
Special Issue of Multidisciplinary Sciences and Advanced Technology 

www.jenrs.com                        Journal of Engineering Research and Sciences, 1(10): 56-68, 2022                                            56 

Received: 15 August, 2022, Accepted: 08 October, 2022, Online: 31 October, 2022 

DOI: https://dx.doi.org/10.55708/js0110008  

 

 

The Current Trends of Deep Learning in Autonomous 

Vehicles: A Review 

Raymond Ning Huang 1 , Jing Ren *,2 , Hossam A. Gabbar 3 

1Department of Mechanical Engineering, University of Toronto, Toronto, M5S 1A4, Canada 
2Department of Electrical and Computer Engineering, Ontario Tech University, Oshawa, L1H 7K4, Canada 
3Department of Energy and Nuclear Engineering, Ontario Tech University, Oshawa, L1H 7K4, Canada 

*Corresponding author: Jing Ren, 2000 Simcoe Street N. Oshawa, ON, Canada, jing.ren@uoit.ca 

ABSTRACT: Autonomous vehicles are the future of road traffic.  In addition to improving safety and 

efficiency from reduced errors compared to conventional vehicles, autonomous vehicles can also be 

implemented in applications that may be inconvenient or dangerous to a human driver. To realize 

this vision, seven essential technologies need to be evolved and refined including path planning, 

computer vision, sensor fusion, data security, fault diagnosis, control, and lastly, communication and 

networking. The contributions and the novelty of this paper are: 1) provide a comprehensive review 

of the recent advances in using deep learning for autonomous vehicle research, 2) offer insights into 

several important aspects of this emerging area, and 3) identify five directions for future research. To 

the best of our knowledge, there is no previous work that provides similar reviews for autonomous 

vehicle design. 
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1. Introduction  

Autonomous vehicles are the future of road traffic. As 

intelligent agents equipped with sensing technology 

including GPS, Inertial Navigation Systems (INS), Lidar, 

and Cameras combined with advanced control systems, 

autonomous vehicles have important applications in the 

future. In addition to improving safety and efficiency from 

reduced errors compared to conventional vehicles, 

autonomous vehicles can also be implemented in 

applications that may prove to be difficult or unsafe for a 

human driver. 

However, before they can be safely commercially 

introduced, several essential technologies necessary for 

the design and operation of autonomous vehicles must be 

developed and refined. The function of an autonomous 

vehicle can be simplified to be a vehicle that can plan and 

follow a safe and efficient path from given starting points 

to endpoints with some control constraints. To achieve this 

goal, it is important to have strong understanding of 

human visual system and plan the substitution with an 

effective visual sensor system with robust data analytics. 

Beyond simple visual data, other sensory data such as 

location and inertial data can be integrated to improve 

safety and performance in control and path planning. In 

effect, the use of more data can improve system safety and 

performance. A commons strategy deployed to increase 

the amount of data AVs has access to is facilitating vehicle-

to-vehicle (V2V) communication, allowing vehicles to 

have access to data from more sensors and more accurate 

state information of surrounding vehicles. Beyond cellular 

V2V communication, it is also important to consider the 

issue of bandwidth efficiency and the application of 

unmanned autonomous vehicles (UAVs) and other 

technologies to facilitate communication. However, as 

communication increases and deep learning is 

increasingly used more in Avs, it is essential to ensure user 

data is secure and the vehicles are resistant to any 

malicious attacks.    Because autonomous vehicles require 

accurate sensory and system information, it is especially 

relevant to detect and diagnose faults. In this paper, we 

will consider seven key technologies needed for 

autonomous vehicles: path planning, computer vision, 

sensor fusion, data security, fault diagnosis, control, and 

lastly, communication and networking. 

While conventional methods have been tried for these 

technologies, deep learning is arguably the most 

promising method. This is due to deep learning’s ability to 

accurately approximate complex nonlinear relationship 

using multi-layer transformations.  The difference is 
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especially highlighted in imaging tasks such as object 

recognition and image classification. The key types of 

deep neural networks are Convolutional Neural Network 

(CNN), Deep Autoencoder (DAE), Deep Belief Network 

(DBN) and Deep Reinforcement Learning (DRL). DBNs 

and DAEs can conduct unsupervised pre-training on the 

weights, which can ease the difficulty of the subsequent 

supervised training of the deep networks. However, a 

fundamental problem in DBNs and DAEs is that there are 

too many weights to train when the inputs are raw signals 

or their time-frequency representations. 

In contrast, CNN can avoid these issues by using 

strategies like local receptive field and weight sharing to 

reduce computational complexity during training. 

However, CNN has a relevant disadvantage which is its 

tendency to fall into a local minimum in training. The last 

key network, Deep Reinforcement Learning (DRL), can 

achieve exceptional results using a Q-learning or policy 

gradient algorithm to gain the best rewards for the chosen 

actions. 

Our paper is an extension of “Applying Deep Learning 

to Autonomous Vehicles: A Survey” [1]. We will review 

the headway in deep learning algorithms to review these 

seven essential fields. Some relevant reviews have been 

published in recent years [2], where some new functions 

are discussed. The main contributions of our paper are: 

1. New data security, and communication and 

networking sections. 

2. Reviewed most recent papers for path planning, 

computer vision, sensor fusion, fault diagnosis, and 

control. 

3. Identified five directions for future research 

2. Deep Learning for Path Planning  

In an ordinary environment, path planning aims to 

guide a vehicle on a collision-free paths for where both 

static and dynamic obstacles need to be avoided. This 

method can either have a model-based or model-free 

design and include local or global planning and 

optimization for some criteria. Models usually aim to find 

the shortest time or shortest path method. In the following 

section, we will review recent literature on path planning 

for autonomous vehicles and the three primary deep 

learning tools applied., i.e. DRL, CNN, and Long Short-

Term Memory (LSTM).  

CNN is commonly used for classification tasks due to 

its ability to extract features from images. While image 

classification problems are different from path planning 

tasks, CNN can be used when generating control signals 

from sensor data from sources such as cameras and lidars. 

In [3], a high-level control framework was created for the 

steering of autonomous angles. The authors mapped input 

camera data directly to a steering angle to implicitly solve 

path planning tasks. More commonly, CNN is applied to 

extract features to be applied in a path planning subtask. 

In one study, an unmanned aerial vehicle (UAV) was 

tasked with generating a path through 26 gates in an 

indoor 3-D environment. In this task, CNN was employed 

to detect the center of a gate to enable the guidance of the 

vehicle without collision in real time [4]. CNN can also be 

applied to tasks of higher difficulty beyond simple 2-D 

and 3-D single vehicle path planning tasks. In [5], the 

authors applied CNN in a path planning task of guiding 

multiple UAVs in a 3-D environment using 2-D CNNs. 

LSTM is another type of network used to process image 

data. As a recurrent neural network, it is often used for 

sequential image data. In [6], the authors use a model 

where a LSTM network is applied to extract hidden 

features to aid in accurately planning sequential moves of 

AVs. In further works, LSTM has also been successful 

applied for path planning in an environment with 

vulnerable road users which includes smaller vehicles 

such as bicycles and motorcycles as well as pedestrians.  In 

another study, the authors use a model-free planning 

approach with a deep stacked LSTM network to assess 

pedestrians’ intentions and plan a vehicle’s motion 

accordingly [7]. 

The last primary deep learning tool is deep 

reinforcement learning which does not rely on labelled 

data sets and can achieve extraordinary result. In the 

recent past, DRL has been commonly used in path 

planning applications for various types unmanned 

vehicles in diverse environments. The first application 

involves navigation for road vehicles in an environment 

with mixed autonomous and traditional vehicles. In this 

application, DRL is used to generate a shareable driving 

policy which doesn’t need to consider facts such as system 

dynamics compared with traditional control methods [8]. 

DRL has frequently been applied to path planning 

problems in environments with cluttered obstacles and 

rough terrain. With an application for robots employed for 

urban search and rescue missions, the authors in [9] 

proposed a path planning method using DRL with the 

input of depth images, elevation maps, and orientation to 

generate navigation actions. In [10], the authors apply 

DRL to address the issues of path planning in large 

complex environments where simultaneous localization 

and mapping (SLAM) and other conventional methods 

are less effective and have reduced accuracy due to 

computational constraints.  Thus, DRL is used to directly 

map sensor input data to output control system directives.  

While conventional control strategies for aerial vehicles 

are somewhat mature, there is still reliance on human 

intervention. Deep learning methods are promising 

approaches for the control of UAVs.  The first of these 

methods involves using a deterministic policy gradient 

method in path planning for multiple aerial vehicles.  This 
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model can achieve real-time performance in a dynamic 

environment due to its parameter requirements of only the 

locations of threat areas, targets, and other UAVs [11]. 

With applications in search and rescue missions as well as 

aerial inspections for oil and gas fields, the authors in [12] 

propose a path planning strategy of UAVs based on a 

Nokia Snake game strategy. This control policy can be 

applied to plan more complex paths than comparable 

previous DRL methods.  In [13], path planning for drones 

using a DQN method which combines deep learning with 

time-difference learning. The authors used a drone 

equipped with ultrasonic sensors in a 3D simulation 

environment. In [14], a similar path planning problem 

using the DQN method was used to conduct local path 

planning of unmanned surface vehicles equipped with 

360-degree lidar in a 3D simulation environment. 

In recent years, mobile edge computing, where 

computations are done locally at an edge node of a 

network, has been developed. In [15], a UAV-mounted 

mobile edge computing system is developed to 

dynamically take and compute tasks from mobile terminal 

users. With terminal users starting at random locations 

with random travel paths, the authors apply DDQN to 

optimize path plans with time- varying targets. In [16], the 

authors innovate by applying a multi-agent system to the 

mobile edge computing network path planning task. 

Using energy consumption, distance, and computational 

intensity of each task as parameters, the proposed 

algorithm is a form of a multi-agent DDPG utilizing a 

framework of centralized training and decentralized 

execution. An alternative approach to this problem is 

shown in [17], where a multi-agent DQL-based algorithm 

is used. In this study, each UAV is trained with an 

independent DQN and autonomously executes its actions, 

only receiving state information from each UAV. In [18], 

the authors use a mobile edge computing network to 

tackle the problem of traffic. This study claims that one 

major issue in traffic and higher fuel consumption in an 

environment with autonomous vehicles can be solved by 

having cars travel in a platoon model by reducing changes 

in speeds and increasing aerodynamic flow. A path can be 

planned using Q-Learning to optimize speed and fuel 

consumption. 

3. Deep Learning for Computer Vision  

Machine learning has always been crucial for 

environmental perception and computer vision, and their 

applications such as autonomous vehicles. Deep learning 

methods have improved on their understanding of sensor 

data and to some extent, are able to accomplish perception, 

localization, and mapping. Sensors are divided into two 

categories: passive sensors such as cameras and active 

sensors such as lidar, radar, and sonar. Between these two 

categories, research works on environmental perception 

generally focus on cameras due to its lower cost and mass 

availability.  Cameras are further divided into two 

common types, the first of which is a monocular camera 

with the ability to extract precise information from images 

in the form of pixel intensities. to the arrangement of pixel 

densities can be used identify to identify properties such 

as texture and shape. However, monocular cameras have 

inadequate accuracy in estimating the size and position of 

an object because of the limited depth data available in a 

single image. Thus, a stereo camera system is often used 

to improve depth estimation. Beyond monocular and 

stereo cameras, there exists other more specialized 

cameras, such as Time-of-flight cameras, which can 

accurately estimate depth from the delay between 

transmitting and receiving infrared range pulses [19]. An 

integral part of object detection is distance estimation. 

While conventional methods have been applicable to only 

a singular type of camera, the authors in [20] have 

designed a depth perception model that can be 

generalized to a variety of camera with varying camera 

geometries. 

Weather and light conditions can negatively influence 

the accuracy of camera sensors, especially at night or in 

snowy and rainy weather, where calculations such as 

depth perception become more complex. In [21], the 

authors designed a method to address detecting vehicles 

at night with a monocular camera. This was accomplished 

using support-vector machines to detect headlight and 

taillights. While this is an improvement, cameras are still 

not reliable when used as the only sensor, and lidar still 

provides the most accurate measurement during night-

time. Object detection and identification is necessary for 

the safe operation of autonomous vehicles, and it is 

essential to balance the costs of lidar and the reliability of 

a camera. 

To avoid accidents, it is crucial for autonomous ground 

vehicles to detect domain of the path it takes and any 

objects along it. Thus, the first step in detecting vehicles, 

pedestrians, and other obstacles on the road.  In [22], the 

study conducted proposed a road detection model using a 

CNN network with residual learning and pyramid 

pooling techniques using monocular vision data.  In [23], 

a method incorporating CNN is proposed to detect 

various types of speed bumps and solve the problem of 

the dynamic appearance of speed bumps. Potholes present 

another problem and the authors in [24] tackles this 

problem by automatically developing a strategy to detect 

potholes using information from stereo cameras. 

In the operation of vehicles, accidents most commonly 

occur at road intersections. Therefore, it is critical to obtain 

information from sensors or connected technologies of 

nearby road agent positions at intersections.  In [25], the 

authors conducted a study about the effectiveness of 

various deep neural networks on autonomous vehicles 

learning road vehicle information from aerial 
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photographs.  This can have applications in a smart city 

where connected technologies enable the sharing of aerial 

photography data between road agents. Later in this 

review, we will discuss using wireless connections 

between vehicles to share various data that may have 

applications for road intersection safety.   

Beyond detecting obstacles and nearby road agents at 

intersections, it is also crucial to be able to detect and 

interpret traffic control signals.  Traffic Light Recognition 

(TLR) techniques are comprised of two steps: detecting 

traffic signals and estimating the state of the signal. Some 

key challenges are addressing false positives and 

computational complexity while under dynamic lighting 

conditions.  One proposed TLR method uses a multi-

channel high dynamic range (HDR) camera to capture 

images with multiple exposure values where deep neural 

networks are used to estimate traffic light signals. In this 

study, the network detects traffic lights from bright frame 

data and classifies the signal using dark frame data [26]. In 

another study, a TLR method with using a video dataset 

input with six color spaces was proposed. The authors 

applied three different networks based on region-based 

deep learning network models with the best result 

attained with pairing of RGB color space with a R-CNN 

model [27]. 

In object detection and identification, key targets for 

autonomous vehicle systems to reliably detect are 

passengers and pedestrians.  In one approach, the authors 

of [28] combined RGB-D stereo vision and thermal 

cameras. In this study, the authors compared Histogram 

of Oriented Gradient (HOG) and Convolutional Channel 

Features (CCF) methods with the results indicating CCF 

superior to HOG for pedestrian detection.   In [29], a 

vision-based system using monocular camera data was 

developed to predict passenger movement and to detect 

other objects on the road. This study used a party affinity 

fields model to estimate the pose of pedestrians in 

combination with AI to aid in estimating results for risk 

assessment. In emergency situations, it can be important 

for autonomous vehicles to detect nearby vehicle 

passengers to make more informed decisions. This issue is 

addressed in [30], which proposes a CNN-based method 

for detecting nearby cars and passengers within those cars 

using monocular cameras.   

With respect to traffic and road rules, CV-based deep 

learning techniques can also be applied to detecting 

vehicle road violations. In [31], YoloV3, a real-time object-

detection algorithm for detection and tracking integrates a 

license plate recognition system with LPRNet and 

MTCNN. Using this, they can track traffic violations and 

impolite pedestrians. 

With eco-friendliness and fuel costs taking greater 

importance, research has expanded more on optimizing 

driving patterns to reduce fuel consumption. Applying 

CNN and computer vision, the authors [32] propose an 

object detection method that increases the fuel efficiency 

of hybrid vehicles. In a test, they achieved 96.5% fuel 

economy of the global optimum with dynamic 

programming, increasing fuel efficiency by up to 8.8% 

over an existing method. In [33], the authors propose a 

different approach to reduce fuel consumption. They 

proposed a DQN-based car-following strategy and a 

learning-based energy management strategy to achieve a 

low fuel consumption while maintaining a safe real-time 

distance. In [34], they tackled fuel efficiency for fuel cell 

vehicles using a spatiotemporal-vision-based deep neural 

network. This method improved the accuracy of predicted 

speed, especially when the traffic was dense. 

4. Deep Learning for Sensor Fusion 

Autonomous vehicles are typically equipped with 

multiple sensors such as Global Positioning System (GPS), 

Inertia Measurement Unit (IMU), cameras, radar, 

ultrasound, as well as light detection and ranging (Lidar). 

While each sensor provides key data, they each have their 

limitations. However, by combining the strengths of each 

sensor, together, they can provide autonomous vehicles 

with superior information to render decisions for control, 

path planning, and fault management. 

Traditionally, sensor data was fused using the Kalman 

filter algorithm. However, deep learning has become an 

increasingly more popular method of combining sensor 

data due to its effectiveness and relative simplicity. One 

key application in sensor fusion is overcoming the 

shortfall of cameras. While cameras are used to capture 

important data such as object size and shape, it lacks the 

ability to accurately measure key values such as distance 

and velocity, that sensors like radars and lidars can 

compensate for. In [35], the authors explore the application 

of a CNN network in the fusion of camera raw pixels and 

lidar depth values to generate a feature vector. This study 

employed a novel temporal-history based attention 

mechanism which proved to be resilient to errors in sensor 

signals.   To address the lack of clarity in camera data in 

severe weather conditions and at night, the authors in [36] 

conducted a study fusing camera and radar data with a 

model based on RetinaNet. In [37], the authors propose a 

vehicle detection model based on the fusion of lidar and 

camera data. In this model, possible vehicle locations are 

obtained from lidar point cloud data and a CNN network 

is used to refine and detect vehicle locations.  Beyond 

detecting vehicles, lidar camera fusion was applied in [38] 

for high accuracy road detection even in difficult road 

conditions such as in extreme weather.  In sensor fusion 

and deep learning for segmentation tasks, the quality of 

training data plays a vital role in these studies' success. In 

[39], a new collaborative method of collective multi-sensor 

training data and automatically generating accurate labels 

is proposed. 
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In [40], the authors propose a deep convolutional 

network for vehicle detection with three modalities: color 

image, lidar reflectance map, and lidar depth map. This 

model is able to produce a more accurate prediction using 

joint learning because joint learning generates more data 

for safely operating vehicles compared to learning 

environmental data and driving policy independently. In 

[41], the authors propose a dual-modal DNN to create an 

improved detection model in severe environmental 

conditions such as rain, snow, and night-time where 

features can be blurry.  This network fuses color and 

infrared images and achieves improved performance for 

low-observable targets. In [42], the authors proposed an 

Integrated Multimodality Fusion Deep Neural Network, 

which processed each modality independently before 

being processed together in further networks, which 

creates modularity and increased flexibility, thus 

providing a greater ability for generalization. 

In [43], a cooperative perception system was proposed 

to expand the scope of vehicle perception and eliminate 

blind spots by integrating data from multiple vehicle 

sources using both graphic and semantic alignment. In 

[44], the authors introduce a cooperative visual-free sensor 

fusion technique combining vehicle detector, remote 

microwave sensors, and toll collection data to predict fine-

grain flow traffic. In [45], the authors presented a model 

integrating various smartphone sensor data to detect real 

time vehicle maneuvers. This system uses GPS, gyroscope, 

accelerometer, and magnetometer to detect turns and 

other movements to be communicated to enhance safety. 

In [46], a smartphone sensor-based method is proposed to 

detect human activity recognition. In [47], the authors 

propose Gated Recurrent Fusion Units (GRFU) which 

have gating mechanisms similar to those in LSTM to create 

a new joint learning mechanism, which proved to have an 

improved error rate. In [48], a novel end-to-end driving 

DNN is proposed. This proposed network that 

incorporates scene understanding, which understands 

spatial, functional, and semantic relationships and uses 

lidar and camera. 

5. Deep Learning for Data Security 

With the rapid development of deep learning, 

increasing amounts of user data are required to train and 

models. In some systems, the privacy of user data can be 

a concern. In addition, it is also essential for systems to 

accurately detect attacks with intentions to corrupt the 

model. Current data security methods will be discussed 

for centralized and federated learning models. Model 

training requires a large number of data samples. In 

addition to the information required to train the models, 

these models also inadvertently include auxiliary that 

malicious actors can use to infer information about the 

individuals such as location and trajectory. In [49], the 

authors use a GAN to generate privacy-preserving data 

that still retain its usefulness in training. 

In recent times, federated learning has been 

introduced, where a model is downloaded and trained 

locally with private data before being uploaded, and 

model aggregation occurs. It became popular due to 

offloading some computational power to individual 

devices, and privacy concerns as users don’t have to share 

their private data [50] [51]. In federated learning, two 

problems being tackled are detecting bad actors that 

maliciously upload faulty data to distort the accuracy of 

the model and preserving privacy before model 

aggregation. In [52], the authors use a blockchain method 

for UAVs, which replaces the central curator to combine 

the learned parameters in the model. In addition, they 

also use a local differential privacy algorithm to mask 

personal data. In [53], the authors propose a different 

method to tackle this problem. They introduce a privacy-

preserving model aggregation scheme named FedLoc by 

using homomorphic encryption and a bounded Laplace 

mechanism. In [54], the authors introduced CLONE, a 

collaborative edge learning framework using federated 

learning techniques. This can be applied to a multitask 

tracking problem or in EV battery fault detection. In [55], 

the authors tackle the problem of sharing data for model 

training for data collected by independent 

companies/vehicles by using federated learning. A 

blockchain structure can also be used to enhance privacy. 

In [56], a hybrid blockchain architecture is proposed to be 

used in federated learning for vehicular applications. In 

[57], the authors also use blockchain to facilitate 

communication in a mobile edge computing application, 

however, with the innovation of applying a hybrid model 

intrusion detection system to the data. Their proposed 

framework has shown reduced false alarm rate and a high 

accuracy of 99%. 

In addition to data-privacy, it is also essential to 

detect and prevent malicious attacks. These attacks can 

corrupt the model during training or operation by 

providing malicious input. One example of an attack 

using adversarial GPS trajectories against crowdsourced 

navigation systems is Cybil attacks. In [58], a Bayesian 

deep learning method was used to identify Sybil attacks. 

In [59], the authors discuss the development of poisoning 

and evasion attacks and review recent methods used to 

address them. The methods used against poisoning 

attacks include ensemble learning methods to increase 

resistance against variance and comparing classifiers for 

each training data set. Adversarial training is the main 

method used against evasion attacks which works by 

introducing both legalized and adversarial samples to 

train the model on detecting adversarial samples. In [60], 

the authors proposed a multi-strength adversarial 
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training technique which combines adversarial training 

examples with different adversarial strengths. 

6. Deep Learning for Data Security 

As the field of autonomous vehicles develops, these 

vehicles require more sensors and actuators and become 

increasingly reliant on them. However, the proliferation 

of sensors and actuators in vehicles which heavily rely on 

their accuracy also increases the occurrence of a vehicle 

fault. To ensure the safe operation of autonomous 

vehicles, fault detection methods need to be able to be 

more reliable. Conventional fault detection methods can 

be classified into three categories:  model based, signal 

based and knowledge based. In recent years, DNN-based 

fault detection has become popularized as it can achieve 

faster and more accurate results. In addition, deep 

learning can accurately map complex patterns and signals 

to accurately assess the health condition of the 

components, leading to its prospects of becoming a 

promising research field. In recent years, CNN, DAE and 

DBN have all been applied in fault diagnosis tasks.    

Planetary gearboxes are commonly used in 

mechanical systems such as transmission systems present 

in ICE and some electric vehicles. Using a deep residual 

network with vibration signals as input, the authors in [61] 

created a model integrating the network with domain 

knowledge to identify faults and the condition of 

planetary gearboxes.  An alternate approach is taken to 

detect faults in a planetary gearbox in [62] where a model 

is formed with transfer learning combined with a deep 

autoencoder with wavelet activation functions.  The 

resulting model is effective under variable conditions 

such as changing speed and location. 

In-vehicle gateways are modules that connect to and 

receives data from various sensors in a vehicle. Several 

studies have been conducted to utilize this information 

for fault diagnosis.  In [63], the authors combined a LSTM 

network with an in-vehicle gateway to diagnose faults 

based on fault data by using comparisons with previous 

sensor data. In [64], an IoT Gateway combined with deep 

learning is used to diagnose the faults of the sensors. This 

self-diagnosis information can be used for self-repairing. 

The inputs of the deep learning network are sensor 

signals, and the outputs are the condition of parts, of 

which the driver will be informed through diagnostic 

results. One innovation of the work is that data collected 

by a gateway are from different protocols such as CAN, 

FlexRay, and MOST. 

Deep learning can be used to detect faults in many 

components of the vehicle. In [65], electrical signals are 

analyzed to detect the fault in the spacecraft's electronic 

load system. A deep autoencoder-based clustering system 

and a CNN-based classification method is used to process 

high-dimensional signal data to detect and classify faults. 

In [66] a combined CNN and LSTM model is used to 

detect the pre-ignition of engine control signals using in-

vehicle data. In [67], the training data are generated from 

the UAV system model. One dimensional signal is then 

extended to time-frequency domains using wavelet 

transform. Then, deep learning is performed on the image 

data to find different sensor or actuator faults. 

Electric vehicles have microgrids that encompasses 

energy storage systems, electric motor, motor drive and 

protective components.  With complete reliance on micro-

grids, detecting faults in the micro-grid of an electric 

vehicle is crucial to the safety of the vehicle.  In [68], a 

CNN-based method was studied to detects false battery 

data in battery energy storage systems, with application 

to those in electric vehicles. In [69], the authors used a 

CNN-based model to solve the fault classification 

problem for micro-grids. This method uses voltage and 

other measures from inverters, converter, capacitors to 

create a fault detection method to reinforce traditional 

methods.  It is especially important to reliably detect 

faults in unmanned autonomous vehicles due to the 

higher cost of failure.  In [70], the authors presented a 

strategy for diagnosing faults in actuators of multi-rotor 

UAVs based on a hybrid LSTM-CNN model. One 

common constraint in UAVs is the challenge of running 

complicated fault detection methods in real-time, which 

have size, weight, and power consumption constraints. 

To tackle this problem, [71] proposes an LSTM-based 

fault detection model acceleration engine. In [72], the 

authors use LSTM to estimate the estimated wheel angle 

and an improved sequential probability ratio test to detect 

a fault in vehicle wheel angle signals. 

In the future, connected and automated vehicles 

communicating in real-time are expected to improve road 

safety. In [73], the problem of anomalous sensor readings 

is tackled with a CNN-based sensor anomaly detection 

and identification method. In [74], the authors address 

detecting malicious actors in connected and automated 

vehicles during cruise control. Using a multi-agent DRL 

method, they can cooperatively and accurately detect 

attackers. 

7. Deep Learning for Control Algorithms 

Autonomous vehicle control models consist of two 

parts: perception planning and control paradigm. 

Traditionally, control systems methods relied on 

mathematical models including optimal control, robust 

control, PID control, and adaptive control. While 

conventional models are more easily interpreted and 

have a theoretical foundation, they performance worse 

for more complex data or larger data sets. In comparison, 

deep learning control approaches are model- free, data-

driven which indicates its applicability to both discrete 
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and continuous systems. Due to these differences, deep 

learning can’t be directly applied in conventional models. 

Instead, contemporary deep learning solutions for 

autonomous driving employs end-to-end controllers to 

improve or provide state estimation. 

Recently, deep learning has been the chosen method 

for the state estimation of different controllers [75] and 

enhancing state estimation quality [76]. In control systems, 

the dynamic model that identifies the uncertainties and 

hidden states form the foundation. However, the 

conventional system identification method does not 

easily identify model parameters. Helicopters require 

complex control systems due to having complex 

interactions with external forces and internal controls. In 

[77], the authors propose a deep convolutional neural 

network-based dynamic identifier for a controller. This 

scheme can accurately identify the helicopter’s dynamic 

behavior, maintain stability even in untrained maneuvers.    

In [75], the authors present a flight control method for 

autonomous helicopters. A deep learning network is used 

as the identifier for an adaptive control scheme. The 

complete model includes a first principle-based dynamic 

model and a CNN based model for modelling hidden 

states and uncertainties where all parameters and weights 

are trained with real flight data. In [76], a deep learning 

network with the drop out technique is used to improve 

the performance of the attitude state estimation by the 

Kalman filter. This network is trained to model the 

measurement noises, which in turn is used to filter out the 

noise and enhance the quality of the Kalman filter. Deep 

learning is used to compensate for delays and 

measurement noises. The information extracted by a 

modular deep recurrent neural network is combined with 

sensory readings before being fed into the Kalman filter 

for state prediction and update. This deep learning 

network can detect the hidden states, which are normally 

difficult to be measured by sensors. In [78], a CNN and 

LSTM-based observer is presented. First, LSTM processes 

videos and adds a temporal dimension to the cost map. 

Then a particle filter is used for state estimation. Lastly, 

the cost map generated by the deep learning network is 

combined with readings from IMU and wheel speed 

encoders to predicate and update the states for model 

predictive control. 

Deep learning can also replace conventional discrete 

controllers such as PID controllers and instead use a deep 

learning model to generate output control actions which 

can be either discrete or continuous [79]. Another 

application combines the learning with the conventional 

controller to form a hierarchical or better control system. 

Oceans and other large bodies of water have complex 

environments and as a result, existing autonomous 

underwater vehicles relying on conventional controllers 

have imposed paths and pre-planned tasks.  In [80], the 

authors present a model based on deep interactive 

reinforcement learning to facilitate path following. This 

model uses a dual reward method by which the network 

can learn from both human and environmental feedback 

simultaneously. In [81], the authors investigated a low-

level DRL-based control strategy for underwater vehicles. 

A deep reinforcement learning network is introduced 

with sensory signals serving as the sole input of the 

network without prior knowledge of vehicle dynamics. In 

[82], a deep learning tracking control algorithm is applied 

to improve the accuracy and adaptability of driving 

trajectory tracking. In [83], the deep learning network is 

used to analyze the environment to predict lateral and 

longitudinal control. In this network, two separate 

models are used for vehicle speed and steering, where the 

inputs are road images, and the outputs are the speed and 

steering. In [84], the authors propose to use a CNN 

network as an end-to-end controller for driving, while 

two other CNN-based deep networks generate both the 

feature map and error map to help the controller better 

understand the scene. An attention model is used to 

identify the regions that affect the output most. In [85], the 

authors have explored the use of reinforcement learning 

for high-level decision-making in the context of a robotic 

game. In this hierarchy structure, the high-level DL is 

combined with low-level controllers to deliver a better 

control performance. The design of the controller with 

multiple levels can accommodate the challenges in the 

game, such as action delay. In [86], DRL was applied in 

intelligent control with a self-organizing control system 

based on DDPG. Using simulations, the reference signal 

self-organizing control system was able to stabilize an 

inverted pendulum using a rotor. Autonomous vehicle 

control systems often have trouble with hard to predict 

actions such as cut-in maneuvers. In [87], a control 

strategy is developed using a two-part training strategy 

of experience screening followed by policy learning to 

increase performance in uncertain scenarios. 

Deep learning can also be applied to larger-scale 

control algorithms such as wide-range traffic control and 

power grids. Inefficient traffic control results in more 

stop-and-go traffic, increasing wait times and fuel 

consumption. In [88], RL is applied to adaptive traffic 

signal control. This is achieved by using multi-agent RL 

that distributes global control to each local agent with a 

new decentralized multi-agent RL algorithm that has 

improved observability and reduced the learning 

difficulty of each agent. In [89], the authors present a more 

centralized method of traffic control. Using information 

about vehicles near a particular intersection, including 

speed and location as input, they train a model that 

controls the duration of traffic signal timings to reduce 

vehicle wait times and trip lengths. 
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In the electrical grid, conventional control systems are 

not well optimized and do not adapt to changes well. 

Although with high difficulty and complexity, AI has 

been applied in power grid control, which will be an 

important research front for future autonomous vehicles. 

A novel two-timescale voltage control system is 

presented in [90]. Using a feed-forward DQN with 

physics driven optimization, a two-timescale approach 

was able to minimize voltage deviations and optimize 

power flow. [91] developed a DRL based autonomous 

voltage control for power grid operations. They proposed 

to use both DQN and DDPG to create autonomous 

voltage control strategies to better adapt to unknown 

system changes. 

8. Deep Learning for Communication and 

Networking 

Autonomous vehicles can play an important role in 

communication and networking. In communications, 

there is often an inefficient use of allocated bandwidth. In 

[92], a deep learning-based channel and carrier frequency 

offset equalization technique is proposed to improve 

bandwidth efficiency. In emergencies, it is common for 

base stations and power sources to be destroyed, 

restricting access to communication networks when 

needed. As UAVs evolved, they have been purposed to 

assist in emergency communication networks as a base 

station. A fundamental problem being solved is the 

optimization of resources, while UAVs are both limited 

by their coverage area and energy consumption. In [93], 

the authors propose a novel DRL method to optimize 

energy consumption. In [94], the authors approach this 

problem with a DRL based on Q-Learning and CNN to 

optimize macro base power allocation and UAV service 

selection. Recently, vehicular ad hoc networks have been 

used in autonomous vehicles for vehicles to improve 

safety and comfort [95]. However, vehicles often have a 

restrictive communication range. To address this issue, 

communication between vehicles and other types of 

devices is used. In [96], a deep learning-based algorithm 

is proposed for transmission mode selection and resource 

allocation for cellular vehicle-to-everything 

communication. In [97], the authors propose using UAVs 

as relays in these networks. Using DISCOUNT, a DRL 

framework, an organized and intelligent group of UAVs 

are optimized to increase connectivity and minimize 

energy consumption. A common issue in cellular-

connected UAVs is interference between each relay. In 

[98], the authors propose a deep learning algorithm based 

on echo state network architecture to create an 

interference-aware path planning strategy. 

Beyond UAVs, which have range and power 

constraints, satellites have merit as a solution to improve 

vehicle-to-vehicle communication on the ground, 

especially in depopulated areas. However, satellites have 

limited computing and communication resources. To 

tackle this issue, the authors in [99] used deep learning 

with the Lagrange multiplier method to improve joint 

task offloading and resource allocation. Maritime 

communications are often bottlenecked by the immense 

data volumes required. In [100], the authors propose a 

transmission scheduling strategy based using a deep-Q 

network. This strategy optimizes the network routing. 

9. Discussion 

Autonomous vehicles will significantly impact the 

future of the automobile industry. Fully autonomous 

vehicles can improve safety and travel comfort as smooth 

and consistent driving will reduce congestion. They have 

various benefits and advantages as follows: 

• More independent mobility. Better access for people 

who cannot drive, including the elderly and young 

people.  

• Facilitating car sharing and ride sharing. An increase 

in car-sharing opportunities will reduce the need to 

own a car and associated costs. 

• More efficient vehicle traffic. Reduces congestion 

and roadway costs due to more consistent behavior 

on the road. 

• Fewer cars on the road. Reduce drivers’ stress and 

increase productivity. While traveling, motorists can 

rest, play, and work. 

• Greater safety. Several opinions say that autonomous 

vehicles will eliminate 95% of all human error. Thus, 

autonomous vehicles reduce crash risks and high-risk 
driving since they are not impacted by human 

emotions or bias while driving. 

Because deep learning is able to learn or discover very 

complex high-dimensional nonlinear patterns or 

relationships from a large amount of training samples, 

deep learning has been successfully applied in seven 

research areas in autonomous vehicles. However, we still 

need to further investigate new techniques to overcome 

some limitations associated with most deep learning 

algorithms, including easily getting trapped in a local 

minimum, slow convergence during training especially 

for deep reinforcement learning, requiring a large set of 

training samples or overfitting for small training datasets. 

• Future directions. We still need to overcome serious 

major challenges before fully autonomous vehicles 

are ready for public use. In the near future, 

autonomous vehicles may be limited to some specific 

scenarios, such as narrower situations and clearer 

weather. 

• Employ deep learning to develop new sensor fusion 

techniques for autonomous cars with different 

certain road conditions. Current techniques mainly 

focus on narrower good road conditions. They cannot 

handle more complicated road conditions such as 
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changing road conditions, night conditions, unlit 

roads at night, unmarked roads, even unpaved roads, 

unexpected conditions such as animals suddenly 

crossing roads, or combinations of the above 

situations. These complicated conditions require 

novel sensor fusion algorithms and probably require 

to develop new perception devices. Deep learning is 

more suitable for these very complex scenarios than 

conventional methods. We need to investigate novel 

deep learning-based fusion techniques for more 

complicated road conditions. 

• Developing new sensor devices and novel 

algorithms for challenging bad weather conditions. 

Current sensing techniques work relatively well with 

clearer weather.  However, like our eyes, vehicle 

sensors do not work as well in bad weather 

conditions such as rain, fog, snow, and ice, which not 

only reduce the visibility but also cause dangerous 

road conditions. Many autonomous cars employ 

Lidar technology using lasers. However, snow and 

ice absorb laser light rather than reflecting it, making 

these vehicles blind in inclement weather conditions 

and making it difficult for Lidar to accurately identify 

obstacles. Therefore, these bad conditions make 

autonomous cars harder to navigate and cause 

potential safety issues for other drivers and 

pedestrians alike. They also make conventional 

processing algorithms more challenging to obtain 

accurate perception from low quality sensor data in 

bad weather conditions. We need to develop novel 

intelligent sensors to obtain accurate perception and 

corresponding processing techniques for these bad 

weather conditions. Deep learning techniques have 

the potential to deal with these more challenging 

scenarios. 

• Investigate novel deep reinforcement learning 

techniques to achieve multiple objectives in the 

design of autonomous vehicles. The design of fully 

autonomous vehicles often involves multiple, even 

conflicting, objectives or criteria. For example, car 
connectivity using vehicle-to-vehicle communication 

(V2V) communications with surrounding vehicles 

makes many tasks, such as merging easier, but 

securing the communication system could be 

extremely difficult. Thus, it also increases 

cybersecurity risks since there are more ways to get 

into them and disrupt what they're doing as vehicles 

get more connected. Therefore, we need to investigate 

new techniques and strategies in order balance the 

benefits of using V2V communications and 

cybersecurity risks. We believe DRL is one suitable 

technique to make the optimal decision for these 

complicated situations. 

• Early fault diagnosis and prognosis of autonomous 

vehicles. Since the occurrence of faults increases due 

to the significant increase of sensors and components 

in autonomous vehicles, early fault diagnosis and 

prognosis are more important and more challenging 

to ensure the vehicle safety. We need to investigate 

new real-time early fault diagnosis methods for more 

complicated scenarios considering not only the 

components and sensors associated with the vehicle 

itself but also the faults or disruption of V2V 

communications and the reliability of some global 

information from networking infrastructure such as 

real-time road conditions. Early fault diagnosis under 

relatively normal driving conditions is especially 

important to discover potential issues at an earlier 

stage, provide early warning or alert, and take actions 

such as timely checkup and maintenance to prevent 

getting stuck in the middle of remote roads or even 

catastrophic accidents. Since many faults at early 

stage often involve small or subtle changes, it is more 

difficult to accurately detect these small anomalies, 

especially under normal driving operations due to 

the lack of special expensive instruments in car 

dealers. However, this is a very important research 

topic for vehicle safety and timely maintenance. 

• Developing novel low-cost techniques to make 

autonomous vehicles more approachable and 

affordable. Autonomous cars are currently very 

costly, which makes investing in them difficult for 

most people. Even current techniques can achieve the 

required performance criteria under good road and 

weather conditions, we still need to investigate novel 

effective and efficient algorithms for more 

complicated scenarios where they require more 

advanced sensors and more computation power. 

However, it is a time-critical mission for autonomous 

vehicles with rapid response time. We believe deep 

learning will play an important role in developing 

novel intelligent technologies for environment 

perception, planning and navigation on challenging 

roads while keeping low cost. 

10. Conclusion 

In this article, we reviewed recent developments in 

the area of deep learning applications in autonomous 

vehicles.  These seven active research areas are control, 

computer vision, sensor fusion, path planning, fault 

diagnosis, communication and networking, and data 

security. Several types of deep neural networks were 

reviewed and compared, in which deep learning were 

successfully applied to various design and operation 

aspects of autonomous vehicles. Deep learning has taken 

a significant role in the development of technologies for 

autonomous vehicles. It will continue to play an 

important role in the future development and refinement 

of these technologies. 

Table 1: Path Planning Solutions 
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Research paper Application(s) Deep learning 

method 

Network Comments 

[3] Unmanned Vehicles ReLU CNN Camera map steering angle 

[4] Unmanned Aerial Vehicles - CNN Real-Time 

[5] Unmanned Vehicles Imitation Learning CNN 3D 

[6] Unmanned Vehicles LSTM LSTM Feature Extraction 

[7] Unmanned Vehicles LSTM LSTM Pedestrian Detection 

[8] Unmanned Vehicles DRL DDQN Mixed environment with 

manual vehicles 

[9] Unmanned Vehicles DRL DDPG Unknown Environment 

[10] Unmanned Vehicles DRL DQN 3D, Autonomous, Real-Time 

[11] Unmanned Vehicles DRL MADDPG Multi-Agent, Dynamic 

[12] Unmanned Aerial Vehicles DRL A3C Model  

[13] Unmanned Aerial Vehicles DRL DQN Ultrasonic Sensor, 3D , 

Obstacle Avoidance 

[14] Unmanned Surface Vehicles DRL DQN High Degrees of Freedom 

 

[15] Unmanned Aerial Vehicles DRL DQN Mobile-Edge Computing 

[16] Multi-UAV (mobile communications 

system) 

DRL DDPG Multi-Agent, 

3D, Real-Time, Mobile-Edge 

Computing 

[17] Multi-UAV (wireless 

communications system) 

DRL DQN Mobile Edge Computing 

[18] Multi-Vehicle optimization DRL DQN Mobile-Edge computing 

Table 2: Fault Diagnosis Solution Comparisons 

Research 

paper 

Application(s) Deep learning method Network Comments 

[61] Fault Detection Gearbox CNN DRN Vibratory Signals 

[62] Fault Detection Gearbox Autoencoder  Vibratory Signals 

[63] Part-Diagnosis UAV CNN CNN, LSTM In Vehicle,  

[64] Fault Detection UAV - NN Vehicle Data, Sensors 

[65] Spacecraft Electronic Systems CNN CNN High Dimensional Electric Data 

[66] Fault Detection Parts and Pre-

Ignition 

CNN CNN, LSTM Vehicle Data 

[67] Fault Detection and 
Identification UAV 

LQR DNN CIFTA Graphs 

[68] False Battery Data Detection CNN CNN Battery Health Sensor, Charging 

Sensor 

[69] Fault Detection UEV Microgrid CNN DNN, CNN Converter, Inverter Data 

[70] Fault Detection UAV CNN CNN, LSTM Actuator, Flight Data 

[71] Fault Detection UAV - LSTM Real-Time 

[72] Fault Detection Signal - LSTM Wheel Angle Data 

[73] Fault Detection UAV Sensor CNN CNN Connected Vehicles, Real-Time 

[74] Attack Detection UAV MDP, Gradient Descent DRL Connected Vehicles, Multi-Agent 
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