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ABSTRACT: The increased penetration of renewable energy sources in the distribution system affects 
the stability and efficiency of the system. To account for the intermittent nature of these sources, 
distribution network reconfiguration and the integration of custom power devices are important. This 
paper aims to identify the optimum location of photovoltaic systems and unified power quality 
conditioners in the distribution system considering economic and technical aspects. Three 
metaheuristic algorithms namely nondominated sorting genetic algorithm-II (NSGA-II), strength 
pareto evolutionary algorithm-2 (SPEA2) and multi-objective evolutionary algorithm based on 
decomposition (MOEA/D) were employed. Furthermore, three hybrid algorithms were developed by 
dividing the population into two parts. Multi-objective particle swarm optimisation (MOPSO) was 
applied in the upper part while NSGA-II, SPEA2 or MOEA/D was used in the lower part of the 
population resulting in three hybrid algorithms: MOPSO-NSGA II, MOPSO-SPEA2, MOPSO-MOEA/D. 
The simulation was performed on the IEEE-123 Node Test Feeder system using the OpenDSS and 
MATLAB environment. The performance of the proposed algorithms was compared according to their 
computation time and performance metrics such as pure diversity, generational distance and spacing. 
It was found that the hybrid algorithms enhance the convergence of the solutions to the true Pareto 
front. Combining SPEA2 or MOEA/D with MOPSO also reduced the complexity of the algorithms 
resulting in a lower simulation time. 

KEYWORDS: Hybrid Multi-Objective Optimisation, Distribution Network Reconfiguration, 
Distributed Generation, Custom Power Devices  

 

1. Introduction 

The traditional distribution system is radial in nature. 
It is fed from the main substations via the transmission 
network. Due to the large resistance/reactance ratio in the 
distribution system, the voltage drops and power losses 
increase. Under extreme conditions, the distribution 
system may be subjected to instantaneous voltage collapse 
resulting from poor voltage stability at most nodes. 
Therefore, emerging power systems are integrated with 
small power generating units close to the loads. These 
units are commonly known as distributed generation or 
dispersed generation (DG) [1]. To account for the 
depleting nature of fossil fuels and their negative impacts 
on the environment, DG units based on renewable energy 
are being favoured. Examples of such DG units include 

wind turbine, solar photovoltaic (PV), fuel cell, 
microturbine and micro-hydro generator. However, the 
intermittent nature of the renewable energy sources leads 
to fluctuations in the power output of these DG units. Also, 
the bidirectional power flow may affect the coordination 
of the protective devices [2]. 

Due to the deregulation in the electricity industry, it is 
important to ensure the reliability of the distribution 
system [3]. This can be achieved by modernising or 
substituting the current distribution lines, transformers, 
switchgears and other electrical components. 
Alternatively, spare equipment can be made available. As 
these solutions require large capital investments, 
distribution network reconfiguration (DNR) has gained 
much interest among utilities. It involves the opening and 
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closing of switches in the distribution system to alter the 
structure of the distribution system [4]. In addition to DNR, 
power electronic devices called custom power devices 
(CPD) can be integrated in the distribution system. CPD 
such as distribution static compensator (DSTATCOM), 
dynamic voltage restorer (DVR) and unified power 
quality conditioner (UPQC) help to enhance the power 
quality issues such as voltage sags, voltage swells and 
harmonics generation [5]. While DVR can address a 
maximum of two power quality problems, UPQC has the 
ability of considering several power-related issues 
simultaneously. It aids in load balancing, harmonics 
eradication, voltage sag reduction and power quality 
enhancement [6].  

Optimisation is needed to identify the most 
appropriate parameters of the DG unit, CPD and DNR. To 
ensure the best performance of the power system, it is 
expected to consider the maximum number of objective 
functions. As the formulated problem involves more than 
one objective function, it is known as a multi-objective 
problem.  In contrast to single-objective optimisation, 
multi-objective optimisation generates a set of solutions 
called Pareto-optimal solutions or non-dominated 
solutions [7]. 

 To assist engineers and power system operators in the 
proper planning of the future power system, various 
research works have been performed using multi-
objective optimisation. The state-of-the-art reveals that 
meta-heuristic algorithms are favoured over analytical 
and classical techniques of DG optimisation. The optimal 
size and location of DG units have been identified 
considering technical, economic and environmental 
factors. The technical aspects considered are mainly power 
loss, short circuit current and voltage stability. The 
economic factors were based on net present cost, annual 
worth, life cycle cost and levelized cost of energy. The 
environmental considerations were related to the 
emissions of carbon dioxide, oxides of nitrogen and sulfur 
dioxide [2]. Some studies used weighed sum approach to 
combine the objective functions to a single objective [3], [8]. 
Examples of meta-heuristic algorithms used to identify the 
optimal sizing and location of DG units include ant lion 
optimization technique [9], PSO, genetic algorithm, 
bacterial foraging algorithm and cat swarm optimisation, 
grey wolf algorithm (GWO), krill herd algorithm, invasive 
weed optimisation [2]. Particle swarm optimisation (PSO) 
has also been hybridised with modified gravitational 
search algorithm [8] and analytical method [10], grey wolf 
optimisation [11] and fuzzy systems [12]. The optimisation 
was performed considering power loss, voltage deviation, 
voltage stability and reliability [8].  

The CPD used in the optimisation studies were mainly 
UPQC and DSTATCOM. Multi-objective particle swarm 
optimisation (MOPSO) [13], cuckoo optimisation 

algorithm (COA) [6], GWO [13] and sine cosine approach 
[14] were employed. The objective functions include 
power quality, power loss [15] and voltage stability [15]. 
Reference [16] used SPEA2-MOPSO for the allocation of 
photovoltaic-integrated UPQC. Reference [17] and 
reference [18] further proposed the simultaneous location 
of DG and DSTATCOM. 

The algorithms used in the optimisation of DNR 
includes genetic algorithm (GA) [3], modified bacterial 
foraging optimisation algorithm [19] and binary cuckoo 
search algorithm [20]. The objective functions considered 
were mainly load balancing, power loss minimisation, 
voltage profile enhancement and reliability. Some papers 
combined DNR with DG allocation [21]. Reference [22] 
proposed DG sizing and location with simultaneous DNR 
to minimise real power loss using a hybrid algorithm 
based on binary particle swarm optimisation and shuffled 
frog leap algorithm. The hybrid algorithm performed 
better than other optimisation algorithms. The results 
proved that simultaneous DNR and DG optimisation 
reduce power loss while also enhancing the voltage profile. 

Although there exist possible interactions among the 
network structure, DG units and CPDs in the power 
system, the addition of DG units and CPDs with 
simultaneous DNR have been barely explored. This paper 
is an extension of the work originally presented in the 2020 
3rd International Conference on Emerging Trends in 
Electrical, Electronic and Communications Engineering 
(ELECOM) [23]. In [23], the multi-objective optimisation of 
PV systems and UPQC was performed with simultaneous 
DNR using non- dominated Sorting Genetic Algorithm-II 
(NSGA-II), Strength Pareto Evolutionary Algorithm-2 
(SPEA2) and Multi-objective Evolutionary Algorithm 
based on Decomposition (MOEA/D). Three objective 
functions were considered namely active power loss, 
voltage deviation and total cost liable to constraints. The 
optimisation was performed using the following seven 
different cases: (1) DNR only, (2) UPQC only, (3) PV 
systems only, (4) UPQC and PV systems, (5) UPQC and 
DNR, (6) PV systems and DNR, (7) UPQC, PV systems and 
DNR.  It was found that the most desirable solution was 
obtained in case 7 whereby the voltage and power loss 
profile were improved at a low cost. Each of the proposed 
optimisation algorithms proved to have their own 
advantages and disadvantages. However, the possibility 
of hybridising the optimisation algorithms was not 
attempted. To account for the limitations and promote the 
benefits of the individual algorithms, this paper aims to 
identify the optimum size and location of PV systems and 
UPQC along with the optimum network structure using 
hybrid algorithms. The population is divided into two 
parts to reduce the risk of premature convergence. To 
prevent global solutions from being caught in local 
minima, the proposed algorithms must compromise with 
the exploitation and exploration. NSGA-II was utilised in 
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the exploration phase using the upper half of the 
population to identify the global solutions. On the other 
hand, MOPSO was applied to the remaining population 
for the exploitation phase so that the particles in the 
neighbourhood converge towards a global solution. 
NSGA-II and MOPSO were chosen due to their different 
search mechanisms. Keeping MOPSO to exploit the search 
space, the simulation was repeated by replacing NSGA-II 
by SPEA2 and MOEA/D in the exploitation process. 

The main contributions of the paper are as follows: 

• The novelty of this paper is the multi-objective 
optimisation of DG units, CPD and DNR 
simultaneously. Although CPD and DNR can help to 
address the challenge of integrating renewable DG 
units in unbalanced distribution systems, 
optimisation is required to satisfy the economic and 
technical constraints. The most appropriate network 
structure as well as the size and location of the DG 
units and CPD must be identified to improve the 
efficiency of the power system at reduced cost. 

• With reference to the No Free Lunch theorem [24], 
there is always the chance of developing novel 
algorithms for solving optimisation problems. 
Furthermore, the literature review revealed that there 
is scope for proposing new hybrid multi-objective 
algorithms. Therefore, the authors employed three 
hybrid algorithms namely NSGAII-MOPSO, SPEA2-
MOPSO and MOEA/D-MOPSO to solve the problem. 
In each of the hybrid algorithm, the population was 
divided into two parts. MOPSO was used in the 
exploitation of the upper half of the population. 
NSGA-II, SPEA2 and MOEA/D were applied for the 
exploration of the lower half of the population in 
NSGAII-MOPSO, SPEA2-MOPSO and MOEA/D-
MOPSO respectively. 

• The performance of the algorithms was evaluated 
based on the computation time and performance 
metrics such as pure diversity, spacing and 
generational distance. The variation in the number of 
non-dominated solutions in the external repository at 
the MOPSO stage and in the Pareto front at the final 
stage is plotted. In addition, the Pareto front was 
plotted to provide a visual interpretation of the three 
objective functions for each of the non-dominated 
solution. 

The paper is organised as follows: Section 2 describes 
the optimisation algorithms. Section 3 deals with the 
methodology. Section 4 highlights the results obtained 
while section 5 provides the conclusion. 

2. Literature review 

2.1. Multi-objective optimisation 

It is desired to have a power system which can satisfy 
the consumers’ demand while optimising the technical, 
economic and environmental factors simultaneously. 

Therefore, power system optimisation problems are multi-
objective in nature. A multi-objective optimisation 
problem simultaneously considers several objective 
functions subject to equality and inequality constraints in 
a suitable region D as illustrated in (1). The objective 
functions can either be maximised or minimised. 

 Optimise f(x)= {f1(x), f2(x), … , fm(x)}     , x ∈ D           

Subject to gj(x) ≤ 0 ; j=1, 2, …, n                                                               

                  hl(x) = 0 ; l=1,2,…,e                                      (1) 

where f(x) is the objective functions’ vector, m is the 
total number of objective functions, n is the number of 
inequality constraints and e is the number of equality 
constraints. 

2.1.1. Multi-objective Particle Swarm Optimisation 
(MOPSO) 

Particle Swarm Optimization (PSO) is an algorithm 
which mimics the conduct of birds and insects in their 
hunt for food or new places for habitation. It is based on a 
population in which each member moves in its own 
direction and velocity looking for a suitable place in the 
search space. All the members are in contact with each 
other to transfer data so the population is directed to the 
good locations in the search space. Each member indicates 
a particular solution and its position is upgraded in 
relation to its memory of the good locations (the local best) 
or the memory of the whole swarm. PSO was initially 
proposed to solve single-objective problem. Later, multi-
objective particle swarm optimisation (MOPSO) was 
developed. The limitations of MOPSO include the 
formation of local fronts and the poor diversity in the 
Pareto front [25].  

Algorithm 1: MOPSO 
 
Result: Swarm fitness calculation and determination of 
global best member 
Initialization of position and velocity for each particle 
in the swarm randomly; 
For each particle in the swarm  
 Evaluate the fitness function  
   If fitness of particle exceeds personal best fitness 
  New fitness of particle = personal best fitness; 
 End    
End 
From all particles in the population, choose the global 
best solution 

For each particle in the swarm  
 Update the position of each particle  

Update the velocity of each particle  
End 
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2.1.2. Non-dominated Sorting Genetic Algorithm II 
(NSGAII) 

In Non-dominated Sorting Genetic Algorithm II 
(NSGA-II), the members of the population are located in 
several fronts depending on their extent of dominance. 
The crowding distance of the member is then found 
individually. Subsequently, the member having the larger 
crowding distance is selected from the primary front. The 
process is continued for the subsequent fronts. Following 
the selection process, crossover and mutation operations 
are carried out to generate the new population. 

The positive aspects of NSGA-II include elitism, non-
dominated sorting and crowding distance which 
improves the diversity and spread of the solutions. 
Nonetheless, the convergence may deteriorate due to the 
crowding operation. As the population size increases, the 
simulation time increase as the population requires 
sorting in each generation [26]. 

Algorithm 2: NSGA-II 
Result: Generation of Pareto front 
Initialise population; 
Evaluate objective functions; 
Rank population 
while maximum iteration is not reached  
 Perform selection, crossover and mutation to 

generate child population; 
 Evaluate each individual; 

Combine child and parent population;   
Non-dominated sorting process 
if maximum iteration is reached then 

 

  Generate Pareto front;   
  end    
end    

2.2. SPEA2 

  In SPEA2, the initial population is generated 
randomly and an empty external archive is created. Each 
member is allocated a strength value with reference to the 
quantity of members it dominates in the external archive. 
The raw fitness value R(i) of a solution is computed by 
summing the strengths (σk ) of every solution which 
dominates it in both the archive and the population. The 
members are then retained by the kth nearest neighbor 
method according to the density D(i) as shown in (2) and 
(3). This conservation approach enhances the diversity of 
the solutions. The fitness F(i) of an individual is identified 
from the density D(i) and raw fitness value R(i) as 
indicated by (4). The nondominated solutions are collected 
in an exterior archive until the latter is completely filled 
[27]. 

                                      D(i) = 1
σk+2

                                     (2) 

 

                                      k = �N + N�                                    (3) 

where N is the population size and N� is the archive size 

                           F(i) = R(i) + D(i)                                    (4) 

Algorithm 3: SPEA-2 
Result: Identification of members of Pareto front 
Initialisation of initial population randomly; 
Creation of an empty external archive; 
while maximum iteration is not reached  
 Calculate fitness value of each individual; 

Copy all non-dominated solutions to external 
archive; 
Compute fitness value of each solution; 
Conserve the solutions based on KNN method; 
Perform selection, crossover and mutation; 

end    

2.2.1. MOEA/D 

  In MOEA/D, the multi-objective problem is split into 
several single-objective small problems.  The commonly-
used decomposition techniques are the Tchebycheff 
technique and the weighed sum technique. The 
subproblems are then accumulated by the predefined 
weights. Finally, they are optimised simultaneously using 
evolutionary algorithms. The population is initialised 
randomly and the objective function value is computed 
accordingly. To generate a new member in the population, 
two parents are chosen indiscriminately from the 
surrounding. The information is transmitted based on the 
relationship among the neighbours. The neighbourhood 
mechanism used in MOEA/D enhances the convergence of 
the algorithm. However, the size of the neighbourhood 
must be selected properly to prevent the search from 
attaining local minima without causing any complexity 
burden [28]. 

2.2.2. Hybrid algorithms 

      MOPSO has a remarkable exploitation capability. 
However, the particles in MOPSO tend to be confined to 
local optima. This issue can be addressed by using 
MOPSO together with NSGA-II, SPEA2 or MOEA/D. This 
results in three hybrid algorithms namely MOPSO-NSGA-
II, MOPSO-SPEA2 and MOPSO-MOEA/D. The 
population is divided into two parts. Half of the 
population is solved using NSGA-II, SPEA2 or MOEA/D 
to generate solutions. Due to its elitism, sorting and 
crowding distance computation, NSGA-II produces 
solutions with a wide spread and diversity. MOPSO then 
exploits the search place to identify better solutions in the 
surrounding driving the low-rank solutions to the global 
optimum.  

        The optimal solutions in NSGA-II, SPEA2 or 
MOEA/D are stored in an external archive whereas those 
in MOPSO are stored in an external repository. After each 
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iteration, the solutions in the archive are merged with that 
of the repository and eventually kept in the archive [29].  

2.3. Test system 

2.3.1. The Distribution system 

The simulation was carried out using the IEEE-123 
Node Test Feeder System which is an unbalanced 
distribution system consisting of constant power, constant 
impedance and constant current loads. Figure 1 shows the 
IEEE-123 Node Test Feeder System. The distribution 
system, DG units and custom power devices were 
modelled by separate scripts in the Electric Power 
Research Institute’s (EPRI) open-source software 
‘Distribution System Simulator’ (OpenDSS). The PV 
system and the UPQC were used as DG units and CPD 
respectively. Monte Carlo Simulation was done to cater for 
the uncertainty in the weather data [30].  

 
Figure 1:  IEEE-123 Node Test Feeder System [31]. 

Table 1: Switches in IEEE-123 node test feeder system [31] 

Switch Node A Node B Status 
Switch 1 13 152 closed 
Switch 2 18 135 closed 
Switch 3 60 160 closed 
Switch 4 97 197 closed 
Switch 5 151 300 open 
Switch 6 54 94 open 
Switch 7 150 149 closed 
Switch 8 61 610 closed 
Switch 9 250 251 open 
Switch 10 450 451 open 
Switch 11 300 350 open 

Table 1 illustrates the location and status of all the 
switches in the IEEE-123 Node Test Feeder System. From 
Figure 1 and Table I, it can be deduced that only six 
switches (Switch 1 - Switch 6) can modify the network 
structure. From the switches utilised, three loops namely 
L1, L2 and L3 can be obtained. L1 is arises from the closure 
of switches Switch 1, Switch 2, Switch 3, Switch 4 and 
Switch 5 whereas L2 is formed by closing Switch 1, Switch 
2, Switch 4, Switch 5 and Switch 6. Meanwhile, L3 results 
from the opening of all the switches except Switch 3 and 
Switch 6. To maintain a radial network structure, one 

switch must be in the open state in each loop. Radial 
configuration is important for the proper management 
and protection of the system. 1. From the 64 possible 
switch combinations, only the 48 combinations which 
generated a radial network structure were used in the 
simulation [23].  

2.3.2. PV system 

  The PV system contains semiconductor materials 
which convert solar energy to electrical energy. Figure 2 
illustrates the PV system model. The active power output 
in the connection node at time t is obtained by multiplying 
the PV array output P(t)and the inverter efficiency 
eff(P(t) as shown by (5). 

                 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) × 𝑒𝑒𝑒𝑒𝑒𝑒(𝑃𝑃(𝑡𝑡))                              (5) 

  For simplicity, it is supposed that the inverter locates 
the maximum power point (MPPT) of the panel rapidly. 
Equation (6) represents P(t) in terms of the rated power 
output at MPPT (Pmpp), the base irradiance irradbase, the per 
unit irradiance at t irrad(t)and the correction factor (c). 

           P(t) = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑐𝑐                     (6) 

  

 
Figure 2: PV system model in OpenDSS [32]. 

The PV array is designed using the irradiance data, 
temperature data and the PV array power curve while the 
inverter is designed using the efficiency curve as 
illustrated in Figure 2 [32].   

2.3.3. Unified power quality conditioner  

UPQC is a single-phase device which manages the 
voltage and reactive power. It is added on the secondary 
side of a transformer and can function in three modes 
namely mode 1 (voltage control), mode 2 (power factor 
correction) and mode 3 (voltage control and power factor 
correction). Fig. 3 illustrates the model of UPQC in 
OpenDSS.  

 
Figure 3: Model of UPQC in OpenDSS. [33] 

The current source Ic is calculated using (7). 

                                               Ic = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝐼𝐼𝑆𝑆×𝑉𝑉𝑖𝑖𝑖𝑖

                                 (7) 
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where the impedance Xs and the current source Is 
represent the Thevenin equivalent of the voltage source in 
series [33]. 

3. Methodology 

3.1. Formulation of the problem 

  Operating the power system at minimum cost results 
in poor voltage and power loss profile. On the other hand, 
it is too expensive to only enhance the quality of the power 
supply. Therefore, the problem was formulated as multi-
objective based on three objective functions namely the 
active power loss, voltage deviation and total cost. The 
objective functions were minimised simultaneously taking 
into account the uncertainty associated with DG units 
based on renewable energy. 

3.1.1. Objective functions 

1. Active power loss  

Minimisation of the active power loss helps to make 
the system more efficient. Active power loss includes the 
copper loss of the transformers and the loss in the lines [34]. 
In OpenDSS, it is computed by solving the circuit in the 
snapshot mode.  

2. Voltage deviation 

The voltage deviation is minimised to enhance the 
security and power quality in the system. The voltage 
deviation index (IVD) was computed by comparing the 
final node voltages with initial node voltages as shown in 
(8). The node voltages were found by the load flow 
analysis in OpenDSS [35].  

 IVD = ∑|𝑉𝑉𝐴𝐴𝐴𝐴 − 𝑉𝑉𝐴𝐴| + ∑|𝑉𝑉𝐵𝐵𝐴𝐴 − 𝑉𝑉𝐵𝐵| + ∑|𝑉𝑉𝐶𝐶𝐴𝐴 − 𝑉𝑉𝐶𝐶|         (8) 

 where VA, VB and VC are the initial node voltages, 

VAD, VBD and VCD are the node voltages in the presence 
of PV systems  

3. Total cost 

The total cost is equivalent to the sum of the capital cost 
and the replacement cost. The capital cost is computed 
from the net present cost (NPC) and the capital recovery 
factor (CRF) using (9) and (10) [36]. 

                      Capital cost=NPC × CRF                            (9) 

                            CRF = 𝑖𝑖(𝑖𝑖+1)𝐿𝐿

(𝑖𝑖+1)𝐿𝐿 − 1
                                        (10) 

Table 2 illustrates the NPC and the lifespan for the PV 
system, switch and UPQC [37] [38]. 

Table 2: Net present value and lifespan of each device 

Device NPC (USD) Lifetime 
PV 1330 /kW 25 
Switch 2581 15 
UPQC CUPQC × SUPQC 15 

 

The NPC for the UPQC is found from the polynomial 
cost function given by (11) and the size of the UPQC (SUPQC) 
[39].  

NPCUPQC = 0.0003𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝐶𝐶2 − 0.2691𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝐶𝐶 + 188.22     (11) 

The Fisher equation calculates the real interest rate (i) 
using the nominal interest rate (j) and the inflation rate (f) 
as shown by (12). 

                                      𝑖𝑖 = 𝑗𝑗−𝑓𝑓
1+𝑓𝑓

                                             (12) 

The nominal interest rate and inflation rate are set to 
3.5% and 1.5% respectively in this study. The replacement 
cost is calculated based on (13) [38][40]. 

            Annualised replacement cost = NPC 𝑖𝑖
(1+𝑖𝑖)𝐿𝐿−1

   (13) 

3.1.2. Constraints 

The power flow constraint was utilized as equality 
constraint. As the power flow calculations were integrated 
in the procedure to calculate the total feeder losses, the 
satisfaction of this constraint was not checked. The 
convergence of the power flow computation revealed that 
the equality constraint was satisfied [41]. The size and 
number of the DG units and CPD were used as inequality 
constraints. 

1. The size of the DG unit lies between 5 kW and 500 kW 
as given by (14). 

            5 kW < 𝐷𝐷𝐷𝐷𝐵𝐵𝑖𝑖𝑠𝑠𝐵𝐵  < 500 kW                                    (14) 

2. The size of the UPQC ranges from 5 kVAr to 100 kVAr 
as shown in (15). 

             5 kVAr < 𝐶𝐶𝑃𝑃𝐷𝐷𝐵𝐵𝑖𝑖𝑠𝑠𝐵𝐵  < 100 kVAr                          (15) 

3.2. Optimization algorithm 

3.2.1. Chromosome model 

OpenDSS was linked with MATLAB through the 
Component Object Model (COM) server Dynamic-link 
library (DLL) for optimisation studies. A compatible PC 
(CPU Intel Pentium 2.10 GHz 2GB of RAM) with 32-bit 
operating system was used for the simulation. The 
optimization algorithms depend on a group of artificial 
chromosomes which are assigned fitness values 
depending on their capability to solve the problem. Each 
chromosome is a potential solution to the problem. Figure 
4 shows the chromosome model in which the first two 
numbers in the string refers to the size and location of the 
first DG unit respectively. The following two numbers 
indicate the size and location of the first CPD respectively. 
The letter n denotes the total number of DG units and CPD 
used. In this case, n has been set to three. The last number 
in the string denotes the network structure based on 
switch SW1 to SW6. 

 
Figure 4: Chromosome model 
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3.2.2. Parameters of optimization algorithm 

Table 3 illustrates the parameters of the optimisation 
algorithms. The parameters were kept constant for all the 
three algorithms. To account for the heuristic nature of the 
optimisation algorithms, the simulation was performed 
over 50 independent runs by using varying random 
number seeds for each run. Each run consisted of 100 
iterations to guarantee the convergence of the algorithms. 
The population size, crossover probability and mutation 
probability were chosen by a trial-and-error method such 
that a reasonable number of solutions were found without 
increasing the complexity of the algorithms. 

Table 3: Parameters of optimisation algorithms 

Number of members in population 50 
Probability of crossover 0.3 
Probability of mutation 0.05 
Maximum iteration number 100 
Number of runs 50 

3.3. Performance metrics 

      The efficiency of the algorithms was evaluated using 
the performance metrics such as pure diversity, spacing 
and generational distance.  

1) Pure Diversity (PD)  

Pure diversity indicates the spread and uniform 
spacing of the non-dominated solutions in the objective 
space. It is calculated utilising (16). 

      PD = dp + dq + � 1
|n|−1

∑ �di − d��2|n|−1
i=1                     (16) 

where dp and dq represents distances between the 
nearest non-dominated solutions and the two extreme 
solutions on the Pareto front, di is the Euclidean distance 
between two succeeding non-dominated solutions and d� 
is the mean of the distances di and n is the sum of the 
number of non-dominated solutions [42]. 

2) Spacing (SP) 

Spacing indicates the standard deviation of the 
distance between the non-dominated solutions in the 
Pareto front and is given by (17). A spacing of zero is 
obtained when all the solutions in the Pareto front are 
equally spaced. 

               SP = � 1
n−1

∑ (d� − di)2n
i=1                                     

(17) 

3) Generational distance (GD) 

Generational distance shows the smallest Euclidean 
distance di from all the vectors in the Pareto front to any 
vector in the reference Pareto front. It is calculated using 
(18) [43]. 

                              GD =
�∑ di

2n
i=1

n
                                        (18) 

3.4. Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS) 

TOPSIS is a decision-making approach proposed by 
Yoon and Hwang in 1980. It evaluates each alternative 
according to its Euclidean distance from the best and 
worst solutions. The decision matrix (R) is constructed 
using the normalised performance ratings as shown by 
(19).  

                            R = �

r11 r12 . .
r21 r22 . .

: : :
rm1 rm2 . .

    

r1n
r2n

:
rmn

�                      (19) 

The weight of the attributes (wj) is then associated with 
the normalised performance ratings (rij) using (20) to form 
the weighed normalized preference ratings (vij). 

                                      vij = wj × rij                                   (20) 

The weighed normalised decision matrix V is then 
constructed as shown by (21). 

                         V = �

v11 v12 . .
v21 v22 . .

: : :
vm1 vm2 . .

    

v1n
v2n

:
vmn

�                        (21) 

 The positive-ideal (A+) and negative-ideal (A-) 
solutions are then identified by computing the maximum 
and minimum of the weighed normalized values using (22) 
to (25). 

                                A+ = {v1+, v2+, … vn+}                             (22) 

                                A− = {v1−, v2−, … vn−}                             (23) 

                                 vj+ = Max vij                                        (24) 

                                  vj− = Min vij                                       (25) 

where i = 1,2,…….,m and j = 1,2,……,n 

Si+ and Si− shows the distance of each alternative from 
the positive-ideal and negative-ideal solution respectively. 
They are found from equations (26) and (27). 

                                  Si+ = �∑ �vij − vj+�
2n

j=1                       (26) 

                                 Si− = �∑ �vij − vj−�
2n

j=1                        (27) 

The preference for each alternative, Pi is calculated 
using equation (28). 

                                         Pi = Si− (Si+ + Si−)⁄                        (28) 

The alternatives are ranked in descending order of the 
value of the preference [44]. 

4. Results 

Figures 5 to 7 show the number of non-dominated 
solutions stored in the external repository used by the 
MOPSO section in the NSGAII-MOPSO, MOEA/D-
MOPSO and SPEA2-MOPSO respectively. It was found 
that the repository was never full after the application of 
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MOPSO. In NSGAII-MOPSO, the maximum number of 
non-dominated solutions identified in the lower portion 
of the population was 18 at iteration number 29 and 85.  It 
amounts to 30 in MOEA/D-MOPSO and occurred at 
iteration number 72. For SPEA2-MOPSO, the number of 
non-dominated solutions in the repository reached a peak 
of 29 at iteration 14. 

 

Figure 5: Number of solutions generated by NSGAII-MOPSO 

 

Figure 6: Number of solutions generated by MOEA/D-MOPSO 

 

Figure 7: Number of solutions generated by SPEA2-MOPSO 

Figures 5 to 7 also reveal the number of non-
dominated solutions located in the Pareto front of in the 
NSGAII-MOPSO, MOEA/D-MOPSO and SPEA2-MOPSO 
respectively. The maximum allowable number of 
solutions in the Pareto front was 50. If the number of non-
dominated solutions in the front exceeded 50, they were 
ranked so that only the first 50 solutions were kept. For 
NSGAII-MOPSO and SPEA2-MOPSO, it was found that 
the number of solutions in the Pareto front remained 
constant throughout the 100 iterations. In MOEA/D-
MOPSO, the number of solutions in the Pareto front 
changed in the first two iterations. It then stabilised to 50 
for the remaining iterations. The Pareto front was 
completely filled quickly due to the small size of the 
search space. It can be inferred that all the 50 solutions 
identified by NSGA-II, SPEA2 and MOEA/D from the 
upper half portion of the population in their respective 

hybrid algorithm dominates the solutions identified by 
MOPSO in the lower half section of the population.  

 

Figure 8: Solutions in the search space in NSGA-II-MOPSO 

 

Figure 9: Solutions in the search space in SPEA2-MOPSO 

 
Figure 10: Solutions in the search space in MOEA/D-MOPSO 

  Figure 8 to Figure 10 illustrates the solutions in the 
search space of the hybrid algorithms at the start of the 
MOPSO stage. It can be observed that the search space is 
quite small. This explains why the Pareto front was 
rapidly filled. Figure 8 to Figure 10 also reveals the great 
exploration capability of NSGAII, SPEA2 and MOEA/D. 
These algorithms produce a diversity of solutions which 
are used by MOPSO during the exploitation phase. 

Figure 11 to Figure 13 shows the three-dimensional 
surface plot superimposed on the scatter plot generated 
by SPEA2-MOPSO, NSGAII-MOPSO and MOEA/D-
MOPSO respectively. The figures illustrate the 
compromise among the three objective functions. There is 
no solution which generates the best value for all the three 
objective functions. It is up to the engineers to choose the 
solution depending on the needs of the power system at 
that time.  

 

Figure 11: Surface plot generated by NSGAII-MOPSO 
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Figure 12: Surface plot generated by SPEA2-MOPSO 

 

Figure 13: Surface plot generated by MOEA/D-MOPSO 

Table 4 illustrates the best compromise solution 
produced by NSGA-II. It shows the optimal size and 
location of the three PV systems and UPQC as well as the 
optimal status of the six switches. As no solution in the 
Pareto front minimises the three objective functions 
simultaneously, TOPSIS was used to identify the optimal 
solutions. Equal importance was given to each objective 
function. 

Table 4: Best compromise solution produced by NSGA-II 

PV sizes 47 kW, 25 kW, 83 kW 
PV locations node 24, node 46, node 76 
UPQC sizes 9 kVAr, 85 kVAr, 100 kVAr 
UPQC locations node 83, node 110, node 4 
Status of switch 
SW1 to SW6 

open, open, closed, closed, 
closed, open 

 

Table 5 shows the mean simulation time for all the 
algorithms used. NSGA-II is the fastest algorithm as it 
computes the crowding distance of each solution 
objective-wise and then adds them to find the overall 
crowding distance. On the other hand, SPEA2 computes 
all the Euclidean distances in the objective space, generates 
clusters and then calculates the distance between 
consecutive clusters. MOEA/D has a lower mean 
simulation time than SPEA2 because each sub-problem in 
MOEA/D is solved using information from the 
neighbouring sub-problems only. NSGAII-MOPSO has a 
larger simulation time than NSGAII. This may be due to 
the fact that hybridization increases the memory 
requirement of the algorithm. SPEA2-MOPSO and 
MOEA/D-MOPSO have an average simulation time which 
is 49 % and 55 % less than that of SPEA2 and MOEA/D 

respectively. Therefore, MOPSO helps to accelerate the 
optimal solutions produced by SPEA2 and MOEA/D to 
particular search space regions. 

Table 5: Mean simulation time of the different algorithms 

Algorithm Mean simulation  time/s 
NSGA-II 2 795 
SPEA2 24 943 
MOEA/D 20 222 
NSGAII-MOPSO 6613 
SPEA2-MOPSO 12 684 
MOEA/D-MOPSO 9 010 

Table 6: Minimum value of active power loss, voltage deviation and 
total cost produced by each algorithm 

Algorithm Active 
power 
loss/ 
kW 

Voltage 
deviation/ 
pu 

Total 
cost/ 
USD 

NSGA-II 2252.5 63.22 80 394 
SPEA2 2310.7 63.29 83 289 
MOEA/D 2308.2 63.44 139 700 
NSGAII-MOPSO 2394.4 63.33 103 160 
SPEA2-MOPSO 4214.3 68.20 108 630 
MOEA/D-MOPSO 3728.4 71.58 185 490 

Table 6 shows the minimum values obtained by the 
optimisation algorithms for each objective functions. It 
was found that NSGA-II produced the lowest value for all 
the objective functions (shown in bold). However, the data 
in Table 6 is not enough to evaluate the performance of the 
optimisation algorithms. Due to the stochastic nature of 
the latter, it is vital to find the statistical significance of the 
obtained solutions. The quality of the results can be 
determined from the convergence and diversity of the 
optimal solutions. 

Table 7: Mean value of the performance metrics for the different 
algorithms 

Algorithm SP PD GD 
NSGA-II 0.2480 6.3461 0.0900 
SPEA2 0.2104 4.9366 0.0842 
MOEA/D 0.3336 5.9259 0.0954   
NSGAII-MOPSO 0.3841 4.1899 0.0838 
SPEA2-MOPSO 0.3295 4.7661 0.0733 
MOEA/D-
MOPSO 

0.3374 4.4552 0.0746 

 

Table 7 showcases the performance metrics for the 
different optimisation algorithms. As the data was of 
different orders of magnitude, it was normalised before 
the computation of these metrics. It was observed that the 
hybrid algorithms improve the generational distance 
metrics. The lowest mean GD was produced by SPEA2-
MOPSO. The average SP value for all three hybrid 
algorithms was close to zero indicating that the 
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neighbouring solutions were almost evenly arranged. The 
GD values are reduced by nearly 6.9 %, 12.9 % and 21.8 % 
in NSGAII-MOPSO, SPEA2-MOPSO and MOEA/D-
MOPSO respectively relative to their corresponding non-
hybrid algorithms. This reveals that the Pareto front 
generated by the hybrid algorithms is closer to the true 
Pareto front. This may be due to the local search 
performed by MOPSO in the hybrid algorithms. The high 
PD values in the results generated by NSGA-II indicate 
that the solutions were more scattered. The diversity in the 
results produced by all the three hybrid algorithms was 
almost similar. However, it was less than that of the non-
hybrid algorithms. 

5. Conclusion 

The integration of renewable DG units in the 
distribution system poses several technical challenges. 
The use of UPQC and DNR are potential solutions to the 
problem. Thus, multi-objective optimisation is needed to 
boost the efficiency of the power system at reduced costs. 
The novelty of this research is the multi-objective 
optimisation of PV systems, UPQC and DNR 
simultaneously using MOEA/D, NSGAII and SPEA2. 
These optimisation algorithms were further combined 
with MOPSO resulting in three hybrid algorithms namely 
NSGA-II- MOPSO, SPEA2-MOPSO and MOEA/D-
MOPSO.  The hybrid algorithms produced solutions with 
better spacing and generational distance metrics at the 
cost of a degradation in the diversity of the solutions. In 
addition, hybridizing SPEA2 or MOEA/D with MOPSO 
helps to reduce the simulation time. Using TOPSIS, the 
optimal network structures as well as the optimal size of 
the PV systems and UPQCs were found.  

This research produces insightful findings so that 
policy makers and engineers can introduce new 
incentives and regulatory measures. It shows that 
hybridisation of multi-objective optimisation algorithm is 
promising. Future works may include techniques to 
improve the diversity of the solutions generated by 
hybrid algorithms. Also, the multi-objective optimisation 
based on a larger number of objective functions may be 
investigated. The effect of varying the population size, 
repository size, crossover parameter and mutation 
parameter can also be analysed. 
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