
Received: 24 February, 2022, Revised: 20 April 2022, Accepted: 01 May, 2022, Online: 28 May, 2022

DOI: https://dx.doi.org/10.55708/js0105025

An Algebraic Specification/Schema for JSON
Konstantinos Barlas∗,1 , Petros Stefaneas2

1Department of Informatics and Computer Engineering, University of West Attica, Athens, 12243, Greece
2School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, 15780, Greece
∗Corresponding author: Konstantinos Barlas, University of West Attica, Ag. Spyridonos Str., Egaleo & kosbarlas@uniwa.gr

ABSTRACT: JavaScript Object Notation (JSON) is an open standard data format that is used widely
across the internet as means of exchanging structured data due to its low overhead. While originally
created in the early 2000s, it has only gained standard status in 2013 and then again in 2017 with a new
version that focused more on security and interoperability. In this paper the authors present a different
specification of the JSON standard that relies on algebraic formal methods and provides certain benefits
over a regular natural language specification. This specification can also function as a schema that can
attest a JSON data document’s compliance to its blueprint.
The absorption of Formal Specification methods by the industry happens at a very slow pace, mostly
because there is little incentive to tread into a fairly unknown territory. Notwithstanding this reluctance,
the authors encourage the usage of Formal Specification techniques to the specifications of open
standards; Formal specifications are more succinct, less ambivalent, consistent to the standard, reusable
as they support module inheritance and can be executable.
The process of designing new Standards can benefit from Formal Specifications as the resulting
specification i) is more tangible; ii) allows a thorough and clear understanding of the standard and also
iii) allows property checking and property verification.

KEYWORDS Formal Specifications, Algebraic Specifications, Formal Methods, JSON, open standards

1. Introduction

Standards released by a standard setting organization are
usually accompanied by a publicly-available delineating
specification document that consists of the requirements that
any implementation of the standard has to hold [1]. How-
ever, because such a document is written in a natural lan-
guage there can be some shortcomings:

1. Verbosity: Just like any technical document, a spec-
ification document written in any natural language
often yields quite lengthy documents. For instance, the
specification of Digital Imaging and Communications
in Medicine (DICOM), an open standard that describes
the operations that can take place in medical imaging
(e.g. handling, storing, printing, and transmitting
information) consists of 18 different documents ([2])
and a total of 4900 pages.

2. Vagueness: Using natural languages to express terms
that depend on being expressed with precision and
unambiguity can be an arduous task that usually re-
sults in documents that are difficult to comprehend
[3]. Words with different meanings or phrases that
hypothesize some common background can make this
issue even worse. Clarity is important when trying to
formalize a statement.

3. Requirements intermixture: Due to the non modal

nature of natural languages, we often see the merging
of a standard’s disparate requisites [3]. This renders
the tracking of the consequences that a change incurs
rather cumbersome, since it is better to examine each
requirement individually rather than process a fusion
of different yet connected requirements.

4. Requirements confusion: Different kinds of a stan-
dard’s properties can appear mixed up; functional
and non functional requirements, system goals and
design information are at times used as if they are the
same thing [3] .

Those shortcomings can create issues throughout the stan-
dard’s development and specification stages, issues that are
frequently ascertained at the latest stages and are therefore,
costly to correct [3]. These drawbacks can be present to any
standard’s specification document (open or not) but this
paper focuses on open standards since their specifications
are publicly available.

In this paper we:

1. Reason about how a Formal Specification of an open
standard can deal with the issues of specifications
written in natural languages that are discussed in this
section.

2. Create a Formal Specification of the JSON open stan-
dard by converting JSON entities into their equivalent

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 243

https://dx.doi.org/10.55708/js0105025
https://orcid.org/0000-0002-8159-1847
https://orcid.org/0000-0002-2096-9914
http://www.jenrs.com

K. Barlas et al., An Algebraic Specification/Schema for JSON

formal versions.

3. Address the points raised earlier and argue about how
this specification methodology is better than the natu-
ral language one. In order to do that, a test case will
be presented in which we use the formal specification
of JSON as a schema, in order to verify additional
properties.

This paper is an extended version of [4], a short confer-
ence paper that introduced an algebraic schema for JSON
and presented the basics of treating JSON objects in an
algebraic way. This paper provides the details for almost all
operators needed to handle a JSON object as an algebraic
item as well as how they operate together and, in an attempt
to respond in detail to comments from the conference review,
it also expands more on how a formal specification of an
open standard can be beneficial to the standard as it can be
better than a specification written in natural language. Both
this paper as well as its predecessor continue in a similar
path as [5], in which the authors have formalized XML
structures and used the result to create a formal version of
RSS v2.0 open web standard.

2. Background material

2.1. Open Standards

While the definition of a Standard can be quite straightfor-
ward (an established norm/requirement for a repeatable
technical task), it’s the term "open" that makes the defi-
nition tricky as that word can have a different meaning
depending on the point of view; dictionaries, national IT
agencies, World Trade Organization (WTO), etc. all provide
different points of view for the term "open". An intersection
of all those different definitions deals with their motivation,
development and usage. The motivation to create and pro-
mote an Open Standard usually has to do with promoting
interoperability. When it comes to its development, an Open
Standard:

1. Most of the times emerges by a process that can be
effortless for anyone to attend.

2. Is open to public input [6, 7].

3. Is not regulated by any particular collective or vendor.

2.1.1. Advantages of Open Standards

Developing and adhering to an open standard does not
produce any financial gain, at least not in the short term
but in the long run, the interoperability, the sustainable
development and the smooth communication channels that
come along, all give value to this investment. Additional
benefits from following Open Standards are summarized
below [8, 9]:

• Open Standards ensure that a vendor cannot gain
full control over a format. Since an open standard’s
specification is available to the public, another party
can always implement a solution that adheres to its re-
quirements if the previous solution stopped working
for whatever reason.

• Open Standards provide smooth interoperability be-
tween different systems that may even use different
technologies. Communication between such systems
can be difficult if there is not an "agreement" to use
a pre-approved channel that each system can iden-
tify and work with. For example, a company that
requires that all its desks use office software applica-
tions compatible with the Open Document format (an
Open Standard) gives each employee the freedom of
choosing to use any such office software, ensuring full
compatibility with the rest of the company.

• Open Standards can act as a buffer against applica-
tions that stop being developed. If such an application
was using a proprietary data format then an end user
would have a difficult time trying to save the data in
a way that some other application could use. How-
ever, if that application was using an open standard
document format, it would not be difficult for another
application to make use of that data. The issue of
program data becoming unusable can be even worse
for any big organizations like government agencies
(e.g. police [10]) or national Electronic Health Records
([11]).

2.1.2. Problems of Open Standards

On the other hand, Open Standards have some noteworthy
drawbacks. Firstly, creating an Open Standard (with all its
steps; designing, reviewing, rating, implementing) can be
quite costly in resources. For instance, the amount of time
required for an Open Standard to go through that process
varies, from a few months to many years, depending on the
standard-setting organization.

Also, interoperability can be achieved even with non
open standards. There is an abundance of proprietary stan-
dards that come with a Reasonable and non-discriminatory
licensing (RAND) that do not hinder in any way interop-
erability (e.g. GSM, CD, DVD, MPEG, Wi-Fi, etc.) [8],
[9].

2.2. About Algebraic Specifications of Open Standards

Formal (especially algebraic) specifications can complement
(or even substitute) the original natural language specifi-
cation of the standard as they can deal with the problems
discussed in Section 1:

1. Formal specifications are most often than not small
in size, mainly due to their modular nature and their
basis on mathematics.

2. Their mathematical foundation also allows them to
be as precise as mathematics can allow, resulting in
unambiguous results.

3. Many specifications can be executable, enabling devel-
opers to test an implementation of a standard against
its specification.

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 244

http://www.jenrs.com

K. Barlas et al., An Algebraic Specification/Schema for JSON

While this process can be applied to any kind of standard,
Open Standards are better candidates for a formal specifica-
tion since their original specification, the one written in a
natural language, is available for anyone to read and attempt
to improve by formalizing (versus trying to reverse engineer
a proprietary standard). Considering that this process is not
done by the standard-setting organization, any attempts to
formalize a standard are only as good as the understanding
of the standard by the reader. Depending on how intricate
and entangled the original specification is, such a task can
be of considerable difficulty.

This process may also uncover flaws in the standard;
since the formalization process forces someone to ask the
right questions, there have been cases in which ambigui-
ties in original natural language specifications have been
detected, for example the specification of "time-to-live" ele-
ment of Really Simple Syndication (RSS) in [5]. Naturally,
the time and resources needed for a formal specification are
increased (or differently allocated according to Sommerville
[3]), unless the formal specification is developed along the
standard.

Formal Methods may at first alienate many readers,
especially those not sufficiently versed, however getting ac-
quainted is not such a difficult task [12, 13] and the benefits
may make it worthwhile. Perhaps until Formal Methods be-
come more popular, a middle ground would be to have both
natural language and formal specifications for standards.

2.3. CafeOBJ

The formal specification of JSON that is presented in Section
3 is written using CafeOBJ, which according to its webpage
([14]) is an “advanced formal specification language which
inherits many advanced features (e.g. flexible mix-fix syn-
tax, powerful and clear typing system with ordered sorts,
parametric modules and views for instantiating the param-
eters, and module expressions, etc) from ‘OBJ’ (or more
exactly ‘OBJ3’) algebraic specification language”.

The OBJ (and OBJ3) family has been used in many
applications ([15]) such as the debugging of algebraic spec-
ifications, rapid prototyping, the executable definition of
programming languages, the specification of software sys-
tems (such as GKS graphics kernel system, Ada configura-
tion manager, Macintosh QuickDraw, etc), specification of
hardware, specification of user interface designs and theo-
rem proving. The main axiomatic systems that it uses are
order-sorted algebras [16, 17] (used to specify abstract data
types) and hidden algebras [16, 18] (used to specify abstract
state machines, enabling object-driven specifications).

Algorithm 1 shows a CafeOBJ module for factorials. A
specification in CafeOBJ consists of modules; places where
sorts, operators and equations are declared [19]. The key-
word mod! initiates a module and is followed by curly brack-
ets that define the start and end of the module’s code block.
The next line, pr(INT) imports the built-in integer module,
allowing sort, operator and equation inheritance. To declare
an operator, keyword op is used. Operators are like func-
tions and they need explicit domains and codomains. In
Algorithm 1, operator factorial assigns an integer (domain)
to another integer (codomain). A variable in CafeOBJ is

declared with the keyword var followed by its name and do-
main. Here, variable N belongs to INT , the sort of Integers
that was imported into the module with the pr command.
To write the equations describing the factorial we will need
a recursive case as well as a base case, as shown in the last
two lines of the module, starting with ceq. Once the mod-
ule declaration is over, command select selects the created
module so that we can use its definitions to calculate the
factorial of a number. The command red command will try
to reduce f act5 to its value using the module’s equations
and left-to-right rewriting rules. Lastly, inline comments in
CafeOBJ use the −− prefix.

Algorithm 1: Factorial’s definition in a CafeOBJ
module

mod! FACTORIAL
{
−− Factorial declaration
pr (INT)
op factorial : Int -> Int
var N : Int
ceq factorial(N) = N * factorial(N - 1) if N > 0 .
ceq factorial(N) = 1 if not (N > 0) .

}

select FACTORIAL .
red (factorial(5)) .

2.4. About JSON

JavaScript Object Notation (JSON) is an open standard data
format and file interchange format that does not bind itself
to any specific language and declares entities as lists of
properties in the attribute: value format [20]. JSON started
as a non-strict subset of JavaScript [20], as defined in the
European Computer Manufacturers Association Script (EC-
MAScript) Programming Language Standard, Third Edition
[21], but ever since, it can be (and has been) used in many
programming languages. JSON was originally designed to
be minimal, portable, textual, a subset of JavaScript [21] but
not too far away from the broad spectrum of C-family of
languages ([22]).

JSON became a standard originally in 2013, under the
name ECMA-404 [23]. The second version of the ECMA-404
standard came along in 2017 [24]. Request for Comments
(RFC) published JSON as a standard in 2017 [21] and this is
the current JSON standard version that is compliant with
ECMA-404 [24].

JSON can express structured data in six ways; the four
non-structured primitive types (booleans, strings, numbers
and the unique “null” type) and two structured types (ar-
rays and objects) [21]. Arrays and objects can be nested into
larger, complex JSON structures, [22].

2.5. Uses

JSON has become a very popular data format, with a broad
range of applications. It is being used as a configuration
language, storing application settings in its low-overhead
format, although surprisingly, it lacks support for com-
ments, discouraging people from meddling directly with

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 245

http://www.jenrs.com

K. Barlas et al., An Algebraic Specification/Schema for JSON

such files. JSON is intended as a lightweight alternative to
the widespread XML format that has bigger space require-
ments as XML uses more overhead to store its data.

JSON can be used with most of the languages of the
C-family (such as C, C++, C#, Java, JavaScript, Perl) but is
also supported by many more, such as Python, Filemaker,
.Net, Matlab, Lisp, Haskell, Fortran, OCaml, Prolog, Rust,
Scala, etc. [22].

2.6. Similar works

Formal versions of JSON schemas have been created in the
past, e.g. [25] in which JSON is used as a JSON schema.
There also is [26], in which the authors display an Extended
Backus–Baur Form (EBNF) grammar of JSON. While JSON
and XML are different, formalizing XML is quite similar in
nature with the ideas presented in this paper; the authors
in [27] have created a formal framework for XML schema
languages. What distinguishes this paper from the rest is
that a valid schema for JSON is created using an algebraic
specification language.

3. JSON entities as algebraic objects

The proposed schema for JSON data (Section 3.3) treats
JSON objects as lists (Section 3.1) and is written in CafeOBJ
(Section 2.3). In order to create an algebraic specification of
a JSON file in CafeOBJ, the JSON file has to be converted
into a format that CafeOBJ can read and process. A simple
command line converter has been created that parses a JSON
file and outputs it into a format that we will call JSON-OBJ.
The rules for such a translation can be seen in Section 3.2.
The resulting JSON-OBJ file can now be loaded into CafeOBJ
and can be reasoned with, as seen in Section 3.4.

While the reason for choosing CafeOBJ as the language
for this formal schema is the authors’ familiarity with it, we
would argue that a formal specification of JSON would work
equally well with any Formal Method tool; especially those
that put more weight on data structures like Z, VDM, Estelle
or any language of the OBJ family (e.g. Eqlog, FOOPS,
Kumo, Maude, OBJ2, OBJ3). Selecting a proper Formal
Method tool can be quite a daunting task as lots of different
tools exist, all specializing in different features, yet often
having some overlap with other tools.

3.1. Lists

JSON describes, in its essence, a list of structured data. A
list is a collection of elements where an element can be
a list itself. A list module provides operators that can i)
append an element into a list, ii) search if an element is
contained in one, iii) remove an element from a list and iv)
concatenate two lists. These operations are specified in a
recursive manner.

For example, Algorithm 2 shows the equations necessary
for removing an element from a list. The operator "\" takes
an element and list and removes that element from the list, if
the list contains that that. The first two equations provide the
base cases and the next two the recursive cases. The recursive
cases state that given an element Elem1 that’s merged with a

list Lst; if we want to remove an element Elem2 from that list,
then if Elem1 is the same as Elem2 then the operation returns
Lst, otherwise the removal operation is now applied to Lst.

Algorithm 2: Removing an element from a list
op __ : List Elt→ List
vars Elem1, Elem2 : Elt
var Lst : List
eq (nil Elem1) = nil .
ceq (Elem1 \ Elem2) = nil if (Elem1 = Elem2) .
ceq ((Elem1 | Lst) \ Elem2) = Lst if (Elem1 = Elem2) .
ceq ((Elem1 | Lst) \ Elem2) = Elem1 | (Lst \ Elem2)
if not(Elem1 = Elem2) .

Algorithm 3 shows the declaration and equations for
querying a list for the existence of an element. The operator
"//in" returns true if a given element is inside a given list.
The base cases describe how we check an element against
another element or against an empty list. The recursive case
states that an element Elem1 exists in a list that consists of
an element Elem2 and a sublist Lst, only if Elem2 is Elem1 or
Elem1 exists in Lst.

Algorithm 3: Querying a list for the existence of an
element

op _//in_ : Elt List→ Bool
ceq (Elem1 //in Elem2) = true if (Elem1 = Elem2) .
eq (Elem1 //in nil) = false .
ceq (Elem1 //in (Elem2 | Lst)) = true if (Elem1 =
Elem2) or (Elem1 //in Lst) .

3.2. JSON data in CafeOBJ format

The most basic JSON element comes in the form of {"key":
"value"} and that would get converted into <"key" [txt(
"value")] >. Symbols “<” and “>” contain the element’s
name inside quotes and its following value inside brackets.
Values can be in a number of different types (string, number,
boolean, object, array, null), so the value of an element is
held within the right operator for its type; string values are
contained inside the txt operator, log for boolean values, int
for integers, etc. A more complex JSON element is the object,
which is a comma separated collection of key:value elements
held inside curly brackets. Its equivalent form in CafeOBJ
notation is a series of parenthesized elements, concatenated
with the @ operator.

The last JSON element type is the array, an ordered,
comma separated collection of key:value elements that is
contained within brackets. Since the sequence of the array
elements needs to be preserved, the < "key" [txt("value")]
> format is extended so that the nth element of such an array
would be declared as ({ n } <"key" [txt("value")] >).

A value in JSON can be another JSON element, as this for-
mat supports nested elements. Some sample JSON data can
be seen in Algorithm 4 and its conversion to the JSON-OBJ
format can be seen in Algorithm 5. Algorithm 5 also shows
how each JSON data type gets converted into its appropriate
JSON-OBJ format (string - Name, boolean - isAlive, number -
age, object - address, array - phoneNumbers and null - spouse).

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 246

http://www.jenrs.com

K. Barlas et al., An Algebraic Specification/Schema for JSON

Algorithm 4: Sample JSON data
{

"Name": "John Smith",
"isAlive": true,
"age": 27,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"

},
"phoneNumbers": [

{ "number": "212 555-1234",
"type": "home" },
{ "number": "646 555-4567",
"type": "office"}

],
"spouse": null

}

Algorithm 5: Sample JSON data in CafeOBJ format
(< "Name" [txt("John Smith")] >) @
(< "isAlive" [log(true)] >) @
(< "age" [int(27)] >) @
(< "address" [

(< "streetAddress" [txt("21 2nd Street")] >) @
(< "city" [txt("New York")] >) @
(< "postalCode" [txt("10021-3100")] >) @
(< "state" [txt("NY")] >)] >) @

(< "phoneNumbers" [
(1

(< "number" [txt("212 555-1234")] >) @
(< "type" [txt("home")] >)) @

(2
(< "number" [txt("646 555-4567")] >) @
(< "type" [txt("office")] >)

)
] >) @
(< "spouse" [NULL] >)

3.3. Algebraic Schema for JSON

The operators in the algebraic schema for JSON can be em-
ployed to parse and validate a JSON-OBJ (as described in
Section 3.2) file against its requirements. The operators used
in the schema can be seen in Table 1 and are used to extract
the data stored (and the way it is organized) in any JSON
file. The output can then be used in order to check the file
against its specification.

In this paper we will describe operators jNodeExists and
getParent.

Table 1: Operator names and their descriptions.

getKey Given an element, it returns its key
name

getValue Given an element, it returns its value
returnJnode Given a list of elements and an ele-

ment’s key, it returns the whole ele-
ment. If the element is within an array,
returns the parent as well

jNodeExists Given an element’s key name and a
list of elements, it searches for the
key in the element list and returns a
boolean value

hasNextElement Given a list of elements and an ele-
ment’s key, it returns a boolean value
based on whether the key has a next
element

getParent Given an element’s key name and a
list of elements, searches for the key
name inside the list and returns its
parent, if there is one

getArrayNo Given an array and an element’s key,
it returns its array index value

3.3.1. jNodeExists

Algorithm 6 displays the declaration for the jNodeExists
operator along with its equations; The operator takes a key
name (KeyName) and a list of elements (ElementList) and
returns a true/false value. In the equations that define the
operator, Key1 and Key2 are variables that describe a key
name. Cont is a variable that describes content of any sort.
Elem1 and Elem2 are variables that describe elements and N
is a natural number variable that describes the Nth element
of an array.

The base-case of the operator’s recursive definition is
given in the first two equations: if the list of elements is just
a single element then either its key name matches the one
given to the operator and the operator returns true, or there
is no match and the operator returns false. Two base-case
equations are needed considering that keyname can also try
to match a single element of an array.

Algorithm 6: jNodeExists operator
op jNodeExists : KeyName ElementList -> Bool
eq jNodeExists(Key1, < Key2 [Cont] >) = if (Key1
== Key2) then true else false fi.

eq jNodeExists(Key1, N < Key2 [Cont] >) = if (Key1
== Key2) then true else false fi .

eq jNodeExists(Key1, Elem1 @ Elem2) = if
(jNodeExists(Key1, Elem1)) then true else
jNodeExists(Key1, Elem2) fi .

eq jNodeExists(Key1, < Key2 [Cont] > @ Elem1) =
if (Key1 == Key2) then true else jNodeExists(Key1,
Elem) fi .

eq jNodeExists(Key1, N < Key2 [Cont] > @ Elem1)
if (Key1 == Key2) then true else jNodeExists(Key1,
Elem) fi .

The recursive actions for the operator are given in the
next three equations:

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 247

http://www.jenrs.com

K. Barlas et al., An Algebraic Specification/Schema for JSON

• Given a key name Key1 and an element list that is
made out of two elements, the operator will call itself
on the first element and if there is no match, it will do
the same to the second element.

• Given a key name Key1 and an element with key name
Key2 that is concatenated with a list of elements, it will
compare Key1 against Key2 and if they are different it
will continue recursively with the list of elements until
the expression collapses to one of base case equations.
Again, two recursive equations are required due to
the two different ways an element can present itself;
as part of an array or in any other way.

3.3.2. getParent

Algorithm 7 displays the declaration for the getParent opera-
tor along with its equations; The operator takes a key name
K and a list of elements (ElementList) and then seeks element
K inside ElementList, returning the key name of K’s "parent",
or a null value if that element is not found or has not parent.
Since this operator relies on jNodeExists (Section 3.3.1), this
shows the way multiple operators can work together.

In the equations that define the operator, Key1, Key2
and Key3 are variables that describe key names. Cont is a
variable that describes content of any sort. Elem1 and Elem2
are variables that describe elements.

The first two equations describe the base case: If asked
to retrieve the parent of an element named Key1 from a
single element Elem1, the operator returns null (the special
nil operator). If asked to retrieve the parent of an element
named Key1 from an element called Key2 that contains a
single nested element (Elem), then it will invoke jNodeExists,
to search for element Key1 inside Elem, returning K2 if found,
or nil otherwise.

The next three equations describe what may happen if
we are searching for the parent of element with key name
Key1 in the following scenarios:

• The element list is a concatenation of a simple element
and any other element: getParent operator ignores the
simple element as it cannot have a parent and gets
applied to the other element.

• The element list is a concatenation of a simple element
and one with nested elements: getParent operator ig-
nores again the simple element and gets applied to
the element with the nested elements.

• The element list is a concatenation of two elements that
both have sub-elements: if the first element contains
Key1 then getParent returns its key Name otherwise it
is applied to the second element.

Algorithm 7: getParent operator
op getParent : KeyName ElementList -> KeyName
eq getParent(Key1, < Key2 [Cont] >) = nilKey .
eq getParent(Key1, < Key2 [Elem1] >) = if
(jNodeExists(Key1, Elem1)) then Key2 else nilKey fi .

eq getParent(Key1, < Key2 [Cont] > @ Elem1) =
getParent(Key1, Elem1).

eq getParent(Key1, < Key2 [Cont] > @ < Key2 [
Elem2] >) = getParent(Key1, < Key2 [Elem2] >) .

eq getParent(Key1, < Key2 [Elem1] > @ < Key2 [
Elem2] >) = if (jNodeExists(Key1, Elem1)) then Key2
else getParent(Key1, < Key2 [Elem2] >) fi .

3.4. Test case

This section examines a hypothetical scenario in which a
company’s management software keeps its contacts in JSON
format and those contacts need to adhere to the following
traits:

1. Entries for Name, address and isAlive are necessary.

2. Address must have entries for streetAddress, city and
postalCode.

3. Property isAlive must be true.

4. Age of contact should be between 18 and 60 years old.

To validate the JSON stored contacts against those re-
quirements, the contacts data file gets converted into the
JSON-OBJ format of Algorithm 5 and then it gets tested
against the requirements of the company. For this test case,
the contacts in Algorithm 4 will be used.

In order to validate the contacts against those require-
ments, we will need to create an operator that formalizes
those requirements and then tries to validate a given JSON-
OBJ file against them. This operator, called properschema
returns true only if all requirements are held. Algorithm
8 contains the operator’s signature and equation; given an
ElementList E, it checks it against all 4 of the requirements.
Operator properschema:

1. Verifies that the three entries of the first requirement
exist. To achieve that, operator jNodeExists is called for
each entry key name and responds with a boolean.

2. Verifies, using jNodeExists operator, whether the three
address properties (street address, city and postal
code) exist and for each one of them, using getPar-
ent, checks whether they are child nodes of address
element.

3. Gets the value of isAlive node, using operators return-
Jnode) and getValue in succession.

4. Gets the value of age node, using operators returnJnode)
and getNumber in succession. The result is checked
against the range of allowed values.

In order to verify that the sample JSON-OBJ file (denoted as
samplejson) holds all desired properties, properschema oper-
ator has to parse the file. To do that, the reduce command

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 248

http://www.jenrs.com

K. Barlas et al., An Algebraic Specification/Schema for JSON

is used; it uses the related operators’ equations to try to
rewrite the term, eventually returning a boolean value. Out-
put Sequence 1 shows the result of the execution. CafeOBJ
returns true which means that the JSON data satisfy the four
wanted requisites. In case the output was false, we can iden-
tify through CafeOBJ’s output which of the requirements
failed to evaluate to true and then act accordingly.

Operator properschema acts as a schema /specification
in this scenario since it lays out the requirements that any
contact should hold and it is also capable of validating any
contact against these requirements.

Algorithm 8: properschema operator
op properschema : ElementList -> Bool .
var ElemList : ElementList .
eq properschema(ElemList) =

if
−− 1st requirement:
jNodeExists("Name", ElemList)
and jNodeExists("address", ElemList)
and jNodeExists("isAlive", ElemList)
−− 2nd requirement:
and (

jNodeExists("streetAddress", ElemList)
and getParent("streetAddress", ElemList)
== "address"

and jNodeExists("city", ElemList) and
getParent("city", ElemList) == "address"

and jNodeExists("postalCode", ElemList) and

getParent("postalCode", ElemList) ==
"address")

)
−− 3rd requirement:
and getValue(returnJnode("isAlive",ElemList))
== true
−− 4th requirement:
and (

getNumber(returnJnode("age",ElemList)) >=
18

and getNumber(returnJnode("age",ElemList))
<= 60

)
then true
else false
fi .

Output Sequence 1: CafeOBJ’s reduce command
and output
−− defining module SCHEMA done.
open SCHEMA .
−− opening module SCHEMA done.
red properschema(samplejson) .
−− reduce in (true):Bool
(0.0000 sec for parse, 0.0640 sec for 502 rewrites +
10912 matches)

4. Conclusions and future work

This paper presented an algebraic specification / schema for
the JSON Open Standard written in the CafeOBJ language.
The proposed formal specification provides a framework for
treating JSON objects in an algebraic way that allows formal
requirement specification and JSON document validation
against a schema.

Formal specifications are in general small in size and
our test case is no exception; at only 26 lines of code, it
is quite small in size, even with comments present. The
requirements in the test case’s formal specification are laid
out in a clear and non-ambiguous way, provided one can
familiarize themselves with the operators and the syntax of
the specification. That aside, we believe that such a specifica-
tion can be quite easy for someone to understand. The way
the requirements are presented makes it easier to separate
the requirements from one another allowing to track the
changes one of them may bring to the whole specification
thus reducing any issues of requirement intermixture or
confusion. Finally, since this specification is in algebraic
format, it is also executable allowing us to verify sample
data against the specification.

Despite those advantages, there have not been many
attempts in formalizing standards. One reason for this dis-
crepancy could be the plethora of different formal methods
that can make early steps such as choosing a tool quite
difficult, and also the questionable applicability of a specific
formal method to the standard.

The authors hope to continue work on using formal
methods to create specifications of more open standards, es-
pecially web data standards (e.g. YAML or TOML) in order
to achieve benefits over natural language specifications.

Conflict of Interest The authors declare no conflict of
interest.

References

[1] G. Blake, R. W. Bly, The elements of technical writing, Elements of Series,
Longman, 1993.

[2] “Digital imaging and communications in medicine (DICOM)”,
https://www.dicomstandard.org/current, 2014, accessed: 2022-
04-15.

[3] I. Sommerville, Software Engineering, Addison-Wesley, Harlow, Eng-
land, 9 ed., 2010.

[4] K. Barlas, P. Stefaneas, “An algebraic schema for json”, “24th Pan-
Hellenic Conference on Informatics”, PCI 2020, p. 31–33, Associ-
ation for Computing Machinery, New York, NY, USA, 2020, doi:
10.1145/3437120.3437268.

[5] K. Barlas, E. Berki, P. Stefaneas, G. Koletsos, “Towards formal open
standards: Formalizing a standard’s requirements”, Innov. Syst. Softw.
Eng., vol. 13, no. 1, p. 51–66, 2017, doi:10.1007/s11334-016-0283-9.

[6] M. Muhonen, E. Berki, “An open process for quality assurance in
systems development”, R. Dawson, M. Ross, G. Staples, eds., “Pro-
ceedings of Software Quality Management XIX. Global Quality Issues,
Loughborough 18-19 Apr., UK”, pp. 231–241, 2011.

[7] M. Merruko, “Utilising open source software development for effec-
tive electronic health records development”, Master’s thesis, School
of Information Sciences, University of Tampere, 2013.

[8] N. S. Hoe, Free/Open Source Software, Open Standards, Elsevier, 2006.

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 249

https://www.dicomstandard.org/current
http://www.jenrs.com

K. Barlas et al., An Algebraic Specification/Schema for JSON

[9] R. Shah, J. Kesan, A. Kennis, “Lessons for open standard policies:
a case study of the massachusetts experience”, “Proceedings of the
1st international conference on Theory and practice of electronic
governance”, ICEGOV ’07, pp. 141–150, ACM, New York, NY, USA,
2007, doi:10.1145/1328057.1328088.

[10] M. Karjalainen, “Large-scale migration to an open source office suite:
An innovation adoption study in finland”, phdthesis, University of
Tampere, Tampere, 2010.

[11] M. Merruko, E. Berki, P. Nykänen, “Open source software process:
A potential catalyst for major changes in electronic health record
systems”, A. Cerone, D. Persico, S. Fernandes, A. Garcia-Perez, P. Kat-
saros, S. A. Shaikh, I. Stamelos, eds., “Revised Selected Papers of the
SEFM 2012 Satellite Events on Information Technology and Open
Source: Applications for Education, Innovation, and Sustainability”,
vol. 7991, Springer-VerlagBerlin, Heidelberg, 2012.

[12] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker,
M. Deardeuff, “How amazon web services uses formal methods”,
Communications of the ACM, vol. 58, no. 4, pp. 66–73, 2015, doi:
10.1145/2699417.

[13] J. Valtanen, E. Berki, K. Barlas, L. Li, M. Merruko, “Problem-focused
education and feedback mechanisms for re-designing a course on
open source and software quality.”, U. J., B. S., R. M., S. G., eds., “The
18th INSPIRE - INternational conference on Software Process Im-
provement in Research, Education and Training.”, pp. 23–36, London,
UK, Southampton Solent University Press., 2013.

[14] “CafeOBJ official site”, https://cafeobj.org/, accessed: 2022-04-15.

[15] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, J.-P. Jouan-
naud, Introducing OBJ, pp. 3–167, Springer US, Boston, MA, 2000,
doi:10.1007/978-1-4757-6541-0_1.

[16] R. Diaconescu, K. Futatsugi, Cafeobj Report - The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification,
vol. 6 of AMAST Series in Computing, World Scientific Publishing
Company, 1998, doi:10.1142/3831.

[17] J. A. Goguen, J. Meseguer, “Order-sorted algebra I: Equational de-
duction for multiple inheritance, overloading, exceptions and partial
operations”, Theoretical Computer Science, vol. 105, no. 2, pp. 217–273,
1992, doi:10.1016/0304-3975(92)90302-V.

[18] R. Diaconescu, K. Futatsugi, “Behavioural coherence in object-
oriented algebraic specification”, Journal of Universal Computer Sci-
ence, vol. 6, no. 1, pp. 74–96, 2000, http://www.jucs.org/jucs_6_1/
behavioural_coherence_in_object.

[19] T. Sawada, K. Futatsugi, N. Preining, CafeOBJ Manual, https:
//cafeobj.org/files/reference-manual.pdf, ver.1.5.7 ed., 2018.

[20] J. Friesen, Java XML and JSON: Document Processing for Java SE, Apress,
Berkeley, CA, 2nd ed., 2019, doi:10.1007/978-1-4842-4330-5.

[21] T. Bray, “The javascript object notation (json) data interchange format”,
RFC 8259, 2017, doi:10.17487/RFC8259.

[22] “Introducing JSON”, https://www.json.org/json-en.html, ac-
cessed: 2020-05-24.

[23] ECMA, “Standard ecma-404: The json data interchange syntax (1st
edition)”, ECMA (European Association for Standardizing Information
and Communication Systems), 2013.

[24] ECMA, “Standard ecma-404: The json data interchange syntax (2nd
edition)”, ECMA (European Association for Standardizing Information
and Communication Systems), 2017.

[25] M. Droettboom, “Understanding JSON Schema”,
https://json-schema.org/understanding-json-schema/
UnderstandingJSONSchema.pdf, accessed: 2022-04-15.

[26] S. C. Reghizzi, L. Breveglieri, A. Morzenti, Formal Languages and
Compilation, Springer, London, 2019, doi:https://doi.org/10.1007/
978-1-84882-050-0.

[27] M. Murata, D. Lee, M. Mani, K. Kawaguchi, “Taxonomy of XML
schema languages using formal language theory”, ACM Transac-
tions on Internet Technology (TOIT), vol. 5, no. 4, pp. 660–704, 2005,
doi:10.1145/1111627.1111631.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

Dr. KONSTANTINOS BARLAS has
received his bachelor’s and integrated
master’s degree in Applied Mathemati-
cal and Physical Sciences from National
Technical University of Athens, Greece
in 2006. He has completed his PhD de-
gree on Algebraic Methods at the School
of Electrical and Computer Engineering
of the National Technical University of
Athens, Greece in 2018.

His current research includes Algebraic Specifications,
Formal Methods, Open Standards, Formal Verification, For-
mal Semantics and Formal Logic.

Prof. PETROS STEFANEAS co-
ordinates the Logic and Formal Meth-
ods Group (λ-ForM) of the Algorithmic
Applications and Logic Laboratory at
the Department of Mathematics of the
National Technical University of Athens,
Greece. Dr. Stefaneas has done exten-
sive work on the applications of formal
verification and specification techniques

to engineering problems.
His current research includes formal methodologies for

information privacy, legal documents and open data policies.
Other research interests include abstract model theory, alge-
braic specifications, computational creativity and semantics
and ethics of computer science.

www.jenrs.com Journal of Engineering Research and Sciences, 1(5): 243-250, 2022 250

https://cafeobj.org/
http://www.jucs.org/jucs_6_1/behavioural_coherence_in_object
http://www.jucs.org/jucs_6_1/behavioural_coherence_in_object
https://cafeobj.org/files/reference-manual.pdf
https://cafeobj.org/files/reference-manual.pdf
https://www.json.org/json-en.html
https://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

	Introduction
	Background material
	Open Standards
	Advantages of Open Standards
	Problems of Open Standards

	About Algebraic Specifications of Open Standards
	CafeOBJ
	About JSON
	Uses
	Similar works

	JSON entities as algebraic objects
	Lists
	JSON data in CafeOBJ format
	Algebraic Schema for JSON
	jNodeExists
	getParent

	Test case

	Conclusions and future work

