
Special Issue On Multidisciplinary Sciences And Advanced Technology

Received: 02 May 2022, Revised: 30 June 2022, Accepted: 01 July 2022, Online: 18 July 2022

DOI: https://dx.doi.org/10.55708/js0107004

Acceleration of Image Processing with SHA-3 (Keccak) Algorithm
using FPGA
Argyrios Sideris∗ , Theodora Sanida , Dimitris Tsiktsiris , Minas Dasygenis
Department of Electrical & Computer Engineering, University of Western Macedonia, Kozani, 50131, Greece
∗Corresponding author: , Argyrios Sideris, UOWM Kozani, asideris@uowm.gr

ABSTRACT: In our digital world, the transmission of images between people has played an essential
part in everyday communication. As a result, procedures to ensure the integrity and accuracy of the
communicated data are required. Today, hashing is the most popular and secure way. This article
focuses on the SHA-3 for hashing images dimensions 256×256 pixels with our custom implementations
on the FPGA based on the Very High Speed Integrated Circuit Hardware Description Language
(VHDL). We perform our experiments on the Intel Arria 10 GX FPGA and the Nios II processor. Also,
our experiments with calculating metrics such as entropy, NPCR and UACI show that the SHA-3 is
secure, reliable and has high application potential for hashing images. We propose designs to improve
throughput, security, and efficiency criteria. We strengthened our design using the IP Block Floating
Point Hardware 2 (FPH-2). Our experiments with the proposed implementation have shown increased
throughput by 14.38% and efficiency by 13.95% of the SHA-3 algorithm. Finally, we compared our
findings to other researchers’ existing optimization methodologies, giving data that demonstrate our
research’s strengths.

KEYWORDS Pipeline, Cryptography, SHA-3, Keccak hash function, FPGA, NIOS II Processor, Floating
point hardware

1. Introduction

As well as for any other transmitted information, the in-
tegrity of the image transfer is achieved via cryptographic
hashing functions. An essential role in today’s world of dig-
ital transmissions plays cryptographic hash functions. It is
an essential technology used to protect information integrity
when information is transmitted over a grid. Nowadays,
image information security is crucial, mainly in the army,
meteorology, medicine, intelligent robots, commerce, etc.
As a result, the cryptographic society’s mission has become
the creation of an image hash feature [1]–[3].

Watermarking is the technique for guarding digital im-
ages and video against alterations or corruption. Hash
features can be successfully used in range authentication
and image watermark applications [4]. In expansion, a
picture hash procedure would significantly simplify investi-
gations. Moreover, hashing is utilized within comparisons
in vast databases, in which a lot of similar arrangements of
an image can exist [5].

In this paper, we developed and implemented the famous
Keccak (SHA3-256) algorithm in the Intel Arria 10 GX FPGA
board. We utilised the new algorithm SHA-3 with a 256-bits
output size because it provides high safety and maintains
the original image quality during the hash process. We
provide a FPH-2-based approach in our tailor-made design.
We compare the two strategies we have designed with other

similar models and with standard evaluation criteria (en-
tropy, Unified Averaged Changed Intensity (UACI), Number
of Pixel Changing Rate (NPCR), efficiency and throughput).

The main contributions of our work are:

• We suggest a novel two-stage pipelined design for the
SHA-3 algorithm in 256 bits output length for 256×256
pixel images, optimizing FPGA devices’ acceleration
and performance. We have used SHA-3 with a 256-bits
output length because it provides high security.

• We contribute an innovative procedure established on
the FPH-2 element in our design, which delivers an
inferior cycle count. We analysed the optimisation
plan to maximise the throughput and efficiency mea-
sures, and at the same time, algorithm SHA-3 keeps
the actual image quality.

The remains of the article are organized as follows: In
the next Section 2, we introduce study works which are
similar to ours. In Section 3, we outline our experiments
in detail for the implementation of SHA3-256 (Keccak) in
256×256 pixel images on an Intel Arria 10 GX FPGA device.
In Section 4, we show and discuss the testing results and the
implementation evaluation of our work. Finally, in Section 5,
we outline our study’s conclusions and future work.

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 20

https://dx.doi.org/10.55708/js0107004
https://orcid.org/0000-0002-6252-426X
https://orcid.org/0000-0002-6849-4241
https://orcid.org/0000-0001-6475-5865
https://orcid.org/0000-0002-2180-9752
http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

2. Related work

From the literature review, we selected similar works for
comparison. We chose the specific articles because they
are up to date state of the art designs using the SHA-3
algorithm. The objective of all these models is to enhance
performance while at the same period trying to decrease
power consumption and area on the FPGA board.

An efficient and secured image encryption algorithm is
proposed in [6], jointly using the SHA-3 hash function with
two-dimensional Arnold chaotic maps. In the permutation
step, a conventional encryption technique is described with
four random shuffling rules to avoid time consumption in
the pixel position index sorting phase. Numerical findings
reveal that the proposed encryption technique may improve
security and speed up the implementation of digital picture
transmission.

On work [7], the authors focus on 256× 256 grayscale
image encryption. The implementation was done using
VHDL. The results show that the proposed architecture for
the SHA3-256 algorithm achieved a throughput of 35.593
Gbps, maximum frequency of 458 MHz, area (slices) 2.984
and efficiency of 11.92 Mbps/Slices.

The authors in [8] suggest a new implementation with
a chaotic encryption algorithm for images in dual chaotic
maps. The SHA-3 and an auto updating system calculate the
hash values to construct a Logistic map’s control parameter
and initial condition. Behind that, all the permutations are
executed for rows and columns in an image to exchange
pixels. As an effect, the presented algorithm can oppose
known-plaintext attacks efficiently.

On work [9], the authors focus on all candidates in the
SHA-3 competition in terms of their effectiveness in the area
(slices). Their research was conducted with the Virtex-5
and Virtex-6 FPGA devices. The implementation was done
using VHDL. Their architecture for the SHA3-256 algo-
rithm achieved better results with the Virtex-6 device with
a throughput of 1.071 Gbps, maximum frequency of 197
MHz, area (slices) 397 and efficiency of 2.69 Mbps/Slices.

The authors in [10] focus on all candidates in the SHA-
3 finalists in the FPGA. The main goal of the research is
to analyze the performance of all candidates in terms of
throughput and area. In their work, they used a Virtex 5
and Virtex 6 from Xilinx and Stratix III and Stratix IV from
Intel and the implementation was done using VHDL. The re-
sults show that the proposed architecture for the SHA3-256
(Keccak) algorithm achieves better results with the Virtex-6
device. They achieved a throughput of 16.236 Gbps, area
(slices) 1.446 and efficiency of 11.23 Mbps/Slices.

In [11], the authors work on the assessment of all SHA-3
finalists in FPGA devices. The primary goal of their work
is to compare all candidates with the evaluation criteria
of throughput, clock frequency and area. Their research
was conducted with Virtex-5, 6 and 7 FPGA devices. The
implementation was done using VHDL. The results show
that the proposed design for the SHA-3 algorithm achieves
better results with the Virtex-5 device in clock frequency,
region and performance than other candidates.

The authors in [12] deal with the performance imple-
mentation of all SHA-3 finalists in the FPGA. The main

goal of the research is to provide a fair and comprehensive
evaluation of all candidates in terms of throughput and area.
Their work used a Xilinx Virtex-5 and Virtex-6 device, and
the implementation was done using VHDL. Their architec-
ture for the SHA3-256 (Keccak) algorithm with the Virtex-6
device achieved a throughput of 12.817 Gbps and efficiency
of 10.08 Mbps/Slices, a maximum frequency of 282.7 MHz
and an area (slices) of 1.272.

In [13], the authors investigated the calculatedly effi-
ciency of all SHA-3 finalists in FPGA devices. The primary
purpose of this study is to compare the efficacy of this de-
sign in terms of fragmented functions per unit area. The
work was done using a Virtex-5 FPGA chip with VHDL
as the implementation language. The suggested design
for the SHA3-256 (Keccak) algorithm requires 1.117 slices
(area), reaches a maximum frequency of 189 MHz, and
has a throughput of 6.263 Gbps and an efficiency of 3.17
Mbps/Slices, according to the results.

The authors in [14] deal with the effective implemen-
tation of all SHA-3 finalists in the FPGA. The main goal
of the research is to provide a basic comparison between
all candidates in terms of clock frequency, throughput and
area. They used a Xilinx FPGA device in their work, and
the implementation was done using VHDL. Their architec-
ture for the SHA3-256 algorithm achieved a throughput of
11.9 Gbps, a maximum frequency of 215 MHz, and an area
(slices) of 4.745.

On work [15], the authors suggested a pipelining archi-
tecture for the SHA-3 algorithm in order to raise its efficiency
and throughput of them. The proposed architectures were
implemented in FPGA Virtex-2, Spartan-3 and Virtex-4 us-
ing Verilog. According to the experimental findings, the
suggested designs provide excellent performance with the
Virtex-4 device in terms of total area, maximum frequency,
throughput, and throughput/area.

All of these documents and many more [16]–[25], have
as their main goal the increase of its throughput and effi-
ciency metrics in the SHA3 (Keccak) algorithm. However,
improved architecture is always needed to enhance through-
put and efficiency. Compared to previous works, we de-
signed and implemented two designs of the SHA3, using
the Nios II/f processor. Our first design applies a two-stage
pipeline architecture. The second concerns a method based
on the FPH-2 part in a two-stage pipeline design. The two
approaches we suggest in this paper deliver a secure SHA3
with 256bits hashing implementation. The proposed design
with the FPH-2 component and the two-stage pipelined
architecture outperforms existing implementations.

3. Implementation for Image Hashing

This section analyses all the design components we have im-
plemented for the SHA3-256 (Keccak). In our experiments,
we have used the Standard Edition (SE) Quartus II ver. 18.3
and the DE5a-Net board. Table 1 displays the specifications
of the Terasic DE5a-Net board.

3.1. Nios II - Soft-Core Embedded Processor

The Nios II is wholly implemented in the FPGA. It is consid-
ered suitable for most embedded applications and provides

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 21

http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

flexibility for real-time and cost-sensitive functionality [26].
Nios II is offered in three different configurations: fast,
standard and economy. The Nios fast is optimized for the
most high performance; this performance can be modified
using patronage instructions, hardware accelerators, and
the highest bandwidth switch fabric. The Nios standard
is used for increased performance, and Nios economy is
appropriate for mediocre performance [27].

Table 1: FPGA Specifications

Parameters Values
FPGA id 10AX115N2F45E1SG
Board Terasic Intel Arria® 10 GX FPGA
System Clock Frequency 50MHz Oscillator
Memory SO-DIMM 2400 MHz SDRAM 2x4GB DDR4

Figure 1: Nios® II processor family Fast (/f core): Six-stage pipeline
optimized for highest performance, optional memory management unit
(MMU), or memory protection unit (MPU) [27].

In our experimentations, we utilised the processor NIOS
II/f, as shown in Figure 1. Its main characteristics are oper-
ation with a 6-stage pipeline to gain the external interrupt
controller, custom instructions, highest DMIPS/MHz and
optional hardware multiply to improve arithmetic perfor-
mance [28, 29].

3.2. Nios II Custom Instruction Implementation

Custom instructions provide us with the capability to feet
the Nios II processor to complete the requirements of an
application. A custom instruction logic block interfaces
with the Nios II processor through 3 ports: dataa, datab, and
result. The custom instruction obtains input on its dataa
port and datab ports and drives the final results to its result
port. A conduit interface to external logic provides a custom
interface to method resources exceeding the Nios II pro-
cessor. A custom combination statement complements its
logical function in a single clock cycle. Custom multi-cycle
instructions require two or more time cycles to operate. An
extended custom instruction allows the implementation of
several different operations. An Internal register file allows
to access the Nios II for input or output or both [30].

Figure 2 shows a block graph with all ports of a Nios II
custom instruction.

3.3. Floating Point Hardware 2 (FPH-2)

We may choose to avoid the floating-point divider because
it takes more resources than other instructions. If Nios II
does not employ floating-point division, we may choose to
do so. We can rearrange our code in some cases to reduce
or even eliminate separated processes.

Figure 2: Custom Instruction types with all ports of the Nios II processor.

Table 2: FPH-2 operations implemented

Floating Point Hardware 2 custom instruction
Multi-Cycle Custom Instruction Combinatorial Custom Instruction

add
multiply
subtract
divide

square root
convert

minimum
maximum
absolute
compare
negate

Minimum, maximum, negate, absolute, and compar-
isons are all provided via the special instruction implemen-
tations. FPH-2 is preferred over FPH-1 legacy because it has
a lower clock cycle count, better acceleration, and a smaller
area. In addition, the FPH-2 component helps with FPH-1
procedures and rounding accuracy, which is not an IEEE
754-defined rounding mode [30]. The floating functions
performed by each custom orders are listed in Table 2.

3.4. System Design of the SHA3-256 Core

FPH-2 is supported by the Nios II architecture. Low cycle
count implementations are possible with the FPH-2 com-
ponent. Addition, subtraction, square root integer to float
conversion, multiplication, float to integer conversion, and
division are the most common floating point custom in-
structions. The SHA3-256 proposed system is depicted in
Figure 3. The Xor Input bitrate, Zero State, Control Unit,
Counter and Keccak Round are built into the structure. The
initial zero status is retained in the zero status component
of the first iteration of SHA-3.

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 22

http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

While compile a multi-block message, the multiplexer
is used to provide feedback. The Xor Input bitrate element
combines the XOR bits of the bitrate state matrix with the
bits of the Input block, which are the result of the infill
procedure. The control, coordination and communication
of the data flow within the design is the responsibility of
the control unit. The Control Unit signal enables the meter.
The Keccak RC is described in the following subsection.

Figure 3: The design of the whole system for the SHA3-256 Core.

3.5. The SHA-3 Pipelined Design

The SHA-3 has 24 modification phases, each of which is
made up of five phases: θ, ρ, π, χ and ι, signified as theta,
rho, pi, chi, and iota respectively. SHA-3 (Keccak) takes the
state array per step and produces a newly updated state
array after using the related state function. Figure 4 shows
the Keccak Round’s two-staged pipelined design.

Figure 4: Two-staged pipelined design of the Keccak Round.

There is a 2-in-1 multiplexer for the round’s feedback at
the start of the round. In each round, we use the pipelined
approach to enter two registers. Between portions, the first
register is located θ and ρ in order to separate the crucial
path by nearly half. The second register is located just before
the feedback unit at the end of the round. The clock and
reset are the control signals of the two registers. The RC is
put in the ι procedure produced by the RC generator and is
shown in Table 3.

3.6. System Integration

The original grayscale image had a resolution of 256×256
pixels. The SDRAM memory stores the input block. The

block is then fed into the SHA-3 core as input. The SHA-3
core’s output block is saved in SDRAM memory. VHDL was
used to implement all of the components. Using a variety
of test benches, we inspected each VHDL file to ensure its
validity and usefulness. The ModelSim 10.6d simulator was
used to run all of the tests on each VHDL file, with valid
input data sheets given by NIST for the SHA-3 algorithm
in [31].

In addition, we used ModelSim 10.6d to simulate the top
module using legitimate input examples for the SHA-3 algo-
rithm provided by NIST in [32]. We moved on to the design
of the Nios II CPU after correctly verifying the simulation
outcomes in ModelSim 10.6d.

Table 3: The RC Generator RCi in Iota function

RC0 0x0000000000000001 RC12 0x000000008000808B
RC1 0x0000000000008082 RC13 0x800000000000008B
RC2 0x800000000000808A RC14 0x8000000000008089
RC3 0x8000000080008000 RC15 0x8000000000008003
RC4 0x000000000000808B RC16 0x8000000000008002
RC5 0x0000000080000001 RC17 0x8000000000000080
RC6 0x8000000080008081 RC18 0x000000000000800A
RC7 0x8000000000008009 RC19 0x800000008000000A
RC8 0x000000000000008A RC20 0x8000000080008081
RC9 0x0000000000000088 RC21 0x8000000000008080
RC10 0x0000000080008009 RC22 0x0000000080000001
RC11 0x000000008000000A RC23 0x8000000080008008

Figure 5: Avalon Switch Fabric and SHA3-256 Core data transfer.

Figure 6: The whole chart of the system on the FPGA.

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 23

http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

The designer platform was used to create the Nios II pro-
cessor’s scheme. We utilised the Nios II fast soft-core, which
has a high-performance speed and maximises the processor
core’s fMAX performance. Clock, On-chip RAM, controller
of SDRAM, a counter of performance, PLL, Peripheral ID
System, JTAG-UART, and custom component SHA-3-256 are
among the Nios II system’s implemented components. The
operating memory for the Nios II CPU is on-chip RAM. As
demonstrated in Figure 5, all information is sent from Nios
II to the SHA-3 feature via the Avalon Switch Fabric.

Figure 6 displays the whole structure of our architecture
that we built using the Nios II soft-core.

4. Experimental Results

The test were carried out using the Arria 10 GX FPGA.
We designed a novel two-staged pipelined design with the
FPH-2 component and a two-staged pipelined design.

4.1. Image and Histogram Analysis

Figure 7 (b) shows the histogram of the classical images
(“Lena”, “Camera man” and “Pepper”) in Figure 7 (a). In the
histogram, the horizontal axis denotes the gray level, and
the vertical axis denotes the pixel number of each gray level.
After being encrypted by the SHA3-256 (Keccak) algorithm,
the histogram of the cipher-image is completely uniform
and absolutely different from that of the plain-image as
shown in Figure 7 (d).

4.2. Entropy Analysis

The entropy of a photograph is a statistical metric for de-
termining how random a coded image is. It also describes
the median information of an image origin. The entropy
E(X) is calculated in (1), where X represents the test photo,
xi symbolizes the cost in X, and Pr(xi) indicates the chance
of X = xi.

E(X) =
n∑

i=1

Pr(xi) log2 Pr(xi) (1)

Table 4: The entropies of fragmented images and comparison

Images This
Work Ref.[6] Ref.[7] Ref.[8]

Boat 7.9994 7.991 7.9993 7.991
Lena 7.9990 7.990 7.9989 -
Cameraman 7.9992 - 7.9991 -
Peppers 7.9995 - 7.9994 7.991
Baboon 7.9996 7.992 7.9995 7.992

The entropy of a large number of hashed photos was cal-
culated. The results are presented in Table 4, which shows
that the hashed image entropy’s are extremely near to 8. For
a 256 gray-scale photo, the max entropy is log2(256) = 8. As
a result, the suggested picture hashing approach has a high
resistance against entropy attacks.

4.3. Correlation Analysis

Pixels should have a strong neighborhood correlation, which
is one of the most important properties of an image. For the
design to be considered secure and effective, there must be
no correlation between pixels in an encrypted image. The
correlation coefficient is given by in (2), where xi and yi is a
pair of neighboring pixels that are horizontally, vertically,
and diagonally adjacent, M signifies the total number of
neighboring pixel pairs.

rxy =

∑M
i=1

(
xi−

1
M
∑M

j=1 x j
) (

yi−
1
M
∑M

j=1 y j
)

√∑M
i=1

(
xi−

1
M
∑M

j=1 x j
)2√∑M

i=1

(
yi−

1
M
∑M

j=1 y j
)2 (2)

Table 5 shows the correlation coefficients in the three
orientations, demonstrating that the encrypted image cor-
relation coefficients are very close to 0. As a result, the
suggested model is resistant to statistical attacks.

Table 5: Correlations coefficients of encrypted images

Image Direction Correlation

Lena
Horizontal
Vertical
Diagonal

0.001214
0.006210
0.003216

Camera man
Horizontal
Vertical
Diagonal

0.001368
0.007410
0.004126

Peppers
Horizontal
Vertical
Diagonal

0.001424
0.007128
0.005210

4.4. NPCR and UACI Metrics Analysis

We use the Number of Pixel Change Rates (NPCR) and
Unified Average Changing Intensity (UACI) to calculate
the result of switching one pixel in both plain and hashed
photos. [33]. The NPCR measures the number of individual
pixels between the two images, and the UACI measures the
average intensity. The NPCR is computed using (3), where
D represents the bipolarity array with comparable size as
the prototype image and hashes image, M ×N define the
size of the picture.

NPCR =
M∑

i=1

N∑
j=1

D(i, j)×
100%
M×N

(3)

The UACI calculated using (4), where C1 denotes the
original image, C2 is the hashed picture and M×N define
the size of the picture in pixels.

UACI =

 M∑
i=1

N∑
j=1

|C1(i, j)−C2(i, j)|
255

× 100%
M×N

(4)

The findings of the NPCR and the UACI are shown in
Table 6. The high values of the NPCR and UACI measure-
ments imply that hashing is more secure and more resistant
to differential assaults.

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 24

http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

Figure 7: (a) plain-image, (b) histogram of the plain-image, (c) cipher-image and (d) histogram of the cipher-image.

Table 6: The NPCR and the UACI results and comparison

Images This Work Ref. [6] Ref. [7] Ref. [8]
NPCR UACI NPCR UACI NPCR UACI NPCR UACI

Boat 99.644 33.652 99.629 33.529 99.6420 33.6463 - -
Lena 99.692 33.688 99.554 33.392 99.6886 33.6818 99.603 33.432
Cameraman 99.660 33.662 99.598 33.534 99.6543 33.6592 99.641 33.498
Peppers 99.634 33.640 - - 99.6321 33.6326 - -
Baboon 99.662 33.664 99.615 33.402 99.6563 33.6531 99.600 33.428

4.5. Throughput and Efficiency Metrics

The throughput (TH) is computed using (5). In the (5),
Number of bits is the bitrate size r, frequency is the maximum
frequency reported by the tool and Number of clock cycles
denote the latency of the circuit. Clock cycles represent the
number of resumption needed of the five functions θ, ρ, π,
χ and ι to generate the hash value.

TH =
Number of bits × frequency

Number of clock cycles
(5)

The efficiency (EF) is computed by using (6).

EF = TH
Area

(6)

The findings of our two designs for the SHA3-256 (Kec-
cak) algorithm are shown in Table 7. The number of clock
cycles of the five functions in a two-staged pipelined design
is 18, while the number of clock cycles in a two-staged
pipelined design with the component FPH-2 is 14.

Since the number of clock cycles is reduced and the
maximum clock frequency increases, the proposed design
of a two-staged pipelined architecture with FPH-2 provides
the highest efficiency and throughput.

Table 7: The results for Efficiency and Throughput of our two designs

Design Area
(Slices)

Frequency
(MHz)

Throughput
(Gbps)

(r = 1088)

Efficiency
(Mbps/Slices)

(r = 1088)
Proposed architecture
with two-staged
pipeline

2682 432 25.507 9.51

Proposed architecture
with two-staged
pipeline
and FPH-2

2764 472 36.681 13.27

Table 8 presents the comparison with other similar ar-
chitectures, taking into account their best implementation
in terms of the criteria of throughput and efficiency for the
SHA3-256 (Keccak) algorithm. When using the component
FPH-2 to implement the proposed design, the area was
raised by 10.30% (slices), but the maximum clock improved
by 10.92% (frequency) and increased by 12.85% the number
of clock cycles, resulting in a 14.38% increase in throughput
and a 13.95% increase inefficiency.

Researchers in the works [9, 11, 12, 13, 20, 21, 22] show
a smaller area compared to our implementations, but the
frequency they achieve is lower than our experimental ap-
plications. Also, in the work [15] there is a higher frequency
than the one we achieved, but they show a large increase
in the area. Finally, in the works [7, 14, 18] the researchers

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 25

http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

Table 8: Throughput - Efficiency results and comparison for the SHA-3 algorithm

Work FPGA Device Frequency
(MHz)

Area
(Slices)

Throughput
(Gbps)

(r = 1088)

Efficiency
(Mbps/Slices)

(r = 1088)
Kitsos P. et al. (2010) [14] - 215 4745 11.9 2.50
Akin A. et al. (2010) [15] Virtex-4 509 4356 22.33 5.13
Kaps J. P. et al. (2012) [21] Virtex-6 299 106 0.136 1.28
Provelengios G. et al. (2012) [20] Virtex-5 285 2573 5.70 2.21
Gaj K. et al. (2010) [12] Virtex-6 282.7 1272 12.817 10.08
Jararweh Y. et al. (2012) [11] Virtex-5 271 1414 12.28 8.68
Sideris A.et al. (2022) [7] Arria 10 GX 458 2984 35.593 11.92
Gholipour A. et al. (2012) [18] Altera Stratix III 212.49 5633 13.59 2.41
Baldwin B. et al. (2010) [13] Virtex-5 189 1117 6.263 3.17
Kobayashi K. et al. (2010) [22] Virtex-5 205 1433 8.40 5.86
Homsirikamol E. et al. (2011) [10] Virtex-6 - 1446 16.236 11.23
Jungk B. (2011) [9] Virtex-6 197 397 1.071 2.69
Proposed design
with FPH-2 Arria 10 GX 472 2764 36.681 13.27

show a larger area and smaller frequency than we achieved
with our architectures. In our architectures, the primary
purpose was not to use an excessive growth of the cost of the
area (Slices) so that the throughput (Gbps) and efficiency
(Mbps/Slices) are not burdened.

5. Conclusions and Future Work

The optimal performance of hashing images with a size of
256×256 pixels using the SHA-3 algorithm with the Nios
II/f (fast) soft-core processor in the FPGA Intel Arria 10 GX
is presented in this study.

We choose the SHA-3 algorithm, which has a 256-bit
output length, because it provides the best security and
performance. Our testing using the proposed two-staged
pipelined design and the bespoke FPH-2 component re-
vealed that the SHA-3 algorithm had a 14.38% percent
improvement in throughput and a 13.95% percent gain in-
efficiency. At the same time, we increased the minimum
area by 10.30% (slices), the max clock signal by 10.92% (fre-
quency), and by 12.85% the number of clock cycles. The
suggested approach combines speed, performance, and se-
curity to produce the optimum solution for hashing images
with a dimension of 256×256 pixels.

In the future, we’ll experiment with picture hashing
using Tree Hashing and a simpler design with fewer rounds
(12 instead of the 24 in SHA-3).

Conflict of Interest The authors declare no conflict of
interest.

References

[1] S. Agarwal, “Secure image transmission using fractal and 2d-
chaotic map”, Journal of Imaging, vol. 4, no. 1, p. 17, 2018, doi:
10.3390/jimaging4010017.

[2] A. Girdhar, H. Kapur, V. Kumar, “A novel grayscale image encryption
approach based on chaotic maps and image blocks”, Applied Physics
B, vol. 127, no. 3, pp. 1–12, 2021, doi:10.1007/s00340-021-07585-x.

[3] X. Kang, R. Tao, “Color image encryption using pixel scrambling
operator and reality-preserving mpfrht”, IEEE Transactions on Circuits
and Systems for Video Technology, vol. 29, no. 7, pp. 1919–1932, 2018,
doi:10.1109/TCSVT.2018.2859253.

[4] A. Swaminathan, Y. Mao, M. Wu, “Robust and secure image hashing”,
IEEE Transactions on Information Forensics and security, vol. 1, no. 2, pp.
215–230, 2006, doi:10.1109/TIFS.2006.873601.

[5] V. Monga, A. Banerjee, B. L. Evans, “A clustering based approach to per-
ceptual image hashing”, IEEE Transactions on Information Forensics and
Security, vol. 1, no. 1, pp. 68–79, 2006, doi:10.1109/TIFS.2005.863502.

[6] G. Ye, H. Zhao, H. Chai, “Chaotic image encryption algorithm us-
ing wave-line permutation and block diffusion”, Nonlinear Dynamics,
vol. 83, no. 4, pp. 2067–2077, 2016, doi:10.1007/s11071-015-2465-7.

[7] A. Sideris, T. Sanida, D. Tsiktsiris, M. Dasygenis, “Image hashing
based on sha-3 implemented on fpga”, “Recent Advances in Manu-
facturing Modelling and Optimization”, pp. 521–530, Springer, 2022,
doi:10.1007/978-981-16-9952-8_44.

[8] G. Ye, X. Huang, “A secure image encryption algorithm based on
chaotic maps and SHA-3”, Security and Communication Networks, vol. 9,
no. 13, pp. 2015–2023, 2016, doi:10.1002/sec.1458.

[9] B. Jungk, J. Apfelbeck, “Area-efficient fpga implementations of
the sha-3 finalists”, “2011 International Conference on Reconfig-
urable Computing and FPGAs”, pp. 235–241, IEEE, 2011, doi:
10.1109/ReConFig.2011.16.

[10] E. Homsirikamol, M. Rogawski, K. Gaj, “Comparing hardware per-
formance of round 3 sha-3 candidates using multiple hardware
architectures in xilinx and altera fpgas”, “Ecrypt II Hash Workshop”,
vol. 2011, pp. 1–15, 2011, doi:10.1001/ICT-2007-216676.

[11] Y. Jararweh, H. Tawalbeh, A. Moh’d, et al., “Hardware performance
evaluation of sha-3 candidate algorithms”, Journal of Information
Security, 2012, doi:10.4236/jis.2012.32008.

[12] K. Gaj, E. Homsirikamol, M. Rogawski, “Fair and comprehensive
methodology for comparing hardware performance of fourteen round
two sha-3 candidates using fpgas”, “International Workshop on Cryp-
tographic Hardware and Embedded Systems”, pp. 264–278, Springer,
2010, doi:10.1007/978-3-642-15031-9_18.

[13] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, W. P.
Marnane, “Fpga implementations of the round two sha-3 candidates”,
“2010 International Conference on Field Programmable Logic and
Applications”, pp. 400–407, IEEE, 2010, doi:10.1109/FPL.2010.84.

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 26

http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

[14] P. Kitsos, N. Sklavos, “On the hardware implementation efficiency
of sha-3 candidates”, “2010 17th IEEE International Conference on
Electronics, Circuits and Systems”, pp. 1240–1243, IEEE, 2010, doi:
10.1109/ICECS.2010.5724743.

[15] A. Akin, A. Aysu, O. C. Ulusel, E. Savaş, “Efficient hardware imple-
mentations of high throughput sha-3 candidates keccak, luffa and blue
midnight wish for single-and multi-message hashing”, “Proceedings
of the 3rd International Conference on Security of Information and
Networks”, pp. 168–177, 2010, doi:10.1145/1854099.1854135.

[16] I. San, N. At, “Compact keccak hardware architecture for data
integrity and authentication on fpgas”, Information Security Jour-
nal: A Global Perspective, vol. 21, no. 5, pp. 231–242, 2012, doi:
10.1080/19393555.2012.660678.

[17] A. Sideris, T. Sanida, M. Dasygenis, “High throughput pipelined
implementation of the sha-3 cryptoprocessor”, “2020 32nd Interna-
tional Conference on Microelectronics (ICM)”, pp. 1–4, IEEE, 2020,
doi:10.1109/ICM50269.2020.9331803.

[18] A. Gholipour, S. Mirzakuchaki, “High-speed implementation of
the keccak hash function on fpga”, International Journal of Ad-
vanced Computer Science, vol. 2, no. 8, pp. 303–307, 2012, doi:
10.1142/S0218126616500262.

[19] A. Sideris, T. Sanida, M. Dasygenis, “High throughput implementation
of the keccak hash function using the nios-ii processor”, Technologies,
vol. 8, no. 1, p. 15, 2020, doi:10.3390/technologies8010015.

[20] G. Provelengios, P. Kitsos, N. Sklavos, C. Koulamas, “Fpga-based
design approaches of keccak hash function”, “2012 15th Euromi-
cro Conference on Digital System Design”, pp. 648–653, IEEE, 2012,
doi:10.1109/DSD.2012.63.

[21] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, S. Gu-
rung, “Lightweight implementations of sha-3 finalists on fpgas”,
“The Third SHA-3 Candidate Conference”, pp. 1–17, 2012, doi:
10.1007/978-3-642-25578-6_20.

[22] K. Kobayashi, J. Ikegami, M. Knežević, E. X. Guo, S. Matsuo, S. Huang,
L. Nazhandali, Ü. Kocabaş, J. Fan, A. Satoh, et al., “Prototyping plat-
form for performance evaluation of sha-3 candidates”, “2010 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST)”, pp. 60–63, IEEE, 2010, doi:10.1109/HST.2010.5513111.

[23] F. Kahri, H. Mestiri, B. Bouallegue, M. Machhout, “High speed
fpga implementation of cryptographic keccak hash function crypto-
processor”, Journal of Circuits, Systems and Computers, vol. 25, no. 04, p.
1650026, 2016, doi:10.1142/S0218126616500262.

[24] G. S. Athanasiou, G.-P. Makkas, G. Theodoridis, “High throughput
pipelined fpga implementation of the new sha-3 cryptographic hash
algorithm”, “2014 6th International Symposium on Communications,
Control and Signal Processing (ISCCSP)”, pp. 538–541, IEEE, 2014,
doi:10.1109/ISCCSP.2014.6877931.

[25] L. Ioannou, H. E. Michail, A. G. Voyiatzis, “High performance
pipelined fpga implementation of the sha-3 hash algorithm”, “2015
4th Mediterranean Conference on Embedded Computing (MECO)”,
pp. 68–71, IEEE, 2015, doi:10.1109/MECO.2015.7181868.

[26] Intel®FPGA, “Classic processor reference guide”, online
https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf , (accessed
on 12 December 2021).

[27] Intel®FPGA, “Nios® II processors for fpgas”, online
https://www.intel.com/content/www/us/en/products/
programmable/processor/nios-ii.html, (accessed on 15 De-
cember 2021).

[28] A. Sideris, T. Sanida, M. Dasygenis, “Hardware acceleration of sha-256
algorithm using nios-ii processor”, “2019 8th International Confer-
ence on Modern Circuits and Systems Technologies (MOCAST)”, pp.
1–4, IEEE, 2019, doi:10.1109/MOCAST.2019.8741638.

[29] A. Sideris, T. Sanida, M. Dasygenis, “Hardware acceleration of the
aes algorithm using nios-ii processor”, “2019 Panhellenic Conference
on Electronics & Telecommunications (PACET)”, pp. 1–5, IEEE, 2019,
doi:10.1109/PACET48583.2019.8956285.

[30] Intel®FPGA, “Nios II custom instruction user guide”, on-
line https://www.intel.com/content/www/us/en/programmable/
documentation/cru1439932898327.html, (accessed on 20 December
2021).

[31] NIST, “Cryptographic standards and guide-
lines”, online https://csrc.nist.gov/Projects/
Cryptographic-Standards-and-Guidelines, (accessed on 10
December 2021).

[32] CSDITL, “Example values - cryptographic standards and
guidelines”, online https://csrc.nist.gov/projects/
cryptographic-standards-and-guidelines/example-values,
(accessed on 19 December 2021).

[33] Y. Wu, J. P. Noonan, S. Agaian, et al., “NPCR and UACI randomness
tests for image encryption”, Cyber journals: multidisciplinary journals
in science and technology, Journal of Selected Areas in Telecommunications
(JSAT), vol. 1, no. 2, pp. 31–38, 2011, doi:10.1001/JSAT.2011.863-502-2.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

Argyrios Sideris received his B.Sc. title
in Computer Science in 2012, and he got
his M.Sc. title in Pervasive and Mobile
Computing Systems in 2017, both from
the Hellenic Open University (HOU) of
Patra, Greece. Since 2018 he has been
a PhD candidate at the Department of
Electrical and Computer Engineering at

the Institute University of Western Macedonia (UOWM) of
Kozani, Greece, and is conducting his research dissertation
on "Security and cryptographic applications in embedded
systems".

He is a student member at the Institute of Electrical
and Electronics Engineers (IEEE), and his current research
interests include Very-large-scale integration (VLSI) design
and architectural design in field-programmable gate array
(FPGA), cryptography and hardware security.

Theodora Sanida received her B.Sc. title
in Computer Science in 2012 from the
Hellenic Open University (HOU) of Pa-
tra, Greece. She got her M.Sc. title in
Informatics Systems in Business Admin-
istration from the Department of Infor-
matics and Telematics of the Harokopio
University of Athens in 2016. Since 2018

she has been a PhD candidate at the Department of Electri-
cal and Computer Engineering at the Institute University
of Western Macedonia (UOWM) in Kozani, Greece. She
is conducting her research dissertation on "Designing and
implementing applications in heterogeneous computing".

She is a student member at the Institute of Electrical
and Electronics Engineers (IEEE), and her current research
interests include neural networks, machine learning, deep
learning, cryptography and accelerators architectural design
in field-programmable gate array (FPGA).

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 27

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.intel.com/content/www/us/en/products/programmable/processor/nios-ii.html
https://www.intel.com/content/www/us/en/products/programmable/processor/nios-ii.html
https://www.intel.com/content/www/us/en/programmable/documentation/cru1439932898327.html
https://www.intel.com/content/www/us/en/programmable/documentation/cru1439932898327.html
https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines
https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

A. Sideris et al., Acceleration of Image Processing with SHA-3

Dimitris Tsiktsiris received his Diploma
Degree in Informatics and Telecommuni-
cations Engineering from the Faculty of
Engineering of the University of Western
Macedonia (2017). He is a PhD Can-
didate since 2018 at the department of
Electrical and Computer Engineering at
the University of Western Macedonia

(UOWM) in Kozani, Greece.. He is a research associate
at the Informatics and Technology Institute of the Centre
for Research and Technology - Hellas since September 2019.

His primary research interests focus on computer vision
using AI, deep learning algorithms, human activity recogni-
tion and acceleration on embedded systems and low-power
devices.

Minas Dasygenis (Electric and Com-
puter Engineer, 1999, Ph.D) is an Assis-
tant Professor at the Polytechnic School
of Kozani, Department of Electrical and
Computer Engineering, University of
Western Macedonia, Greece, in the re-
search area of designing embedded sys-
tems and accelerators in homogeneous

or heterogeneous architectures. He carries over 15 years
of teaching experience in Operating Systems, Computer
Architecture, Embedded Systems, Parallel & Distributed
Systems.

His research interests are focused on computer archi-
tecture, robotics, embedded and cyber-physical systems,
gamification, Internet of Things, security and hardware &
software co synthesis. Currently, he is the Director of the
Laboratory of Robotics, Embedded and Integrated systems,
research coordinator in three programs, and supervises six
PhD students.

www.jenrs.com Journal of Engineering Research and Sciences, 1(7): 20-28, 2022 28

http://www.jenrs.com

	 Introduction
	Related work
	Implementation for Image Hashing
	Nios II - Soft-Core Embedded Processor
	Nios II Custom Instruction Implementation
	Floating Point Hardware 2 (FPH-2)
	System Design of the SHA3-256 Core
	The SHA-3 Pipelined Design
	System Integration

	Experimental Results
	Image and Histogram Analysis
	Entropy Analysis
	Correlation Analysis
	NPCR and UACI Metrics Analysis
	Throughput and Efficiency Metrics

	Conclusions and Future Work

