

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 179-185, 2022 179

Received: 17 March 2022, Revised: 28 April 2022, Accepted: 10 May 2022, Online: 25 May 2022

DOI: https://dx.doi.org/10.55708/js0105019

Evolution in Software Product Lines: Defining and Modelling
for Management
Amougou Ngoumou *, Marcel Fouda Ndjodo

 Department of Computer Science, Higher Teacher Training College, University of Yaounde I, Cameroon
*Corresponding author: Amougou Ngoumou, PO Box 47, Yaounde, Cameroon, Tel.: (237) 677 755 148, Email: ngoumoua@yahoo.fr

ABSTRACT: Evolution in Software Product Line (SPL) is claimed when there are changes in the
requirements, product structure or the technology being used. Currently, many different approaches
have been proposed on how to manage SPL assets and some also address how evolution affects these
assets. However, the usefulness, effectiveness and applicability of these approaches are unclear, as
there is no clear consensus on what an asset is. In this work, we plan to reduce complexity in SPL
evolution management. For this goal, the difficulty is defining and modeling SPL evolution and we
expect to propose a flexible way to manage it. However, a large variety of artifacts is considered in SPL
evolution studies, but feature models are by far the most researched ones. Feature models are widely
used to represent SPLs and have been greatly developed in the Feature-Oriented Reuse Method
(FORM). Consequently, in our previous works, after observed that this method has a loose structure
since it does not provide guidance to reuse and rigorously analyze its assets, we have extended FORM
to FORM/BCS (the Feature Oriented Reuse Method with Business Component Semantics) by
enveloping its assets among which feature models with business component semantics. The
contribution and the novelty of this work is that, by highlighting formally the concept of software asset
and revisiting feature business components, to add new information when analyzing a domain, such
as clashing actions. conflicts or undesired interactions between existing features in a product line and
new features due to evolution of the product line can be manage in a flexible way.

KEYWORDS: Evolution, Software Product Line, feature-orientation, domain analysis, business
components, reuse

1. Introduction

The Software Product Line Engineering (SPLE) [1] is an
approach that aims at creating individual software
applications based on a core platform, while reducing the
time-to-market and the cost of development [2]. Many
SPLE-related issues have been addressed both by
researchers and practitioners, such as variability
management, product derivation, reusability, etc.
According to authors in [3], a Software Product Line (SPL)
is “a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way”. The main benefit of defining a SPL is
that the reuse of all assets can be systematically organized
[4].

There are two distinct phases in SPL definition: domain
engineering and application engineering. The domain

engineering phase starts with domain analysis, where
domain knowledge is used to identify common and
variable features, and these features are then realized
during domain design and implementation. Application
engineering focuses on product creation, first by
identifying customer needs, which are then used to guide
product derivation. In this way, the cost of developing
and maintaining core assets is spread across all the
products in a SPL, and is not specific to each separate
product [5]. Note that the domain knowledge, asset
realization, product configuration, etc., can all evolve
over time [6].

The concept of evolution [7, 8] is intrinsic to software,
since customer requirements and needs change over time,
so software must evolve to remain useful [9]. However,
the software evolution process is quite challenging since
a fragile balance must be maintained: software quality
must be preserved but software structure tends to

http://www.jenrs.com/
https://dx.doi.org/10.55708/js0105019

 A. Ngoumou et al., Evolution in software product lines

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 179-185, 2022 180

degrade over time. The following challenges have been
identified [10, 6] in the case of SPL evolution: 1) there are
different types of assets, which are defined at different
levels of abstraction and variability; 2) there is a high
number of interdependencies between assets; 3) a SPL
usually has a longer life-span than a single product; and
4) a SPL is larger and more complex than its individual
products. Currently, many different approaches have
been proposed on how to manage SPL assets and some
also address how evolution affects these assets. However,
the usefulness, effectiveness and applicability of these
approaches are unclear, as there is no clear consensus on
what an asset is. In this work, our research method consist
of highlighting formally the concept of software asset and
revisiting feature business components, to add new
information when analyzing a domain, such as clashing
actions so that we can manage evolution in a flexible way.
The base is feature models[11] which are widely used to
present commonality and variability (C & V) information
of a product line compactly (see Figure1. for example). We
have extended Feature models in the Feature Oriented
Reuse Method with Business Component Semantics
(FORM/BCS) [12, 13, 14, 15, 16, 17]. Each product in the
product line is derived from a selection of a valid
combination of features [18] —a process known as
product configuration [19, 20].

Figure 1. Partial feature model of NatEduMgtPL

Figure 1. presents an example of enterprise software for
tertiary institutions of an anonymous country. The
product line, referred to as National Educational
Management Product Line (NatEduMgtPl), was initiated
by the Ministry of Higher Education in that country. The
vision of the product line is to provide software products
to state universities, other higher institutions, and
Enterprise Resource Planning (ERP) vendors. The
educational institutions in the country implement the
BMD (Bachelor, Master and Doctorate) system - which
make their core operations largely the same- hence a
product line.

The remainder of the paper is organized as follows.
Section 2 details out research design, method, instrument
and analysis technique. Section 3 highlights formally

software assets and revisits FORM/BCS feature business
components. Section 4 defines and models evolution in
Software product Line so that we can see how evolution
affects feature business components. Section 5 presents
related work and section 6 concludes the work and gives
perspectives.

2. Research design, method, instrument and analysis
technique

Many different approaches have been proposed on
how to manage SPL assets and some also address how
evolution affects these assets. However, the usefulness,
effectiveness and applicability of these approaches are
unclear, as there is no clear consensus on what an asset is.

In this regard, we think that the first concern on
evolution in SPL is to establish a clear vision on concepts
and then processes. The envy to clarify software assets
encourages us to first highlight formally this concept. To
avoid lack of understanding and ambiguities, we specify
the description of software assets using Z notation.

Secondly, knowing that the management of software
product line evolution is complex and this evolution is
due to requirements and needs change, we revisit the
specification of feature business components proposed in
the FORM/BCS method [12, 13, 14, 15, 16, 17], as it is the
first software asset produced when analyzing the domain,
to anticipate evolution very early. In this revision, we
enrich features business components with new
information such as clashing actions so that we can
manage evolution in a flexible way. In the proposed
analysis technique, for feature business components, the
analyst must find and give, if it’s possible, a clash action
for all actions in that asset. These clashing actions advice
on conflicts and undesired interactions between features
and the analyst can avoid or correct them when new
features and adaptation points due to evolution appear in
user’s requirements and needs.

We know that SPL is actually a continue process and
we cannot think about all possible variant, but, by this
contribution, we want to improve the flexibility of that
process.

3. Software Assets

A software asset is composed of a set of software
products derived from different activities of the life cycle.
Specifically: requirements, architecture definition,
analysis model, design model, code, test programs, test
reports.

The different products which compose a software asset
are in fact the representation of that asset at different level
of abstraction (need, analysis, design, realization, texts).
When the software asset is reused, each of these software
assets can then be reused in the corresponding step
(before, during and after coding). Specifically, test
programs are strongly reusable. The person who desires

…… ……
…

…

Composed-of

Optional

Alternative

Or Group

NatEduMgtPL

E-Library

E-Learning E-Academy E-Pre-Admission

E-Institution

Bachelor-
degree

Master-
degree

Doctorate-
degree

Payment Registration Differ-Learning Live-Learning

http://www.jenrs.com/

 A. Ngoumou et al., Evolution in software product lines

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 179-185, 2022 181

evaluate a software asset for reuse can take existing test
programs to enforce the software asset in his own
environment. It is important not to limit reuse at code
level, but exploit all software assets.

Reusable software assets must be provided with
necessary information for their reuse (the software asset
description, also call « meta-information » [21]). This
additional information allows facilitate software asset
manipulation during his life cycle. It is in particular
following elements: Classification information which
allows facilitate corresponding software assets research,
description of software asset which allows to understand
rapidly functions and main features of the software asset,
documentation of the software asset which allows to
understand how enforce and customize the software asset,
information related to tests and software asset
qualification to facilitate his evaluation by a potential
reuse stakeholder, information about software asset
origin and property to obtain support or complementary
information.

All these characteristics are summarised in the
specification below using Z notation.

Table 1: Specification of Software Assets

SoftwareAsset = = [identifier: TEXT;
 is_composed_of: 𝔽𝔽 SoftwareAsset
 uses: 𝔽𝔽 SoftwareAsset
 description: Description
 body: Body |]

This schema in Table 1 shows that a software asset is
made up of two types of information: the body
(containing effectively reuse software assets) and
description (containing information allowing reuse
process support). Information of qualification and
classification correspond respectively to the qualification
process and the classification process.

This model also brings to light the imbrications of
software assets, and the fact that, beside composition
relations, software assets can have others types of links
illustrating, for example, the fact that a software asset uses
an other software asset. That means, a software asset
needs, to run, functionalities of another software asset.
The software asset reuser must then decide if he also
reuses associated software assets or he is able to provide
himself an equivalent implementation. Typically, a
vertical software asset, if it has an important granularity,
will lean probably on component techniques (for example
graphical objects or a middleware).

3.1 Software Asset Description

The description of a software asset gives its intention,
the engineering activity the descriptor plans to perform,
its target, the concerned business and the environment
that is the context. The above Z notation schema specifies
software asset description.

Table 2: Specification of Software Asset Descriptions
Description = = [intention : EngineeringActivity ;

 target : Business;
 environment: Context]

EngineeringActivity = =
AnalysisActivityDesignActivityImplementationActivity
AnalysisActivity = {analyze, …}
DesignActivity = {design, decompose, describe, specify, …}
ImplementationActivity = {implement, …}

Business = = [domain: Domain; processes: 𝔽𝔽 Process]

Details on the following concepts: Domain, Process,
Business Activity, Context & Context-awareness can be
found in [16].

3.2 Software Asset Bodies

A body of a software asset is composed of software
products effectively reuse. These software products can
be analysis models, design models, source codes, user
documentation, runnable codes, test reports, test
scenarios, test programs. The following schema models
software asset bodies.

Table 3: Specification of Software Asset Bodies
Body = = AnalysisModelDesignModel
 SourceCode UserDocumentation
 RunnableCodeTestReport
 TestScenarioTestProgram

If we use the feature oriented reuse method with
business component semantics, the body will be a feature
realization if we are in the analysis stage, a conceptual
realization, a process realization or a module realization
if we are in the design stage.

4. Evolution in Software Product Lines

Feature models are widely used to represent SPLs and
have been extended in the Feature Oriented Reuse
Method with Business Component Semantics
(FORM/BCS). Software product line evolution is the
necessity to have in that product line new features,
variability points or the death of old ones. This
continuous phenomenon is due to changes in the
requirements, product structure and newly emerging
technologies. The integration of new features or
variability points can creates conflicts or undesired
interactions between them. For example when you add
new features, they can enter in conflict with old ones. Let
us take an example in libraries, if you want to ensure a
sufficient availability of books and previously you authorize
long term loans, the two features will be in conflict.

http://www.jenrs.com/

 A. Ngoumou et al., Evolution in software product lines

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 179-185, 2022 182

Figure 2. Feature model with a conflict

Equally, when you remove an old feature, if this feature
is used by another one, you will create inconsistency. That
why the management of this situation is complex. To
study evolution in SPLs, we first look at the feature
business component which is a software asset in which
the body is a feature realization [12] to see how we can
improve the specification of his constituents that are his
description and body.

Table 4: Specification of Feature Business Components

FeatureBusinessComponent = = [identifier: TEXT;
 is_composed_of: 𝔽𝔽 FeatureBusinessComponent
 uses: 𝔽𝔽 FeatureBusinessComponent
 description: Description
 body: FeatureRealization |]

Knowing that processes are essentials in the description
of feature business components, we start by revising their
specification.

4.1 Processes with clashing actions

Evolution can occur in requirements or in new
technologies and the first thing to observe is that, when a
new variation point appears, to take it into consideration,
we must guaranty that it don’t create conflict with an
existing feature or an undesired interaction between
features in the product line. We think that, to avoid these
conflicts, it is useful to anticipate them when analyzing a
domain. We introduce then new information such as
clashing actions when modeling processes.

Table 5: Specification of Processes

Process = = [actions: 𝔽𝔽 BusinessActivity;
 clashingactions: 𝔽𝔽 BusinessActivity;

 input-elements : 𝔽𝔽 BusinessObjects ;
 output-elements : 𝔽𝔽 BusinessObjects ;
 precision : Precision]

BusinessObjects = = 𝔽𝔽 Class
Class = = [name: Name; attributes : 𝔽𝔽 Attribut;
operations : 𝔽𝔽 Operation|]
Precision

Name
Attribute
Operation

4.2. Specifying clashing tasks in business activities

To manage evolution in software product lines, it is
important to decompose business activities so that we can
detect antagonist tasks between them. Antagonist tasks
are tasks which cannot be performed together. A business
activity has a set of "mandatory" tasks, a set of "optional"
tasks, a set of "alternative" tasks, a set of "or" tasks and a
set of "clashing" tasks. It can be primitive or not. The
following schema specifies business activities for the
management of evolutions.

Table 6: Specification of Processes

BusinessActivity == [name: Name;
 decomposition: [mandatory: 𝔽𝔽 BusinessTask ;
 optional: 𝔽𝔽 BusinessTask;
 alternative: 𝔽𝔽 𝔽𝔽 BusinessTask;
 or: 𝔽𝔽 𝔽𝔽 BusinessTask];
 clashing: 𝔽𝔽 BusinessTask;
 primitive: Logic]

When the context is clear we write:
mandatory (ba) for mandatory (decomposition(ba))
optional(ba) for optional(decomposition(ba))
alternative(ba) for alternative(decomposition(ba))
or(ba) for or(decomposition(ba))
decomposition (ba) for mandatory (ba) ∪ optional (ba) ∪ (∪

(A ∈ alternative(ba)))
We say that a business activity ba is abstract if

decomposition (ba) = ∅.
We define the set
Abstract_Business_Activity = {ba:Business_Activity •

decomposition (ba) = ∅}

4.3 Business tasks

The decomposition of tasks allows detecting
antagonist tasks. A business task has a set of "mandatory"
operations, a set of "optional" operations, a set of
"alternative" operations, a set of "or" operations and a set
of "clashing" operations. It can be primitive or not. The
following schema specifies business tasks for the
management of evolutions.

Table 7: Specification of Processes

BusinessTask == [name: Name;
 decomposition: [mandatory: 𝔽𝔽 BusinessOperation ;
 optional: 𝔽𝔽 BusinessOperation;
 alternative: 𝔽𝔽 𝔽𝔽 BusinessOperation;
 or: 𝔽𝔽 𝔽𝔽 BusinessOpeartion];
 clashing: 𝔽𝔽 BusinessOperation;
 primitive: Logic]

In a similar manner, when the context is clear we write:
mandatory (bt) for mandatory (decomposition(bt))
optional(bt) for optional(decomposition(bt))
alternative(bt) for alternative(decomposition(bt))
or(bt) for or(decomposition(bt))

Satisfy
subscriber

Satisfy subscriber
application

Authorize long
term loans

Facilitate bibliography
research

Offer as many
copies as needed

Ensure sufficient
availability

http://www.jenrs.com/

 A. Ngoumou et al., Evolution in software product lines

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 179-185, 2022 183

decomposition (bt) for mandatory (bt) ∪ optional (bt) ∪ (∪
(A ∈ alternative(bt)))
We say that a business task bt is abstract if decomposition

(bt) = ∅.
We define the set
Abstract_Business_Task = {bt:Business_Task •

decomposition (bt) = ∅}

4.4 Evolution management functions

4.4.1. Basic functions

The decomposition of business activities and business
tasks allows defining evolution management basic
functions:

- run which given two operations return failure if the
two operations cannot be run together in the same
system or success if they can be.

- clashingtasks which given a business task provides the
set of his clashing tasks.
- conflictactivities which given a business activity

provides the set of his conflict business activities

run: BusinessOperation x BusinessOpeartion ↔ {failure, success}

clashingtasks: BusinessTask ↔ 𝔽𝔽 BusinessTask
 ∀ bt1, bt2: BusinessTask, bt2 ∈ clashingtasks(bt1)⇔
 ∃ (bo1, bo2) ∈ operations(bt1) x operations(bt2) •
 run(bo1, bo2) = failure

conflictactivities: BusinessActivity ↔ BusinessActivity
 ∀ ba1, ba2: BusinessActivity, ba2 ∈ conflictactivities(ba1)⇔
 ∃ (bt1, bt2) ∈ tasks(ba1) x tasks(ba2) •
 bt2 ∈ clashingtasks(bt1)

4.4.2 Evolution mechanism

The specification of processes (sub section 2.1.2) shows
that a process can be seen as a set of business activities. A
non primitive business activity has decomposition. This
decomposition groups the set of his "mandatory" tasks,
the of his "optional" task, the of his "alternative" tasks and
the set of his "or" tasks. A business activity has also a set
of "clashing" tasks. A clashing task of a business activity
is a task which cannot run with the tasks in his
decomposition.

In a software product line, evolution is the apparition
of a new variation point or the disappearing of an old one.
A new variation point in feature business component as
specified in the Feature Oriented Reuse Method with
Business Component Semantics is a new feature with his
variation points. A feature corresponds to a business
activity [12]. To consider a new variation point, we must
check if this new variation point doesn’t create a clash
with the existing ones.

Each new adaptation point has a parent feature and the
evolution process of a feature business component
consists of inserting the new feature as part of his parent.

From there, we define the two following functions which
are essential in our evolution mechanism: is_clashed and
insert.

Given a feature business component fbc and his new
feature adaptation point nap, the function is_clashed
returns "false" if for each feature in the solution part of fbc,
the activity of nap is not in conflict with the activity of f.

Given a feature business component fbc and his new
feature adaptation point nap, the function insert returns
the feature business component fbc containing the new
feature adaptation point nap as an adaptation point.

is_clashed: FeatureBusinessComponent × FeatureAdatationPoint ↔
Boolean

 ∀ fbc : FeatureBusinessComponent, fap:
FeatureAdaptationPoint,

 is_clashed (fbc, fap) = false ⇔ ∀ f ∈
decomposition(realization(fbc)),

 activity(feature (nap)) ∉ conflictactivities (activity (f)))
 is_clashed(fp, ci) = true ⇔ ¬ (∀ f ∈

decomposition(realization(fbc)),
 activity(feature (nap)) ∉ conflictactivities (activity

(solution (fbc))))

insert: FeatureBusinessComponent × FeatureAdaptationPoint ↔
FeatureBusinessComponent ∀ fbc :
FeatureBusinessComponent, fap : FeatureAdaptationPoint,

 insert(fbc, fap) = fbc • fap ∈ decomposition(solution
(realisation(fbc))) ∧

 fap ∈ adaptationpoints(solution(realization (fbc)))]

Given a feature business component fbci and a finite set
of new adaptation points NAP, the evolved feature
business component fbco is obtained following the
algorithm below:

Algorithm: Evolution management
Result: fbco: FunctionalPerspective
fbci: FunctionalPerspective ;
NAP: 𝔽𝔽AdaptationPoint;
wfbc: FunctionalPerspective;
For each nap in NAP
 If no_clash (fbci, nap) then
 wfbc:= insert(fbci, nap);
 else
 Write (“FAILURE”)
 end
end
fbco:= wfbc

5. Related Works

Stability is one of the most important properties of
software. It is defined as "The capacity of the software
product to avoid unexpected effects from modification of
the software" [22]. Many product line approaches assume
that activities in domain and application engineering can
take a fairly stable product line for granted. However,
real-world product lines inevitably and continuously

http://www.jenrs.com/

 A. Ngoumou et al., Evolution in software product lines

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 179-185, 2022 184

evolve. Managing evolution is thus success-critical,
particularly in model-based approaches to ensure
consistency after changes to meta-models, models, and
actual artifacts. In [23, 24], several authors have stressed
the importance of approaches for product line evolution
to avoid the erosion of a product line, i.e., the deviation
from the product line model up to the point where key
properties no longer hold. Several approaches have been
proposed for managing the evolution of software product
lines [4], ranging from verification techniques to ensure
consistent evolution, to model-based frameworks
dedicated to the evolution of feature-based variability
models [25]. For example, an interesting research thread
proposes evolution templates for co-evolving a variability
model and related software artifacts [26, 27, 28].

A model-driven product line approach that focuses on
the issue of domain evolution and product line
architectures is described in [29]. Authors discuss several
challenges for the evolution of model-driven software
product line architectures and present their solution for
supporting evolution with automated domain model
transformations. Such transformations could also be
useful in our context to realize the update rules to support
the evolution of the variability models in SPLs when
applying model-driven techniques.

Another example is the work in [30], who present tool
support for the evolution of software product lines based
on the grow-and-prune model. They support identifying
and refactoring code that has been created by copy and
paste and which might be moved from product level to
product line level. Refactoring of a SPL is not the scope of
our work which, for the moment, is not situated at the
code level. However, the work and tool are useful to
support refactoring the SPL code.

A SPL evolution approach that preserves the original
behaviour of evolving product lines, i.e., products that
could be generated before evolution can still be generated
after the evolution, is proposed in [31]. This of course is
only possible if restricting the removal of certain needed
features, which makes the process easier but also
constitutes a limitation of this approach.

To keep a configuration consistent with a feature model
even after evolution of the latter, in [32] authors present
an approach that automatically evolves the configuration
with respect to the changes performed in the model while
also taking into consideration the possible cardinalities.
Such an approach is useful.

 Hyper feature models are introduced in [33]. These
models are capable of versioning the features and their
constraints to maintain evolution traceability over time
and guarantee the compatibility of one version of a
feature with versions of another one. Feature traceability
is thus a central concern in SPL evolution approaches, and
has been shown to be essential in a feature-oriented
project [34]. In [35], authors was largely inspired by this

earlier work on evolving software product lines, and
extended this work by considering runtime management
of such evolution.

Ideas developed in this contribution enter in pioneer
works on feature orientation and come from our previous
articles [12, 13]. The specificity of our approach is that, by
putting inside feature business components, information
able to guide evolution, we give intrinsic ability, which is
since his genesis, to software product lines to evolve
smoothly.

6. Conclusions and Future Research

Real-world product lines inevitably and continuously
evolve, then we cannot avoid the necessity of evolution in
a software product line. The scientific community tries to
manage evolution in software product lines but faces
some difficulties link to the definition and modeling of
this phenomenon in software product lines. We think that
this situation is due in a large part to the fact that there is
no consensus on what a software asset is. In this article
after defining formally what a software asset is, we have
study evolution in the first software product line asset of
the feature oriented reuse method with business
component semantics, the feature business component.
The result is that, we find and introduce new properties
in the definition of processes such as clashing actions.
These new fields have allowed defining news functions
for the management of evolution. This work increases the
ability of software product lines to evolve in a flexible
way. We plan to study erosion of a software product line
which is the deviation from the product line model up to
the point where key properties no longer hold.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We thank the Cameroonian Ministry of Higher Education
for inspiring the feature model example given in this
paper.

References

[1] K. Pohl, G. Böckle, F. J. van Der Linden, "Software Product Line
Engineering: Foundations, Principles and Techniques," Springer
Science & Business Media, 2005, doi.org/10.1007/3-540-28901-1.

[2] A. Benlarabi, A. Khtira, B. El Asri, "Learning to Support Derivation
of Adaptable Products in Software Product Lines," Journal of
Computer and Communications, vol. 8, pp. 114-126, 2020,
doi.org/10.4236/jcc.2020.84009.

[3] P. Clements, L. Northrop, "Software Product Lines: Practices and
Patterns," Addison-Wesley Professional, 2001.

[4] M. M. Samary, J. Simmonds, P. O. Rossel, M. C. Bastarrica,
"Software Product Line Evolution: a Systematic Literature Review,"
Information and Software Technology, 2019, doi:
10.1016/j.infsof.2018.08.014.

[5] I. Gorton, "Essential Software Architecture," Springer, 2006.

http://www.jenrs.com/
https://doi.org/10.1007/3-540-28901-1

 A. Ngoumou et al., Evolution in software product lines

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 179-185, 2022 185

[6] L. Montalvillo, O. Díaz, "Requirement-driven evolution in software
product lines: A systematic mapping study," Journal of Systems
and Software, vol. 122, pp. 110–143, 2016,
doi:10.1016/j.jss.2016.08.053.

[7] M. Nieke, G. Sampaio, T. Thüm, C. Seidl, L. Teixeira, I. Schaefer,
"Guiding the evolution of product-line configurations," Software
and Systems Modeling, Springer, 2021, doi.org/10.1007/s10270-021-
00906-w.

[8] D. Hinterreiter, L. Linsbauer, K. Feichtinger, H. Prähofer, P.
Grünbacher, "Supporting feature-oriented evolution in industrial
automation product lines," Concurrent Engineering: Research and
Applications, vol. 28, no. 4, pp. 265–279, 2020,
doi.org/10.1177/1063293X20958930.

[9] I. Sommerville, "Software Engineering," 10th, Addison Wesley, 2015.
[10] G. Botterweck, A. Pleuss, "Evolving Software Systems,” In: ed. by

T. Mens, A. Serebrenik, A. Cleve, Springer, Chap. Evolution of
Software Product Lines, pp. 265–295, 2014.

[11] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson,
"Feature-oriented domain analysis (FODA) feasibility study,"
Technical Report CMU/SEI-90-TR-21, Carnegie-Mellon University,
Pennsylvania , USA, 1990.

[12] M. Fouda, N. Amougou, "The Feature Oriented Reuse Method with
Business Component Semantics," International Journal of
Computer Science and Applications, vol. 6, no. 4, pp. 63-83, 2009.

[13] M. Fouda, N. Amougou, "Product Lines’ Feature-Oriented
Engineering for Reuse: A Formal Approach," International Journal
of Computer Science Issues, vol. 7, no. 5, pp. 382-393, 2010,
doi:10.1.1.402.5014.

[14] M. Fouda, N. Amougou, "Transformational Variability Modelling
Approach To Configurable Business System Application," in
Software Product Line – Advanced Topic, Edited A. O. Elfaki,
Intech Publisher, pp. 43-68, 2012, doi: 10.5772/37776.

[15] N. Amougou, M. Fouda, , "Feature-Relationship Models: A
Paradigm for Cross-hierarchy Business Constraints in SPL,"
International Journal of Computer Science and Information
Security, vol. 16, no. 9, pp. 112-124, 2018.

[16] N. Amougou, M. Fouda, , "Context metamodel in pervasive
systems for dynamic software product lines," Journal of Software
Engineering & Intelligent Systems, vol. 5, no. 3, pp. 124-137, 2020.

[17] N. Amougou, M. Fouda, , "Extended dynamic software product
lines architectures for context integration and management,"
Journal of Software Engineering & Intelligent Systems, vol. 6, no. 1,
pp. 28-41, 2021.

[18] A. Z. Umar, J. Lee, "A Model-Based Approach to Managing Feature
Binding Time in Software Product Line Engineering," In: MODELS
2018 Workshops, Octobre, Denmark, 2018.

[19] G. P. Espinel-Mena, J. L. Carrillo-Medina, M. Flores-Calero, M.
Urbieta, "Software Configuration Management in Software
Product Lines: Results of a Systematic Mapping Study," IEEE Latin
America Transactions, vol. 20, no. 5, pp. 718-730, 2022,
doi: 10.1109/TLA.2022.9693556.

[20] T. Kehrer, A. Schultheiß, T. Thüm, P. M. Bittner, "Bridging the Gap
Between Clone-and-Own and Software Product Lines," IEEE, 2021,
doi: 10.1109/ICSE-NIER52604.2021.00013.

[21] K. Even-André, "Software Reuse: A Holistic Approach," John Wiley
& Sons, 1995.

[22] B. Kitchenham, S. Charters, "Guidelines for performing Systematic
Literature Reviews in Software Engineering," Technical report no.
EBSE-2007-01, Keele University, Keele, UK, 2007, doi:10.1.1.117.471.

[23] S. Deelstra, M. Sinnema, J. Bosch, "Variability assessment in
software product families," Information and Software Technology,
vol. 51, no. 1, pp. 195–218, 2009, doi.org/10.1016/j.infsof.2008.04.002.

[24] S. Johnsson, J. Bosch, "Quantifying software product line ageing,"
In: Limerick, Ireland, pp. 27–32, 2000.

[25] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, S. Kowalewski,
"Model-driven Support for Product Line Evolution on Feature
Level," Journal of Systems and Software, vol. 85, no. 10, pp. 2261–
2274, 2012, doi.org/10.1016/j.jss.2011.08.008.

[26] C. Seidl, F. Heidenreich, U. Aßmann, "Co-evolution of Models and

Feature Mapping in Software Product Lines," In: ACM, Salvador,
Brazil, pp. 76–85, 2012, doi.org/10.1145/2362536.2362550.

[27] L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wąsowski, P. Borba,
"Coevolution of Variability Models and Related Artifacts: A Case
Study from the Linux Kernel," In: ACM, Tokyo, Japan, pp. 91–100,
2013, doi.org/10.1145/2491627.2491628.

[28] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena, L.
Kulesza, "Safe Evolution Templates for Software Product Lines,"
Journal of Systems and Software, vol. 106, pp. 42–58, 2015,
doi.org/10.1016/j.jss.2015.04.024.

[29] G. Deng, D. C. Schmidt, A. Gokhale, J. Gray, Y. Lin, G. Lenz,
"Evolution in model-driven software product-line architectures,"
In: P. Tiako, ed. Designing Software-intensive SystemsIdea Group
Inc. (IGI), pp. 1280–1312, 2008.

[30] T. Mende, F. Beckwermert, R. Koschke, G. Meier, "Supporting the
grow-and-prune model in software product lines evolution using
clone detection," In: IEEE CS, pp. 163–172, 2008,
doi: 10.1109/CSMR.2008.4493311.

[31] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa, P. Borba,
"Investigating the Safe Evolution of Software Product Lines," In:
ACM, Portland, Oregon, USA, pp. 33–42, 2011,
doi.org/10.1145/2189751.2047869.

[32] N. Gamez, L. Fuentes, "Software Product Line Evolution with
Cardinality-Based Feature Models," In: Springer Berlin Heidelberg,
Pohang, South Korea, pp. 102–118, 2011, doi: 10.1007/978-3-642-
21347-2_9.

[33] C. Seidl, I. Schaefer, U. Aßmann, "Integrated Management of
Variability in Space and Time in Software Families," In: ACM,
Florence, Italy, pp. 22–31, 2014, doi.org/10.1145/2648511.2648514.

[34] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski, C. Kästner, J. Guo,
"Feature-oriented Software Evolution," In: ACM, Pisa, Italy, vol. 17,
pp. 1–8, 2013, doi.org/10.1145/2430502.2430526.

[35] C. Quinton, M. Vierhauser, R. Rabiser, L. Baresi, P. Grünbacher, C.
Schumayer, "Evolution in Dynamic Software Product Lines,"
Journal of Software: Evolution and Process, John Wiley & Sons,
Ltd., 2020, doi:10.1002/smr.2293. hal-02952741v2.

Copyright: This article is an open access article
distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-SA) license
(https://creativecommons.org/licenses/by-sa/4.0/).

Amougou Ngoumou is a Senior Lecturer of
computer science at the Department of Computer
Science of the Higher Teacher Training College of the
University of Yaounde I (Cameroon). He has
received Bachelor of Computer Science (1998),
Master of Computer Science (2001) and PhD degree
in Computer Science (2011) at the University of

Yaounde I (Cameroon).
His main research interests include Software Product Lines,

Domain-Specific languages and Information Systems.

Marcel Fouda Ndjodo is a full professor of computer
science and the Head of the Computer Science
Department of the Higher Teacher Training College of
the University of Yaounde I (Cameroon). He has
received a PhD in Computer Science at the University
of Aix-Marseille II (France, 1992).

He coordinates besides the information systems
and numerical technologies of education at the higher teacher training
college. He is author of many scientific publications and has supervised
many PhD thesis in information systems and software engineering.

http://www.jenrs.com/
https://doi.org/10.1007/s10270-021-00906-w
https://doi.org/10.1007/s10270-021-00906-w
https://doi.org/10.1177%2F1063293X20958930
https://doi.org/10.1109/TLA.2022.9693556
https://doi.org/10.1109/ICSE-NIER52604.2021.00013
https://doi.org/10.1016/j.infsof.2008.04.002
https://doi.org/10.1016/j.jss.2011.08.008
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1145/2491627.2491628
https://doi.org/10.1016/j.jss.2015.04.024
https://doi.org/10.1109/CSMR.2008.4493311
https://doi.org/10.1145/2189751.2047869
https://doi.org/10.1145/2648511.2648514
https://doi.org/10.1145/2430502.2430526
https://creativecommons.org/licenses/by-sa/4.0/

	1. Introduction
	2. Research design, method, instrument and analysis technique
	3. Software Assets
	3.1 Software Asset Description
	Description = = [intention : EngineeringActivity ;
	target : Business;
	environment: Context(]
	EngineeringActivity = = AnalysisActivity(DesignActivity(ImplementationActivity
	AnalysisActivity = {analyze, …}
	DesignActivity = {design, decompose, describe, specify, …}
	ImplementationActivity = {implement, …}
	Business = = [domain: Domain; processes: 𝔽 Process(]

	3.2 Software Asset Bodies
	Body = = AnalysisModel(DesignModel(
	SourceCode(UserDocumentation(
	RunnableCode(TestReport(
	TestScenario(TestProgram

	4. Evolution in Software Product Lines
	4.1 Processes with clashing actions
	4.2. Specifying clashing tasks in business activities
	4.3 Business tasks
	4.4 Evolution management functions
	4.4.1. Basic functions
	4.4.2 Evolution mechanism

	5. Related Works
	6. Conclusions and Future Research
	Conflict of Interest
	Acknowledgment
	References

