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ABSTRACT: It has been demonstrated that 3D Convolutional Neural Networks (CNN) are an effective 

technique for classifying hyperspectral images (HSI). Conventional 3D CNNs produce too many 

parameters to extract the spectral-spatial properties of HSIs. A channel service module and a spatial 

service module are utilized to optimize characteristic maps and enhance sorting performance in order 

to further study discriminating characteristics. In this article, evaluate CNN's methods for 

hyperspectral image categorization (HSI). Examined the replacement of traditional 3D CNN with 

mixed feature maps by frequency to lessen spatial redundancy and expand the receptive field. 

Evaluates several CNN stories that use image classification algorithms, elaborating on the efficacy of 

these approaches or any remaining holes in methods. How do improve those gaps for better image 

classification? 
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1. Introduction 

Due to the rapid advancement of optics and photonics, 

hyperspectral sensor nodes have been placed on 

numerous spacecraft. Pollution prevention, disaster 

prevention and control, and mineral deposit identification 

[1-3] are just a few of the fields where HSI categorization 

has gotten a lot of attention. HSI classification jobs, 

however, face numerous obstacles due to the huge 

number of spectral bands. In addition to significantly 

improved data and high computational cost, the Hughes 

phenomenon is the most remarkable challenge. One of the 

most effective solutions to these issues is feature 

extraction. However, problems like spectral variability [4] 

make the feature extraction operation extremely difficult. 

The challenge of labelling each pixel in a hyperspectral 

image is a vital but difficult undertaking. It allows to 

distinguish between distinct things of interest in a picture 

using the rich spatial–spectral information contained in 

hyperspectral photographs. Precision agriculture, 

environmental monitoring, and astronomy are just a few 

of the sectors where they've been extensively used [5]. For 

example, they suggested a linear mixture model for 

determining the mineralogy of Mars' surface by 

integrating multiple absorption band approaches on 

CRISM. 

A growing body of research is being done on the 

categorization of hyperspectral images. Because they 

account for the broad spectrum of information [7] 

acquired in hyperspectral images [8] and reduce the 

dimensionality of hyperspectral images using the Locality 

Adaptive Discriminant Analysis (LADA) algorithm, 

traditional image classification methods like support 

vector machine (SVM) [6] and K-nearest neighbour (KNN) 

classifier have achieved respectable performance for this 

task. There are other additional methods for addressing 

this issue. For instance, [9] offered a dimensionality 

reduction approach for classification of hyperspectral 

images using the manifold ranking algorithm as the band 

selection method. Additionally, they created a special dual 

clustering-based band selection method for classifying 

hyperspectral images. Although it has been demonstrated 

that these techniques are more successful at classification, 

they are unable to categories hyperspectral pictures in 

complicated situations. Convolutional neural networks 
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(CNNs) [10–12]-based algorithms have lately exhibited 

extraordinary performance for various tasks related to 

image analysis, such as picture categorization and object 

identification, thanks to the enormous success of deep 

learning. When categorizing hyperspectral images, it is 

important to take both the spectral and spatial 

perspectives into account. A hyperspectral picture, also 

known as the spectral perspective, is conceptually made 

up of hundreds of "images," each of which represents a 

very narrow wavelength band of the electromagnetic 

spectrum (visible or invisible). The 2-dimensional spatial 

data in the hyperspectral images of the objects, on the 

other hand, is covered by the spatial perspective. As a 

result, hyperspectral pictures are frequently represented 

using 3D spectral-spatial data. 

1.1 Convolutional Neural Network 

The ability of conventional machine-learning 

algorithms to assess natural data in its raw state has been 

constrained. It took years of careful planning and 

extensive domain knowledge to create a classifier that 

transformed raw data (such as image pixel values) into an 

appropriate internal representation or extracted features 

from which the learning new module, frequently a 

classifier, could identify or classify patterns in the input. 

Deep-learning methods are demonstrative techniques that 

shift recognition from a lower, more fundamental level 

(beginning with the raw input) to a higher, more complex 

one using straightforward but non-linear modules. By 

integrating enough of these adjustments, very 

complicated functions may be learnt. Higher layers of 

representation in classification tasks highlight 

characteristics of the input that are crucial for 

differentiating while suppressing inconsequential 

variations.  A picture is composed of a matrix of image 

pixels, and the first layer of representation's learned 

characteristics are generally the presence or absence of 

boundaries in the image at specified orientations and 

locations. The second layer detects motifs by looking for 

certain patterns in data edges, independent of slight edge 

location discrepancies. The third layer may aggregate 

motifs into larger groupings that correlate to components 

of detection and measurement, with subsequent layers 

identifying items as a mixture of these pieces. Because 

multiple layers of features are acquired from information 

using a broad learning process rather than being created 

by people, deep learning is differentiated from other types 

of learning [13]. Convolutional neural networks have 

made achievements in a variety of pattern recognition 

fields during the previous decade, from image analysis to 

speech recognition. CNNs have the largest benefit in that 

they decrease the number of parameters in an ANN. This 

success has inspired researchers and doctors to consider 

larger models to address challenging issues that were 

previously unsolvable with conventional ANNs. 

The fundamental presumption about the issues that 

CNN addresses is that they shouldn't have spatially 

dependent aspects. To put it another way, don't have to 

worry about where the faces are in the photographs in a 

facial recognition program. It doesn't matter where they 

are in the surroundings; their discovery is the only thing 

that matters. Another crucial property of CNN is its ability 

to extract abstract properties when fed into advanced 

stages or deeper levels. For instance, in the first layer of 

picture classification, the edge may be detected, then 

simpler forms in the second layer, and finally higher-level 

characteristics [14]. Figure 1 provides an explanation of 

convolutional neural networks. A popular form of neural 

network is the CNN [15]. A CNN is similar to a multilayer 

perceptron (MLP) in concept. The activation function of 

every neuron in the MLP labeled with input and output 

weights. When add extra hidden layers after 1st layer to 

MLP, then it is called deep MLP. Similarly, CNN is 

regarded as an MLP with a unique structure. The 

architecture of the model permits CNN to be both 

translation and rotation invariant because of this 

particular structure [16]. In a CNN design, a convolutional 

layer, a pooling layer, and a comprehensively layer with a 

corrected activation function [17] are the three essential 

layers.  

There are other methods for hyperspectral image 

classification that are competing in the literature. Some of 

these include: 

1- Support vector machine (SVM) 

2- Random forest (RF) 

3- Principal Component Analysis (PCA) 

4- Independent Component Analysis (ICA) 

5- Deep Belief Networks (DBN) 

6- Convolutional Auto encoder (CAE) 

7- Generative Adversarial Networks (GANs) 

The reason why Convolutional Neural Networks 

(CNNs), 2D and 3D CNNs, and hyperspectral imaging are 

encouraged in the literature is due to their ability to 

effectively capture the spectral and spatial information in 

hyperspectral images, leading to improved classification 

accuracy. In a variety of computer vision applications, 

such as picture classification, object recognition, and 

semantic segmentation, CNNs have demonstrated 

exceptional performance., among others. Additionally, 2D 

and 3D CNNs have been designed to take into account the 

spatial and spectral dimensions of hyperspectral images, 

leading to improved performance in hyperspectral image 

classification tasks. In comparison, traditional methods 

such as SVMs, RF, PCA, ICA, DBN, CAE, and GANs may 

not be as effective in capturing the complex relationships 

between the spectral and spatial information in 

hyperspectral images, leading to lower classification 
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accuracy. However, these methods still have their own 

advantages and are often used in combination with CNNs 

to address specific limitations and improve performance 

in hyperspectral image classification tasks. 

CNN is a deep learning architecture that uses layers to 

classify things. It also included layers labelled as one input 

layer, numerous hidden layers, and one output layer. 

CNN works in the same way that DNN does, in that it 

takes input from a dataset, applies functions to it in the 

hidden layers, and then finds the result and displays it in 

the output layer. Max pooling, convolution, and fully 

linked layers are the most commonly employed CNN 

layers. The filter is convolved with input information in 

the layer of convolution.  

Figure 2: A 2D CNN Architecture for proposed Dataset to classify the images 

into different classes classification. 

The input is down sampled by the max pooling layer, 

and the input is fully connected by the fully connected 

layer, which connects all neurons from the previous layer 

to each other [18]. Now discuss the models of CNN that 

are in the form of 2D, 3D, and many more, but the focus 

will be on some major ones that are used for some 

classifications. By raising the number of layers, CNN is 

able 

to 

learn 

high-

level 

hierarchical features. When the number of layers is 

increased, however, the input data or gradient starts to 

disappear. A more value-showing model, known as a 

dense convolutional network, was developed to overcome 

this problem (DenseNet). They devised a feed-forward 

algorithm that can interconnect each layer with every 

layer. Now expanded the feature set after being inspired 

by the thought that dense connections can boost feature 

utilization. For gesture recognition, 2-dimensional 

DenseNet to 3-dimensional DenseNet is used [19]. 

The spatial perspective, on the other hand, refers to the 

2D spatial data about the objects that is present in 

hyperspectral images. As a result, hyperspectral pictures 

are frequently represented using 3D spectral-spatial data. 

As a result, the literature has provided a variety of 

approaches. Contrarily, current CNN-based algorithms 

[20] that only pay attention to spectral or spatial 

information are forced to ignore the connections between 

the spatial and spectral viewpoints of objects captured in 

hyperspectral pictures [21, 22]. 

To extract features from these planes using three 2D 

CNNs, and then integrate three 2D network architectures 

in parallel, resulting in the multichannel 2D CNN. The 2D 

CNN model is made up of three elements of the 2D CNN 

architecture running in parallel, as well as a fully 

connected hidden unit that integrates multichannel data. 

Each 2D CNN takes only one sort of multichannel 2D 

image as an input and performs convolution computing 

on its own. The outputs from three 2D CNN sections are 

flattened, concatenated, and then fed into a fully 

connected neural network for learning. Finally, 2D CNN 

produces the categorization outcome. Given that the 

concatenation characteristics include features obtained 

from three orthogonal planes, 2D CNN considers 3D. As 

above figure 2 shows the architecture of 2D convolutional 

neural network for image classification by using proposed 

dataset with the function of feature extraction. Given that 

they may be used with either a series of 2D frames or a 3D 

volume as input, 3D CNNs are a complicated model for 

computational approaches for volumetric data (e.g. slices 

in a CT scan). Using 3D convolution kernels and 3D 

Figure 1: Understanding Convolutional Neural Network (CNN) 
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pooling, methods that may be applied to volumetric data 

such as computed tomography (CT) images have been 

developed. The addition of 3D convolution kernels to the 

architecture increases the number of parameters, training 

time, and data requirements.  

Training 3D CNNs on data from multiple methods is 

not always simple due to the limited size of medical 

picture datasets. Some pioneering attempts have been 

made along this line [23-28] to describe spectral and spatial 

information concurrently. 3D CNN models execute 

stacked convolution operations in a layer-by-layer way 

over spatial and spectral feature space. The generated rich 

feature maps are clearly the advantage of this type of 3D 

CNN model. These approaches, on the other hand, have 

three major drawbacks. To begin with, creating a more 

detailed 3D CNN model is tricky. 

The reason for this is that as the number of 3D 

convolution processes rises, the solution space expands 

exponentially, limiting the model's depth and 

interpretability. Second, if a significant number of 3D 

convolution operations are performed, the memory cost 

becomes prohibitive. Third, the small size of the public 

hyperspectral image datasets makes it impractical to train 

a deeper 3D CNN model, which requires extra training 

instances. To address the aforementioned issues, this work 

proposes a unique 3D CNN model that requires only a few 

3D convolution operations but produces richer feature 

maps [29]. Figure 3 represents the 3D convolutional neural 

network architecture for image classification by using 

proposed dataset after extracting features from that 

proposed dataset. 

1.2. Hyperspectral imaging 

Hyperspectral images (HSIs), which contain hundreds 

of spectral bands, are created using a network of 

hyperspectral imaging sensors. Since there is a very tiny 

wavelength gap between every two nearby bands, HSIs 

have a very high spectral resolution [30]. (usually 10 nm). 

The use of HSI analysis is widespread in a variety of 

industries, including materials analysis, precision 

agriculture, environmental monitoring, and surveillance 

[31–33]. The hyperspectral community's most active area 

of study is HSIs classification, which aims to categories 

every pixel in an image [34]. 

 

Figure 4: Hyperspectral imaging concept for classification 

 

Figure 5: FROC curve for the 3D CNN 

Figure 3: A 3D CNN Architecture for proposed Dataset to classify the images into different classes classification 
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In figure 4 show the concept of hyperspectral imaging. 

The categorization of HSIs is challenging, nevertheless, 

due to the heavily duplicated spectral band information 

and few training samples [35]. In an HS image 

classification system, image restoration (e.g., de-noising, 

incomplete data restoration) [36,37], feature vectors [38], 

spectral un-mixing, and feature extraction [39] are all 

general sequential processes. Feature extraction is one of 

them, and it's a vital stage in HS image categorization 

that's been getting a lot of attention lately. A vast range of 

powerful hand-crafted and machine learning-based 

feature extraction techniques for HS image classification 

have been presented over the last decade [40]. These 

algorithms are capable of handling small-sample 

classification issues well. When the training size 

progressively expands and the training images become 

more complicated, they are likely to hit a performance 

bottleneck. This could be owing to the traditional 

approaches' restricted data fitting and representation 

abilities. 

2. Related Work review 

In this article they used a three-dimensional 

convolutional neural network to classify lung nodules in 

chest CT images. In this proposed method they used two 

techniques one is screening stage and second is 

discrimination stage. A CAD system's scanning stage is a 

standard feature. This stage narrows the initial search 

space and indicates a selection of the most likely 

candidates who should be investigated further. The 

screening CNN in our system is initially trained to classify 

3D patches derived from each CT case using 3D 

convolution kernels [41]. The negative samples were 

chosen arbitrarily by extracting VOIs of the same size as 

the tested cases from a random location within the CT 

scan, whereas the specimens for this CNN were created by 

trying to extract VOIs of the same size as the tested cases 

from a random location inside the CT scan (in both the 

inside and outside of the lungs) (including both the  inside 

and outside of the lungs). The selection of the negative 

patches ensured that none of the  nodules would be 

overlapped by them. The number of negative samples 

obtained in this way may be nearly as big as required 

because the majority of the region within a chest CT is 

nodule-free. On the other hand, there are only a certain 

number of positive samples. The positive samples are 

reinforced by inserting flipped and rotated copies of each 

extracted positive patch in the training set to increase the 

system's invariance to small variations in nodule 

appearance and to decrease the aforementioned class 

imbalance problem. The previous section's screening stage 

still produces a significant percentage of false positives. 

The goal of the discriminating stage is to lower this 

number so that the clinician receives an output with high 

sensitivity for  nodule detection and a tolerable number of 

false positives per case. They trained their models using a 

subset of 509 cases from the LIDC dataset, with slice 

thicknesses ranging from 1.5 mm to 3 mm, as well as an 

extra 25 examples for testing. One to four radiologists 

indicate the location of each module in the LIDC dataset, 

and the radiologist provides a segmentation for each 

newly discovered 3 mm nodule. 

Only screening candidate points that pass the 

previously described criterion are used to evaluate the 

discriminatory CNN. The FROC curve for the 

discrimination stage is shown in Figure 4. At 15.28 FPs per 

case, this model achieves an 80% sensitivity. it suggests 

that this is accuracy is not much good as compare to other 

implementations of CNN, it can be improved by using 

other proposed methods for that we discussed is 

discussion session. 

 

Figure 6: A convolution kernel shown graphically. The multivariate array of 

weights is the first section. 2D detail of a 3 × 3 kernels with stride 1 and no 

padding is presented in the second part. 

They suggested an approach for hyperspectral image 

categorization that employs an adaptive convolutional 

neural network. Their great performance is based on the 

spatial linkages being exploited by convolution kernels. 

As a result, filter design is critical for model performance. 

However, there are objects of various form and 

orientations in hyperspectral data, prohibiting filters from 

seeing "all imaginable" when making decisions [42]. The 

deeper neurons in the visual cortex are activated by 

several, more complicated inputs in a hierarchical manner, 

whereas the output neurons are triggered by some input 

visual stimulus that is within their RF. On the other hand, 

CNNs have changed their function to mirror this 

behaviour. The CNN employs a single deep stack of 

convolutional layers, each of which defines a filter bank, 

or a group of shareable, teachable, and locally connected 

weights that collectively form a linear n-dimensional 

kernel. A collection of data-fitted filters that sequentially 

traverse through the input data, overlap, and then apply 

themselves to the data make up the kernel. 
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The inputs that are included within the app's region 

and the filter weights are combined to create a weight 

value for each application. Additionally, a non-linear 

activation function is added to reflect the convolution 

layer's reaction to the search features in order to show if 

the features that were filtered by them are present (such as 

edges and forms).  Following equation defines this 

behaviour mathematically. 

𝑋𝑗
(′)

=  𝐻 (∑ 𝑋𝑗+𝑘
𝑙−1𝑊𝑘

(𝑙)

𝐾€₭

)                     (1) 

 Mathematical formula for a neural network operation 

in the forward propagation step. Where the superscript l 

indicates the Lth layer of a CNN, and in above equation H 

is usually implemented with ReLU and it denotes the 

activation function. Figure 2 illustrates this graphically. In 

particular, Figure 2b shows a 6 x 6 feature maps 

implemented with a 3 x 3 kernel with taking zero padding. 

In this case, k will test the input feature’s locations from (2, 

4) to (4, 6) (some parts of padding provided to the border 

of map is included) that is based on K = [1, 1] according to 

grid for the end coordinate j = (3, 5, z). As can be seen, the 

output unit only depends on the kernel's "seeing" of a 

small fraction of the input feature map. Any information 

contained in the input feature map that is outside of the 

RF has no bearing on the value of the output unit since this 

area has been designated as the RF for that unit [43]. 

By tracing the hierarchy back from the output feature 

under consideration to the input image, an effective 

receptive field (ERF) is established. The input data 

components that influence and modify the output 

activations are identified by the ERF. In this way, CNN's 

ERF resembles a Gaussian distribution, designating an 

area to "look at" but also exponentially concentrating 

attention on the centre of the feature map. The soft 

attention map is really based on Gaussian distributions 

[44,45]. One of DL's major achievements is the creation and 

use of the same neural architecture for the categorization 

of diverse pictures. The tests looked at the model's 

complexity, accuracy, and generalizability by counting the 

number of parameters. identifying and categorizing the 

scenes from (i)the University of Pavia and (ii) the 

University of Houston, two authentic, well-known HSI 

sceneries with a variety of spectral-spatial properties. The 

information is given below. 

• The University of Pavia dataset [46] is an HSI picture 

that was taken over the university's campus in Pavia, 

northern Italy, in July 2002 using the ROSIS-3 airborne 

reflecting optics system imaging spectrometer. The 

picture consists of 113 wavelength channels with a 

frequency range of 430 to 860 nm and 610 × 340 pixels 

with a resolution of 1.3 m. The 42,776 tagged samples 

that make up the ground truth are separated into nine 

different land-cover classes, which include, among 

other urban features, asphalt, meadows, gravel, trees, 

steel plate, bare soil, bitumen, brickwork, and 

shadows. 

• The lightweight tiny aerial spectrographic imager 

captured an HSI scene above the Houston University 

region for the University of Houston dataset [47] 

(CASI). It features 144 channels in the 380 nm to 1050 

nm spectral range and 349 1905 pixels with a spatial 

resolution of 2.5 m. 15,029 tagged samples from 5 

different courses in an urban setting are also part of 

the ground truth. 

An innovative deep convolution-based neural network 

for the HSI classification process is presented in this study. 

The CNN classifier's effective receptive field is 

automatically modified by the model's deformable kernels 

and deformed convolutions to account for spatial 

deformations in HSI data from remote sensing. Instead of 

just being able to change the convolution, the adaptive 

classification network accomplishes this automatically by 

utilizing the distortion of the kernel itself applied to each 

perceptron on the input feature volume (i.e., adding an 

offset to the feature positions). 

Figure 7: An overview of the proposed spectral–spatial convolutional network, which is alternatively updated from end to end (AUSSC). The 

convolution operation is referred known as "conv." 
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An upgraded spectral-spatial convolutional network 

has been offered as an alternate method for HSI 

classification. Figure 7 depicts the recommended method 

in broad strokes. A spatial size of S X S was selected from 

the raw HSI data in order to input HSI data with L 

channels and a size of H X W into the AUSSC network. 

The AUSSC picks up the spectral and spatial 

characteristics of an initial HSI patch using three separate 

convolutional kernels. The deep spectral and spatial 

features are modified by the alternately updated spectral 

and spatial blocks via recurrent feedback. The model 

parameters are enhanced by using the cross-entropy loss 

and center-loss loss functions [48]. The three 3D CNN 

algorithms—3D CNN, SSRN, and FDSSC—all show that a 

3-dimensional edge framework outperforms 2D-CNN-

based techniques and other deep learning-based 

approaches. This is due, among other things, to the fact 

that an end-to-end framework may reduce the amount of 

time it takes to complete a project. Reduce pre- and post-

processing to ensure that the final output and original 

input have the closest possible relationships. Then, to 

increase the degree of fitness, the model is enlarged to 

include additional area that can be altered automatically 

by the data. additionally, when used with HSIs with a 

three-dimensional structure. In contrast to current CNN-

based techniques, we offer an end-to-end CNN-based 

system that makes use of smaller convolutional kernels. 

The AUSSC employs kernels and disregards other 

architectures for categorizing HSI. The key distinction 

between the a m1 and a m2 convolutional kernels used in 

the 3D CNN technique is the spectral dimension. To learn 

spectral and spatial representations, SSRN uses spectral 

kernels of size 1 m and spatial kernels of size 1D, 

respectively. Convolutional kernels set the parameters for 

the model and govern which features the CNN learns. In 

InceptionV3, we introduce the idea of factorization into 

smaller convolutions [48]. 

 

Figure 8: overall accuracy curve of above proposed methods on Houston 

dataset 

To illustrate that the suggested strategy may decrease 

data reliance, they employed a very small number of 

training samples (200). Insufficiently labelled data is 

unavoidable in remote sensing applications. Furthermore, 

remote sensing data collection and labelling is time-

consuming and costly. Therefore, creating huge, high-

quality label sets is really challenging. The number of 

labelled samples used for learning is the most crucial 

variable in deep-learning supervised techniques since 

data dependency is one of the most critical difficulties in 

deep learning. 

In contrast to conventional machine-learning 

techniques, deep learning largely depends on extensive 

training data to recognized possible patterns. 200 training 

samples are required for semi-supervised 3D-GANs as 

well, although their classification performance is 

substantially lower. [49]. Revised spectral and spatial 

features in HSIs were used as the fundamental building 

blocks to develop an end-to-end CNN-based framework 

for HSI classification. To learn HIS qualities and combine 

them into advanced features, our concurrently updated 

convolutional spectral-spatial network uses spatial and 

spectral blocks that have been modified in the opposite 

direction. Our technique outperforms previous deep 

learning-based methods by learning deeply refined 

spectral and spatial characteristics via alternatively 

updated blocks, allowing it to attain high classification 

accuracy. 

They said that the CNN is a multilayer neural network 

where the convolution layer, max - pooling, and fully - 

connected layers are all components. The CNN model's 

convolution, which is the top layer, performs the 

convolution operation on the input data. Convolution 

involves performing an inner product operation on the 

kernel and receptive field of two matrices (learnable 

parameters). The feature map is constructed based on the 

input information and accessible features, and the kernel 

is often smaller than the original data and situated in the 

receptive field. The feature map's dimension may be 

effectively decreased thanks to the pooling layer. The 

perceptron-like convolution layer, which is composed of 

neurons, is multilayered, has all of the neurons linked to 

one another, and the output characteristics are employed 

in the mapping. The features are mapped into the output 

using this layer. Researchers found that inter band 

correlation has a high level of redundancy in HSI analysis. 

Without suffering a considerable loss of information that 

may be used later, the data structure of the spectral 

dimension can be scaled down. Contrarily, an HSI consists 

of hundreds of spectral bands, which makes it more 

difficult for the network model to handle data while also 

using a large amount of processing power. In recent years, 

PCA has been widely employed in HSI classification 

studies to prepare the data. 

In accordance with HSI classifications, the two-

dimensional complexity action takes into account the 

input data in the spatial dimension while the three-

dimensional pre-processing phase analyses the input data 
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concurrently in the spatial and spectral dimensions. For 

HSIs with rich spectral information, the capacity to 

maintain the spectrum information of the incoming HSI 

data via 3-D convolution is crucial. However, whether 

two-dimensional convolution procedures are performed 

on two-dimensional or three-dimensional data, the end 

output is always two-dimensional, regardless of whether 

two-dimensional convolution techniques are employed on 

the HSI or not.  The suggested method effectively recovers 

high-quality spectral and spatial feature maps from the 

HSI by merging the 3-D CNN and 2-D CNN. A 

diminishing dimension block (a Conv3-D + reshaping 

operation + a Conv3-D), a 3-D stacked convolution layer (a 

Conv3-D - fast learning layer), and ultimately a 3-D 

stacked convolution layer (a Conv3-D) are all used in the 

proposed model 

From which the output feature maps are then reshaped 

and supplied to a Conv2-D to learn more spatial 

information. The output of the Conv2-layer is flattened 

before it is sent to the top fully connected layer.  A dropout 

layer comes after the last fully linked layer. The proposed 

model's 3-D fast learning CNN block is significantly less 

computationally expensive and faster than the ordinary 

block due to the inclusion of depth-wise separable 

convolution and the fast convolution block in the fast 

learning block. To employ image classification algorithms, 

hyperspectral data cubes for input are split into tiny 3-D 

patches called PRSB, whose center pixel determines the 

class labels. Initially, the size of the right N m labels 

matched the quantity of input data patches. Although the 

correct labels contain a background, we transmit the data 

to the network as input after removing the background 

from the labels and patches. The convolution layer in the 

input image is composed of a sliding kernel. To extract 

important feature maps from the input, this kernel has 

weights that change throughout training. These qualities 

are used in the categorization process. The number of HSIs 

available is insufficient, and data is scarce. Designing a 

model that matches the environment is one of the hurdles 

in categorizing HSIs. This research provides a hybrid 

model of 3-D and 2-D convolution for HSI classification. 

To improve classification performance, spatial and 

spectral characteristics might be employed. In the hybrid 

model, the spatial-spectral information and spatial 

information obtained via 3-D and 2-D convolution, 

respectively, are integrated. 

Figure 9 depicts the suggested method's design. As 

opposed to employing 3-D-CNN alone, combining 3-D-

CNN with 2-D-CNN reduces the number of learning 

parameters while also using less processing power. The 

Adam optimizer does a better job at network optimization 

and cuts down on training time. In comparison to other 

models, the hybrid model has the best performance in 

terms of limiting the number of training samples and 

noise. We may increase the number of layers in the model 

and deepen the network after we have a sufficient amount 

of training data. Although all models have good accuracy 

Due to the hybrid structure's capability to exploit all of the 

spectral and spatial information in HSI data, the hybrid 

model has fewer parameters and takes less training time 

than the 3-D-CNN model and the 2-D-CNN model when 

sufficient training instances are available. Because of this, 

utilizing a hybrid model for HSI categorization is 

economical. [50] proposed a system that is implemented 

Artificial Neural Network for classification of FPGA cart 

Flower.  The recommended method's superiority in the 

face of a short training sample and noise was confirmed 

by experiments on three datasets using three classification 

algorithms that  were compared. 

3. Material and Methods 

The material and methods that are discussed and used 

in the assessed articles are based on 2D and 3D 

hyperspectral images and methods are mainly based on 

CNN. The data is collected from various sources, such as 

airborne or satellite sensors, and pre-processing the data 

to remove noise, correct atmospheric effects, and extract 

relevant features. Then extract relevant features from the 

hyperspectral data to represent the spectral-spatial 

information, such as using principal component analysis 

(PCA), independent component analysis (ICA), or texture 

features. The select and implement the model, in this 

article the main focus is on the implementation of 

convolutional neural network model that is mostly used 

for the image classification. Then train the selected deep 

learning model using annotated hyperspectral data, some 

of papers are in a supervised and some are unsupervised 

manner. After training evaluate the performance of the 

Figure 9: Hybrid convolutional neural network is used in the HSI classification architecture 
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trained model using metrics such as accuracy, F1-score, 

precision, recall, and confusion matrix. Then implement 

the fine-tuning the parameters of the trained model to 

improve its performance, such as adjusting the 

regularization strength, changing the kernel function, or 

adding more hidden layers. The materials required for 

hyperspectral image classification include a computer 

with sufficient computational power, deep learning 

libraries such as Tensor-Flow or Py-Torch, and annotated 

hyperspectral data. Additionally, a software tool such as 

MATLAB or Python can be used to implement the 

algorithms and evaluate the performance of the models.  

A systematic approach to using Convolutional Neural 

Networks (CNNs) would include the following steps: 

• Define the problem: Determine the task you want to 

solve and the type of data you have available. 

• Preprocess the data: Clean, normalize, and prepare 

the data for use in the CNN. This may include 

converting images to grayscale, resizing, and splitting 

the data into training, validation, and testing sets. 

• Choose a CNN architecture: Select an appropriate 

CNN architecture based on the type of data you have 

and the task you want to solve. Common CNN 

architectures include Le-Net, Alex-Net, VGG-Net, 

Res-Net, and Inception-Net. 

• Train the model: Train the model on the training data, 

using an optimization algorithm such as stochastic 

gradient descent (SGD) or Adam, and a loss function 

such as mean squared error (MSE) or cross-entropy. 

• Validate the model: Evaluate the performance of the 

model on the validation data. This is used to tune the 

hyper-parameters of the model, such as the learning 

rate and batch size. 

• Test the model: Evaluate the performance of the 

model on the test data. This provides an estimate of 

how well the model will perform on unseen data. 

• Deploy the model: Deploy the trained model in a 

production environment, using a framework such as 

Tensor-Flow or Py-Torch. 

• Monitor performance: Regularly monitor the 

performance of the deployed model and make 

improvements as necessary. 

4. Results and Discussion 

In this paper, we have reviewed and critically 

compared many supervised hyperspectral classification 

approaches from multiple perspectives, with a focus on 

the setup, speed, and automation capabilities of various 

algorithms. Popular approaches such as SVMs, neural 

networks (2D and 3D convolutional neural network), and 

deep approaches are among the techniques compared, 

which have been widely employed in the hyperspectral 

analysis field but have never been comprehensively 

investigated using a quantitative and comparative 

methodology. The article lies in its focus on the recent 

advancements in the classification of hyperspectral images 

using 2D and 3D convolutional neural networks (CNNs)  

with channel and spatial attention mechanisms. The 

review summarizes the current state-of-the-art methods 

and provides insights into the latest developments in the 

field, highlighting the strengths and limitations of 

different approaches. The key conclusion that can be 

drawn from this research is that no classifier consistently 

gives the greatest performance among the criteria under 

consideration (particularly from the viewpoint of 

classification accuracy). Different solutions, on the other 

hand, are dependent on the complexity of the analysis 

scenario (for example, the availability of training samples, 

processing needs, tuning parameters, and algorithm 

speed) as well as the application domain in question. The 

informative analysis of all the reviewed papers given in 

below table. 

 

Table 1: Comparison of different methods for Hyperspectral Image classification 

Paper Reference Methodology Dataset Analysis 

[42] MCA and MLR Hyperspectral and LIDAR data The implementation of MCA and MLR on the mentioned 

data and obtained that these methods work good for 

LIDAR. 

[43] AUSSC and CNN HSI datasets Implemented the AUSSC and CNN on the mentioned 

datasets and observed that the Hyperspectral image 

classification is based on the size of convolution and size 

of layers in CNN. 

[45] GAN and CNN Salinas, Indiana pines, Kennedy Space 

Center data 

The proposed method is still need to enhance its 

functionality by changing the size of convolutional layers 

and max pooling. 

[46] mRMR and 2D-CNN  HSI datasets The proposed method improves some major functionality 

of CNN that were not good in simple CNN, 2D-CNN 

enhance the classifier functionality of CNN. 

[47] Deep and Dense 

CNN 

Indiana pines, Kennedy Space Center 

data, university of Pavia datasets 

Deep and dense CNN implemented on all mentioned 

datasets, and found that it works with 15% labeled data 

but not produce efficient results. 

[48] CNN and MFL HSI datasets Proposed methods implemented on given datasets and 

elaborate that CNN works better as compare to MFL. 
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5.  Conclusion 

To advance the field of classification of hyperspectral 

images using 2D and 3D CNNs with channel and spatial 

attention, the following open research challenges and 

future research directions can be considered: 

Finding more effective ways to exploit the rich 

spectral-spatial information in hyperspectral images to 

improve classification accuracy. Generalization to real-

world scenarios: Improving the generalization of CNN 

models to real-world hyperspectral data, which can often 

be noisy and have complex background variations. 

Combining multiple sources of information:  

Exploring the integration of other sources of 

information, such as elevation data or textual annotations, 

to improve hyperspectral image classification 

performance. Computational efficiency:  

Developing more efficient algorithms to reduce the 

computational burden of hyperspectral image 

classification, especially for large-scale datasets. 

Robustness to atmospheric and illumination conditions: 

Improving the robustness of CNN models to variations 

in atmospheric conditions and illumination, which can 

significantly impact the performance of hyperspectral 

image classification.  

Semi-supervised and unsupervised learning: 

Investigating the potential of semi-supervised and 

unsupervised learning methods for hyperspectral image 

classification to reduce the need for large annotated 

datasets. Exploring the use of multi-scale information to 

improve the classification of hyperspectral images, such as 

using multi-scale convolutional filters or combining 

multiple CNNs with different receptive field size. This 

work will be enhanced by the use of other suitable 

methodologies for the categorization of hyperspectral 

pictures, such as Transformers, which will be dependent 

on his/her expectations and/or exploitation aims. 
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