015. He is actively engaged in various research
societies of Japan such as IEICE, IPSJ and JSAI. He has published more

http://www.jenrs.com/

 Y. Gautam et al., Layer Based Firewall Application for Detection

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 88-101, 2022 101

than 35 research articles in International Journals and reputed
International Conferences.

Bishnu Prasad Gautam received his bachelor
degree from Wakkanai Hokusei Gakuen
University, Japan. He has done his master’s and
Ph.D. in Computer Engineering from Shinshu
University. He has published over 45 papers in
international journals and reputed
international conferences. He has been invited
as a key speaker in several International
Workshop, Conferences and Universities. He is

currently working as Professor (Full) at Kanazawa Gakuin University,
and he is a member of IEEE, IPSJ and IAENG. His current research
interest includes Sustainable Computing, Network Architecture,
Network Security, and IoT.

http://www.jenrs.com/

	1. Introduction
	2. Literature Review
	3. Proposed Solution
	4. Research Methodology
	4.1. Flow Table and Controller
	4.2. Packets Flow Scenario
	4.3. Algorithm of Flow Control

	5. Experimental Scenario
	5.1. Lab Setup
	5.2. Experimental Setup
	5.2.1. Single Mininet Network
	5.2.2. Linear Mininet Network
	5.2.3. Tree Mininet network

	5.3. Method of Data Collection
	5.4. Experimental Setup
	5.5. Simulation Scenario and Parameter Settings

	6. Experiments and results
	6.1. Experiment 1: bulk-size flooding on Single mininet network
	6.2. Experiment 2: Infinite packets flooding on single mininet network
	6.3. Experiment 3: Bulk-size flooding on linear network
	6.4. Experiment 4: Infinite packets flooding on linear topology
	6.5. Experiment 5: Bulk-size packets flooding on tree topology
	6.6. Experiment 6: Infinite packets flooding on tree topology

	7. Conclusions and Future Works
	Conflict of Interest
	References

