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ABSTRACT: Cancer is one of the leading causes for death worldwide. Accurate and timely detection of cancer
can save lives. As more machine learning algorithms and approaches have been applied in cancer diagnosis, there
has been a need to analyze their performance. This study has compared the detection accuracy and speed of
nineteen machine learning algorithms using a cervical cancer dataset. To make the approach general enough to
detect various types of cancers, this study has intentionally excluded feature selection, a feature commonly applied
in most studies for a specific dataset or a certain type of cancer. In addition, imputation and hyperparameter
optimization have been employed to improve the algorithms’ performance. The results suggest that when both
imputation and hyperparameter optimization are applied, the algorithms tend to perform better than when either of
them is employed individually or when both are absent. The majority of the algorithms have shown improved
accuracy in diagnosis, although with the trade-off of increased execution time. The findings from this study
demonstrate the potential of machine learning in cancer diagnosis, especially the possibility of developing versatile
systems that are able to detect various types of cancers with satisfactory performance.

KEYWORDS Machine Learning, Cervical Cancer, Imputation, Hyperparameter Optimization

1. Introduction

Cancer is a complex disease that has numerous genetic and epi-
genetic variations. Depending on the part of the body where it is
developed, cancer can be classified into different types and each
comes with unique characteristics. According to the World Health
Organization (WHO), among different types of cancers, cervical
cancer ranks the fourth most prevalent gynecologic malignancy
among women worldwide [1]. Since cervical cancer is generally
slow-growing, early detection through routine human papillo-
mavirus (HPV) examination and pap smear checkup is crucial
for timely treatment and maximize patients’ chances of survival.
HPV and Pap smear tests are effective methods for screening cer-
vical cancer early by examining collected cells from cervix area.
HPV test can detect the human papillomavirus that causes cell
changes, and the pap smear test can find precancerous cells that
might develop into cancer if not treated on time. However, peri-
odic examination and results assessment are not always easy due
to a shortage of medical professionals especially in developing
countries where cervical cancer is most prevalent[2].

Because of increasing availability of cancer datasets and
the exceptional ability of machine learning to identify patterns
within complex datasets, more supervised, unsupervised, and
semi-supervised machine learning techniques have been applied
for the diagnosis of various types of cancers [3]–[5] including
cervical cancer [6]–[8]. Several studies have applied machine
learning on pap smear test results. A recent review has indicated
that K-nearest-neighbors (KNN) and support vector machines

(SVM) algorithms have achieved the highest accuracy, exceeding
98.5%. However, these reviewed algorithms have shown weak-
nesses of the low classification accuracy in some classes of cells.

Most classifiers evaluated using segmented pap-smear images
are commercial software. There is a need to verify their clinical
effectiveness in developing countries where the majority (80%) of
incidents occur, and there is a shortage of well-trained doctors and
funding to purchase commercially available software[9]. In [10],
researchers have taken an ensemble approach by applying five
popular machine learning methods: logistic regression (LR), deci-
sion tree classifier (DT), SVM, multilayer perception (MLP), and
KNN to mine the relationships among different risk factors. The
average of the results has been used as the benchmark, with the
algorithm that has outperformed the benchmark as the predictor.
In the study, a gene auxiliary module has been used to enhance
the prediction result. However, such an approach has brought an
inherent issue since patients’ gene information is often unknown.

Cervicography refers to images capturing the cervical area,
commonly used to determine the presence of cervical cancer.
Since accurate readings of cervicography require experience of
well-trained medical professionals, which is not always available,
[11] has presented a fully automated convolutional neural net-
works (CNN) based process to detect cervical area and classify
cervical cancer using cervicography. However, the accuracy of
cervical area detection is as low as 68%, and the area under the
curve (AUC) score of cancer detection rate is 82%. Their study
has compared the prediction accuracy of three machine learning
algorithms - SVM, KNN, and the decision tree - using the UCI
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database [11]. Nithya and Ilango [12] have applied five machine
learning algorithms along with various types of feature selection
techniques to explore risk factors of cervical cancer. Although
the accuracy is as high as 99% to 100%, evidence is needed to
show that the system is not overly tailored to a specific dataset. To
compare the performance of deep learning and machine learning,
researchers have evaluated three machine learning algorithms -
eXtreme Gradient Boosting (XGB), SVM, and Random Forest
(RF) - and one deep learning algorithm (ResNet-50) to identify
signs of cervical cancer using cervicography images [13]. The
evaluation results suggest that deep learning has performed better
than machine learning approach by showing a 0.15-point im-
provement over the average of the other three machine learning
algorithms.

Building upon the existing literature on applying machine
learning in cervical cancer detection, this study extends the scope
of examined algorithms to gain deeper insights. Instead of eval-
uating a limited number of algorithms as done in most studies,
this research assesses a comprehensive set of 19 supervised, semi-
supervised, and unsupervised algorithms. This extensive approach
offers a better understanding of the topic. Feature selection has
the advantage of improving predictions but may introduce data
overfitting issues, wherein the model is overly tailored to a spe-
cific kind of data. Thus, this study has excluded feature selection
to detect various types of cancers. However, this approach might
come with a potential trade-off of reduced prediction accuracy. To
address this concern, we have explored whether the application
of imputations and hyperparameter optimization could enhance
diagnostic accuracy.

2. Method

2.1. Imputation

Imputation is a method to substitute missing data with alternative
values so that majority of the information in the dataset can be pre-
served. Missing values are common in medical field since much
information is provided by the patients voluntarily, patients often
skip certain questions for privacy concerns or a lack of knowledge
about specific information such as family hereditary history. The
handling of missing values is an issue that researchers cannot
avoid. Many statistical software removes instances with missing
values by default, which can result in misrepresentation of the
data, inaccurate models, and the data overfitting problem. This
is especially the case with the cancer datasets which tend to have
small size due to the challenges in data collection and access.
Such datasets typically contain a smaller number of instances,
making the removal of instances with missing values impractical
and inadvisable.

Imputation can keep all instances by replacing missing data
with an estimated value. This can be achieved using various tech-
niques among which statistical and machine learning models are
two popular methods. The statistical models use mean, median,
and mode values for numerical features while applying the most
frequent value for both numerical and categorical features.

On the other hand, the machine learning models often use
regression and random forest techniques. The statistical models
are often more suited for large scale datasets with missing values
due to the computational efficiency, whereas the machine learning
models can handle both large and small-scale datasets.

The theoretical foundations of both statistical and machine
learning models are based on the sample and population distri-
bution of missing values within datasets [14]. The mathematical
explanations are given as follows [14]: To estimate the missing
values from a given dataset, let X represent the background infor-
mation in a population, and Y represent the outcome information
in the sample. Then, an estimate of the missing data in one run is
denoted as Q = Q(X,Y).

For the repeated imputation, given the complete set Y =
(Yobs,Ymis), where Yobs presents the observed and Ymis presents
the missing, and the estimand Q, we have the following equation:

P(Q | Yobs) =
∫

P(Q | Yobs,Ymis)P(Ymis | Yobs)dYmis (1)

Equation (1) implies that the actual posterior distribution of Q
is calculated by averaging the complete-data posterior distribution
of Q.

As a result, the final estimate of Q and the final variance of Q
are presented in Equations (2) and (3), respectively.

E(Q | Yobs) = E[E(Q | Yobs,Ymis) | Yobs] (2)

V(Q | Yobs = E[V(Q | Yobs,Ymis) | Yobs]
+V[E(Q | Yobs,Ymis) | Yobs] (3)

Equation (2) indicates that the posterior mean of Q is calcu-
lated as the average of repeated complete-data posterior means of
Q. Equation (3) indicates that the posterior variance of Q is the
sum of the average of repeated complete-data variances of Q and
the variance of repeated complete-data posterior means of Q.

For the proper imputation, let Q̂ represent the complete-data
estimates and U be associated variance-covariance matrices. The
values of Q̂ and U, denoted as Q̂∗l and U∗l, respectively, should
be approximately unbiased for Q̂ and U:

E(Q∞ | X,Y, I) � Q̂
and
E(U∞ | X,Y, I) � Û

B∞, which represents the variance-covariance of Q̂∗l across m
imputations, must be approximately unbiased for the randomiza-
tion variance of Q∞, as shown by:

E(B∞ | X,Y, I) � var(Q∞ | X,Y, I)).

2.2. Hyperparameter Optimization

In machine learning, a hyperparameter is a parameter which can
be set by the user to control the learning process. The purpose of
hyperparameter optimization is to choose a set of hyperparame-
ters for a learning algorithm to optimally solve machine learning
problems [15].

Under some models M of f : X → RN , where X is the
configuration space, the Expected Improvement (EI) [16] can be
described in Equation (4), the expectation that f (x) will negatively
exceed some thresholds y∗,

EIy∗ (x) :=
∫ ∞
−∞

max(y∗ − y, 0)pM(y | x)dy. (4)

As for learning algorithms such as Linear Discriminant Anal-
ysis (LDA) and Logistics Regression (LR) that apply Gaussain
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process, the procedure to optimize EI using Gaussian process in-
volves setting y∗ to the best value found from the observation his-
tory H : y∗ = min f (xi), 1 ≤ i ≤ n. In Equation (4), pM represents
the posterior Gaussian process distribution given the observation
history H.

The optimization for tree-based learning algorithms, such as
Random Forest [17] and Regression Trees [18], models p(x | y)
and p(y) instead of p(y | x) as done in the Gaussian process-based
approach. The definition of p(x | y) can be found in Equation (5)
[16].

p(x | y) =
{

l(x) if y < y∗

g(x) if y ≥ y∗ (5)

Now, Equation (4) can be rewritten as Equation (6) as shown
below.

EIy∗ (x) :=
∫ y∗

−∞
(y∗ − y) p(y|x)p(y)

p(x) dy (6)

Let γ = p(y < y∗), then p(x) = γl(x) + (1 − γ)g(x). After
applying them to Equation (6), the optimization of EI becomes:

EIy∗ (x) :=
γy∗l(x)−l(x)

∫ y∗

−∞
p(y)dy

γl(x)+(1−γ)g(x) ∝ (γ + g(x)
l(x) (1 − γ))−1,

that is, seeking points x with high probability under l(x) and
low probability under g(x).

2.3. Dataset

The cervical cancer dataset used in this study is from the openly
accessible UCI Machine Learning Repository [6]. This text-based
dataset consists of 858 instances and 36 attributes, including de-
mographic information, habit, and medical records, and more,
presented as integer or real values. Collected from a hospital
in Venezuela, the dataset contains missing values and is highly
imbalanced, with a ratio of 55 positive diagnosis results to 803
negative diagnosis result.

The cervical cancer dataset includes results from four de-
tection techniques: hinselmann, schiller, cytology, and biopsy.
This study selects the biopsy result as the target variable since
biopsy results provide more detailed diagnostic information and
offer deterministic outcomes in terms of cell malignancy, cancer
type, and cancer stage [19]. In this study, all instances are kept,
including those with missing values. Removing instances with
missing values would lead to the exclusion of approximately 10%
of true positive (malicious) cases, significantly impacting the de-
tection model’s performance. However, two attributes, namely
STDs:Time since first diagnosis and STDs:Time since last diagno-
sis, are removed because the majority of their values are missing,
with less than 9% of the values available.

2.4. Design of experiments

Four tests (See Table 1) are designed to empirically investigate
the impact of imputation and hyperparameter optimization on the
detection accuracy of machine learning algorithms and process-
ing time on a small-sized cancer dataset with missing values. In
all the tests, the dataset is split to 67% for training and 33% for
testing. No feature selection is applied prior to training.

Since unsupervised learning algorithms do not use labeled
data for training, they are not good candidates for hyperparam-

eter optimization. Although there have been studies proposing
strategies to optimize hyperparameters for unsupervised learning,
evaluating their optimization outcomes can be challenging. There-
fore, in this study, we only apply hyperparameter optimization
to 14 supervised learning algorithms and one semi-supervised
learning algorithm (Label Propagation(LP)).

Table 1: Test Design

Test Algorithms Imputation Hyperparameter
Optimization

1 19 N N
2 15 N Y
3 19 Y N
4 15 Y Y

Table 1 (Test Design) provides information on how the four
tests are conducted. The first column shows the test number, the
second column indicates the number of algorithms included in
each test, the third column specifies whether imputation is applied
(Y) or not (N) in that test, and the fourth column shows whether
Hyperparameter Optimization is taken into consideration, with Y
for Yes, and N for no. The four tests are described below.

• In test 1 and 3, all 19 algorithms are evaluated without
the application of hyperparameter optimization. Feature
imputation is used in test 3 but not in test 1.

• In test 2 and 4, 15 algorithms are used, including one semi-
supervised learning (Label Propagation) and all supervised
learning. Hyperparameter optimization is applied in both
test 2 and 4, with imputation employed in test 4 but not in
test 2.

A total of 19 machine learning algorithms are used for the
prediction on the cervical cancer dataset. Table 2 lists 19 of these
algorithms, excluding Logistic Regression - Balanced (LR-B) and
Random Forest - Balanced (RF-B). LR-B and RF-B are similar to
Logistic Regression and Random Forest, respectively, with minor
variations. The only difference is the setting of the class weight
parameter when using the Scikit Learn library (sklearn) [20]: both
LR-B and RF-B set the class weight to be “balanced.′′ Thus, we
did not include LR-B and RF-B in table 2. All listed algorithms
are categorized as unsupervised, semi-supervised, or supervised.
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Figure 1: Workflow of prediction with imputation and hyperparameter optimiza-
tion

Figure 1 illustrates the workflow of prediction with application
of imputation and hyperparameter optimization. False positives
in detection refer to incorrectly classified negative instances as
positives, while false negatives refer to incorrectly classified pos-
itive instances as negatives. In cancer diagnostics, the cost of
false positives out weights the false negatives since the former put
“patients at risk with invasive diagnostic procedures” [21].

In this study, we have chosen both Overall Accuracy and Area
Under the Receiver Operating Characteristics (AUROC) [22] as
metrics for evaluating the detection accuracy. The ROC curve
is plotted with sensitivity against specificity: sensitivity is the
ratio of true positives, defined as T PR = T P

T P+FN , and specificity
is the proportion of true negatives, presented as FPR = FP

T N+FP ,
where TP stands for True Positive, TN True Negative, FP False
Positive, and FN False Negative. A higher AUROC value in-
dicates a better accuracy with a smaller false positive rate. An
AUROC of 1.0 suggests a perfect classifier with 100% accuracy.
The Overall Accuracy is calculated as the ratio of the number of
correctly classified instances to the total number of instances, that
is, T P+T N

T P+T N+FP+FN .
The tests are implemented in Python 3.11 using the Scikit-

learn [20] and Imbalanced Learn [23] libraries. They have been
executed on a Dell Precision 5820 GPU workstation equipped
with an Intel Xeon Processor (4 cores, 4.1 GHz) and an NVIDIA
Quadro P2000 graphics card (5GB VRAM, 4 DisplayPort con-
nectors).

3. Results

This section presents results from the four tests, including accu-
racy, execution time details in attached tables in the Appendix,
along with AUROC curves. A summary of findings for each test
is provided in Table 3.

The following three subsections provide details on how im-
putation, hyperparameter optimization, and the combination of

these two methods impact machine learning algorithms’ predic-
tion accuracy and execution time for cervical cancer diagnosis.

3.1. Impact of Imputation

We compare the two sets of results to determine the impact of
imputation on the cervical cancer dataset. The first set includes
the filtered dataset and imputed dataset without hyperparameter
optimization for test 1 and test 3 (section 3.1.2). The second set
includes the filtered dataset and imputed dataset with hyperparam-
eter optimization for test 2 and test 4 (section 3.1.3).

3.1.1. Imputation Strategies

As mentioned in section 2.1, statistical and machine learning
models are two popular imputation methods. In this study, both
models have been explored for imputing the missing values in
the cervical cancer dataset. Specifically, we have applied the
statistical model using the most frequent value approach and the
machine learning model using Random Forest for imputation, in
both test 3 and test 4. Table 4 compares the Overall Accuracy and
AUROC obtained through imputation using these two approaches
in test 3 with 19 learning algorithms. The results indicate that
imputation with Random Forest outperforms imputation with the
most frequent value method, with 15 out of 19 algorithms demon-
strating higher Overall Accuracy and 12 out of 19 algorithms
showing better AUROC scores. In test 4 with 15 algorithms, the
comparison between the two imputation approaches consistently
indicates the better performance of the Random Forest approach.
13 out of 15 algorithms achieve better AUROC scores and 14 out
of 15 algorithms obtain better Overall Accuracy. Thus, for the
remainder of the paper, we report the findings based on imputation
with Random Forest when imputation is applied.

3.1.2. Comparison of Results from Test 1 and Test 3

Table 5 and Table 7 report the results from test 1 and test 3, respec-
tively. The comparisons of the accuracy and speed performance
of the 19 machine learning algorithms on the filtered dataset and
imputed dataset without hyperparameter optimization (Table 5
and Table 7) are described below.

• We have observed that all algorithms achieve higher Overall
Accuracy with the imputed dataset compared to the filtered
dataset, with improvements ranging from 0.40% to 3.42%.
Six algorithms, including AdaBoost, LightGBM, RF, RF-
B, XGBoost, and LP, experience a decrease in AUROC
scores ranging from 0.01 to 0.08 when using the imputed
dataset compared to the filtered dataset. The remaining 13
algorithms show higher AUROC scores with the imputed
dataset. Among them, LR, NB, NvSVM, and COPOD
achieve a significant improvement of at least 0.14, with
NuSVM achieving the highest improvement of 0.20. The
other 9 algorithms show more modest improvements, lim-
ited to 0.09 or lower.

• NN, RF-B, SVM and ST execute faster with the imputed
dataset compared to the filtered dataset, resulting in saving
more than 15% of execution time. BB, B-RF, and LR take
slightly shorter execution time (ranging from 2% to 7%)
with the imputed dataset. NB and COPOD show similar
execution times with both datasets. XGBoost, RF, SUOD
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Table 2: List of Machine Learning Algorithms Examined

Type Machine learning algorithms
Unsupervised Copula-Based Outlier Detection (COPOD) [24]

K-Nearest Neighbor (KNN) [25]
Subspace Outlier Detection (SUOD) [26]

Semi-supervised Self Training (ST) [27]
Label Propagation (LP)[28]

Supervised Balanced Bagging [29]
Adaptive Boosting (AdaBoost) [30]
Balanced Random Forest [23]
Light Gradient Boosting Machine (LightGBM) [31]
Linear Discriminant Analysis (LDA) [32]
Logistics Regression (LR) [33]
Complement Naive Bayes (NB) [34]
Neural Networks (NN) - Multi-Layer Perceptrons [35]
ν-Support Vector Machines (NuSVM) [36]
Random Forest (RF) [17]
Support Vector Machine (SVM) [37]
eXtreme Gradient Boosting (XGBoost) [38]

and LR-B take slightly longer execution time (ranging from
3% to 9%) with the imputed dataset. The execution times
of AdaBoost, LightGBM, LDA, NuSVM, LP, and KNN are
much longer, ranging from 16% to 55%, on the imputed
dataset compared to the filtered one.

3.1.3. Comparison of Results from Test 2 and Test 4

The findings from the comparisons of 15 algorithms’ accuracy
and execution time on the filtered dataset and the imputed dataset
with hyperparameter optimization (Table 6 and Table 8) indicate
the following:

• All algorithms require longer execution time, ranging from
0.02 to 1.8 times, with the imputed dataset compared to
the filtered one. Among them, SVM requires the longest
additional time.

• All the tested algorithms demonstrate an improvement in
Overall Accuracy with the imputed dataset, with the highest
improvement being 3.27% (in LR). As for AUROC scores,
RF and LightGBM experience a slight decrease of 0.03 and
0.04, respectively, when using the imputed dataset. The re-
maining algorithms show an improvement, with the highest
improvement being 0.23 (in SVM).

3.2. Impact of hyperparameter optimization

To determine the impact of hyperparameter optimization on the
cervical cancer dataset, we conduct a comparison between the
two sets of results. The first set of results is from test 1 and test
2, and the second set is from test 3 and test 4. This study applies
the grid search strategy to identify the optimal hyperparameter
settings for an algorithm.

3.2.1. Comparison of Results from Test 1 and Test 2

Table 9 provides details of hyperparameter settings applied to
the machine learning algorithms used in test 2, including 14 su-
pervised learning and 1 semi-supervised learning. Table 5 and

6 report the results from test 1 and 2, respectively. Both tests
have removed the missing values, while test 2 has also applied hy-
perparameter optimization. The following findings on prediction
accuracy and speed are observed:

• The findings indicate that the application of hyperparame-
ter optimization does not significantly impact the Overall
Accuracy of six algorithms: BB, AdaBoost, LightGBM,
LDA, NN, and NuSVM. However, slight decreases in Over-
all Accuracy (ranging from 0.45% to 1.36%) are observed
for B-RF, LR, RF and XGBoost, when hyperparameter
optimization is applied. The remaining four algorithms
demonstrate improved Overall Accuracy with hyperparam-
eter optimization. LR-B and LP show slight improvements
(0.45% and 0.90%, respectively), while NB, RF-B, and
SVM exhibit better improvements (ranging from 1.81% to
5.43%). Specifically, NB shows the highest improvement
of 5.43%.

Regarding AUROC scores, the performance of BB, B-RF,
LDA, LR-B, NN, and NuSVMare the same with and with-
out the application of hyperparameter optimization on this
dataset. LP and LR experience a slight decrease in AUROC
scores (ranging from 0.02 to 0.03) when hyperparameter
optimization is applied compared to when it is not. The
most significant decrease decreases in the AUROC score
are observed in NB and RF, with reductions of around 0.11.

• With the application of hyperparameter optimization, all
tested algorithms experience considerably longer execution
times compared to their counterparts without optimization.
NB, LDA, LR-B, NN, and NuSVM take over less than 50
times longer to execute, with NB taking 9 times longer as
the shortest. LR takes more than 50 times but less than 68
times longer to execute. The remaining algorithms take
much longer to execute, ranging from 161 (LP) to 1240
times (XGBoost), when hyperparameter optimization is
applied.
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Table 3: Summary of Results

Test No. Description Results
1 3 unsupervised;

2 semi-supervised;
14 supervised;
No imputation;
No hyperparameter op.

Table 5 presents the details of the results from Test 1.
Fig. 2, 3, and 4 illustrate the AUROC curves.
Overall, supervised learning algorithms have performed the best in
AUROC values, followed by semi-supervised, and then unsuper-
vised. 1 supervised learning (BB) has the highest AUROC score
of 0.90, followed by 3 supervised learning (B-RF, LDA and LR-B)
with a score of 0.89; The highest Overall Accuracy of 95.93% is
achieved by two supervised learning (BB and LightGBM), fol-
lowed by one semi-supervised learning (ST) with accuracy of
95.48%. All 19 algorithms have execution time of less than 0.77
second.

2 0 unsupervised;
1 semi-supervised;
14 supervised;
No imputation;
Hyperparameter op.

Table 6 presents the details of the results from Test 2.
Fig. 5 and 6 illustrate the AUROC curves.
5 supervised learning (BB, B-RF, LDA, LR-B and RF) have the
best AUROC values between 0.89 and 0.9, among which LDA also
has the one of the shortest processing time of only 0.37 second
among all 15 algorithms. 13/14 supervised learning have Overall
Accuracy of over 92.76%. 3 supervised learning (BB, LightGBM,
and LR-B) and 1 semi-supervised learning (LP) have the highest
Overall Accuracy of 95.93%. LP also has one of the shortest
execution times, taking 0.86 seconds. Only 4 algorithms have
execution time of less than 1 second, 5 algorithms take more than
30 seconds, and XGBoost has the longest execution time of 97.89
seconds.

3 3 unsupervised;
2 semi-supervised;
14 supervised;
Imputation;
No hyperparameter op.

Table 7 presents the details of the results from Test 3.
Fig. 7, 8 , and 9 illustrate the AUROC curves.
The top performers in AUROC are 4 supervised learning - i.e., BB,
B-RF, LDA, and LR-B with the values of 0.96, 0.95, 0.95, and
0.95 respectively, among which LDA also has one of the shortest
processing time(0.01 second). All but two algorithms (KNN and
NB) have Overall Accuracy higher than 90%.

4 0 unsupervised;
1 semi-supervised;
14 supervised;
Imputation;
Hyperparameter op.

Table 8 presents the details of the results from Test 4.
Fig. 10 and 11 illustrate the AUROC curves.
8 out of 14 supervised learning (BB, AdaBoost, B-RF, LDA, LR-B,
RF-B, SVM, and XGBoost) have AUROC values between 0.95
and 0.96, among which LDA has the shortest execution time in
test 4 (0.43 second). All 15 algorithms have Overall Accuracy of
over 91.5%, 11 of them have processing time more than 1 second
among which XGBoost has the longest execution time of 105.23
second.

3.2.2. Comparison of Results from Test 3 and Test 4

Table 7 and Table 8 present the results of test 3 and test 4, respec-
tively. In both tests, imputation has been applied to the dataset,
with hyperparameter optimization being applied in test 4, but not
in test 3. Table 10 describes the hyperparameter settings applied
to the machine learning algorithms used in test 4, including 14
supervised learning and 1 semi-supervised learning.

• The application of hyperparameter optimization does not
impact the Overall Accuracy for LDA, NN, and RF; the
result remains the same regardless of whether it is applied.
BB, LR, and NuSVM experience slight decrease in Overall
Accuracy, ranging from 0.35% (BB) to 1.06% (LR). The
remaining algorithms show improvements in Overall Accu-
racy at different levels. B-RF, Light GBM, and XGBoost
have slight increase (<=0.7%). AdaBoost and LP have an

increase over 1% but less than 2%. RF-B, SVM, and NB
show better improvement, increasing in the range of 2.11%
to 4.23%, with NB receiving the highest improvement.

The AUROC scores of BB, B-RF, LDA, and LR-B are
not affected by whether the optimization is applied to the
dataset. However, other algorithms show an impact from
the optimization. LR, NB, NuSVM, and RF experience
a reduction in scores, ranging from 0.03 to 0.12, when
optimization is applied. The other seven algorithms demon-
strate an improvement in AUROC scores with the optimiza-
tion. LP, NN, and LightGBM show a slight improvement
of 0.01, 0.03, and 0.06, respectively, while AdaBoost, XG-
Boost, RF-B, and SVM show an increase ranging from 0.21
to 0.46, with SVM achieving the highest improvement of
0.46.
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Table 4: Imputation with Most Frequent Value vs. Random Forest

Algorithms Imputation (Most Frequent) Imputation (Random Forest)
Overall(%) AUROC Overall(%) AUROC

BB 95.07 0.92 97.18 0.96
AdaBoost 93.66 0.68 95.77 0.74
B-RF 95.77 0.93 96.13 0.95
LightGBM 95.77 0.74 96.83 0.72
LDA 96.48 0.93 96.83 0.95
LR 96.13 0.75 97.54 0.87
LR-B 95.42 0.87 96.48 0.95
NB 89.44 0.74 87.32 0.90
NN 94.72 0.66 95.42 0.74
NuSVM 95.77 0.74 96.83 0.92
RF 96.48 0.77 96.48 0.75
RF-B 95.42 0.66 94.72 0.56
SVM 93.66 0.50 94.37 0.50
XGBoost 95.42 0.77 96.83 0.75
ST 96.82 0.79 98.94 0.91
LP 96.11 0.73 95.76 0.74
COPOD 90.81 0.76 89.25 0.71
KNN 87.99 0.63 87.10 0.65
SUOD 90.11 0.73 89.25 0.71

• Similar to the observation described in section 3.2.1 about
the significant increase in speed when hyperparameter opti-
mization is applied, all algorithms in test 4 take significantly
longer to execute, ranging from 23 to 1450 times longer,
with LDA requiring the shortest additional time (23) and
SVM requiring the longest (1450) compared to without
hyperparameter optimization.

3.3. Impact of hyperparameter optimization and imputation

The impact of applying both hyperparameter optimization and
imputation is evaluated based on the findings from test 1 (Table
5) and test 4 (Table 8) in appendix section.

The results indicate that the application of both hyperparam-
eter optimization and imputation has a positive impact on the
detection accuracy, including both Overall Accuracy and AUROC
scores.

Overall Accuracy improves for all algorithms when both tech-
niques are applied. BB and RF show a slight improvement of
around 0.6%. B-RF, LightGBM, LDA, LR-B, NN, NuSVM,
and XGBoost demonstrate increases ranging from 1% to 1.91%.
AdaBoost, LR, NB, LP, RF-B, and SVM show higher accuracy im-
provements of over 2%), with SVM and NB achieving significant
increases of 4.88% and 7.39%, respectively.

AUROC scores are improved for most algorithms except for
LightGBM, LP, and RF, which experience a slight decrease rang-
ing from 0.01 to 0.14. BB, B-RF, LDA, LR-B, NB, and NN
demonstrate a slight increase, with values ranging from 0.05
to 0.08. The remaining algorithms, including AdaBoost, RF-B,
SVM, and XGBoost, receive increases ranging from 0.14 to a
maximum of 0.46 (SVM).

The application of both approaches significantly increases the
execution time for all algorithms. Consistent with the findings
in sections 3.2.1 and 3.2.2, the execution time of each algorithm
increases ranging from 10 to 1342 times compared to when nei-
ther approach is applied. NB takes the shortest additional time

(10 times), while XGBoost takes the longest time (1342 times)
compared to when the approaches are not used.

3.4. Discussion

In this study, we are interested in comparing the performance
of machine learning applications in cancer diagnosis, especially
approaches that are flexible enough to detect different kinds of
cancers without compromising accuracy. To achieve this goal,
we have examined the impact of imputation and hyperparameter
optimization on the performance of algorithms using a cervical
cancer dataset. Three criteria - execution speed, overall diagnosis
accuracy, and AUROC scores are used to evaluate performance.
Since the cost of false positive is high in cancer diagnosis, and a
good AUROC score indicates low false positive rate, it is a more
important criteria in this study. Based on whether imputation
and hyperparameter optimization is included, we have split the
algorithms into four tests.

Missing values are common in medical data, and statistical
and machine learning are two popular methods that handle miss-
ing data. By comparing the performance of Random Forest, a
common machine learning method, and the most frequent value
method in statistics, we found that machine learning approach
outperforms statistical approach as an imputation method in this
study. This finding echoes with our discussion in section 2.1 that
machine learning is well suited to process dataset with missing
values, especially when the dataset is small.

Results of this study show that the four top performers are all
supervised learning: BB, B-RF, LDA, and LR-B, among which
the performance of LDA is especially noticeable by consistently
delivering the most accurate diagnosis within the shortest time
across all four tests. These four supervised learning definitely
merit more attention in future studies.

Examination of findings from the four tests shows the follow-
ing:

1) when both imputation and hyperparameter optimization are
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absent in test 1, supervised and semi-supervised learning have
performed well in Overall Accuracy, 15 out of 16 algorithms have
scored over 92.31%. However, in terms of AUROC, the top per-
formers (BB, B-RF, LDA, and LR-B) only have AUROC value of
0.89, none has values over 0.9. SVM, a popular supervised learn-
ing algorithm, has performed the worst: its AUROC value is only
0.5. Unsupervised learning algorithms have not performed well,
all three have AUROC values below 0.7. Although the execution
time in test 1 is fast(none is over 0.77 second), the overall low
AUROC values is definitely not satisfactory.

2) To examine the impact of imputation, we have conducted
two comparisons. One set of comparison is between results from
test 1 and test 3. The result shows that when only imputation
is applied, the change in execution time is marginal and yet the
improvement of Overall Accuracy and AUROC is impressive
compared to when both methods are absent. All algorithms have
increased the Overall Accuracy, and 68% of the algorithms have
improved on their AUROC scores. The other set of comparison is
between results from test 2 and test 4. When both imputation and
hyperparameter optimization are applied, compared to when only
hyperparameter optimization is applied, all 15 algorithms have
increased their execution times. The good news is that the Over-
all Accuracy of all algorithms has improved, and most AUROC
values have increased. These two sets of comparisons suggest
that the employment of imputation could improve the prediction
accuracy without extending the execution time.

3) To evaluate the impact of hyperparameter optimization,
we have also carried out two set of comparisons. One set of
comparison is between test 1 and 2. When only hyperparameter
optimization is applied in test 2, the execution time of all algo-
rithms have increased significantly than when both methods are
absent (test 1). 11 out of 15 algorithms have execution time of
more than 1 second whereas none of the algorithms has run time
over 1 second when both methods are absent in test 1. XGBoost
in test 2 even has run time as high as 97 seconds. 7 algorithms
have increased their Overall Accuracy and 8 out of 15 algorithms
have improved their AUROC scores. The other set of compar-
ison is between test 3 and 4. The results show that when both
methods are present (test 4), the execution time for majority of
the algorithms is significantly longer than when only imputation
is present (test 3): only 4 algorithms have execution time of less
than 1 second in test 4, whereas all but 2 algorithms have less
than 1 second in test 3. 9 algorithms have improved their Overall
Accuracy and AUROC scores, among which the AUROC score
improvements are especially noticeable for three supervised learn-
ing algorithms: RF-B, SVM, XGBoost, with improvement of
28%, 92%, and 71% respectively. The findings from these two
sets of comparisons show that inclusion of hyperparameter opti-
mization could lengthen the execution time while improving the
prediction accuracy, especially for some algorithms such as RF-B,
SVM, and XGBoost.

4) Comparison of all 4 tests shows that overall, the inclusion
of both imputation and hyperparameter optimization does deliver
the best AUROC values, with 53% score more than 0.95 and 0.96,
whereas none from test 1, 20% from test 2, 21% from test 3 has
such values.

To summarize, our study has shown how the application of
both imputation and hyperparameter optimization methods in ma-
chine learning could improve the detection accuracy. Also, by
taking all features of the data into consideration, although the

diagnosis accuracy of the classifier is not as high as 99%-100%
as observed in other systems that apply various feature selection
[12], the performance is satisfactory with the inclusion of both
imputations and hyperparameters optimization. In addition, by
not having feature selection, the classifier can avoid the overfitting
problems that are common in many studies, and can potentially
be applied in diagnosing various types of cancers.

This study does come with its limitations. Firstly, although
we have examined as many as 19 different machine learning al-
gorithms, most are supervised learning algorithms with only two
being semi-supervised and three being unsupervised. To gain com-
prehensive understanding on the performance differences among
different types of algorithms, it would be better to consider more
semi-supervised and unsupervised machine algorithms in future
studies. Secondly, one cervical cancer dataset is applied to evalu-
ate the diagnosis performance of different algorithms. To improve
the generalizability of the findings, we will use cervical cancer
datasets from different sources upon the data availability. Also,
to investigate whether how algorithms differ from each other, it
would be advisable to include datasets with various types of can-
cers for evaluation. Thirdly, the dataset used in this study is text
based. Since images are extensively used in cancer diagnosis, it
would be preferable to include image-based datasets in further
studies.

4. Conclusion

With the increasing popularity of machine learning applications
in cancer diagnosis, there has been a need to evaluate the per-
formance of these algorithms and identify approaches that could
improve their performance. This study contributes to the literature
by examining the cancer detection performance of as many as
19 supervised, semi-supervised, unsupervised learning machine
learning algorithms. To investigate ways that expand the types of
cancers that the algorithms could accurately detect, this study has
investigated how the inclusion and exclusion of imputation and
hyperparameter optimization would impact performance using a
cervical cancer dataset. The results suggest that applying both hy-
perparameter optimization and imputation methods could impact
detection performance much better than employing each of them
independently or none of them. This study has provided insights
on creating versatile classifiers that could deliver solid results.

5. Availability of data and materials

The cervical cancer dataset that the current study has ana-
lyzed are openly available in UCI Machine Learning Reposi-
tory, the web address is https://archive.ics.uci.edu/ml/
datasets/Cervical+cancer+%28Risk+Factors%29.
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Table 5: Results - Test 1

Algorithm Time
(sec)

False
Neg.

False
Pos.

Correct
/221

Overall
(%)

AUROC

BB 0.03 3 6 212 95.93% 0.90
AdaBoost 0.06 8 3 210 95.02% 0.76
B-RF 0.22 3 7 211 95.48% 0.89
LightGBM 0.06 7 2 212 95.93% 0.79
LDA 0.02 3 7 211 95.48% 0.89
LR 0.06 10 3 208 94.12% 0.70
LR-B 0.10 3 7 211 95.48% 0.89
NB 0.02 7 28 186 84.16% 0.73
NN 0.93 9 3 209 94.57% 0.73
NuSVM 0.02 9 3 209 94.57% 0.73
RF 0.14 11 2 208 94.12% 0.67
RF-B 0.16 11 1 209 94.57% 0.67
SVM 0.02 17 0 204 92.31% 0.50
XGBoost 0.08 6 4 211 95.48% 0.81
LP 0.01 8 3 210 95.02% 0.76
ST 0.01 7 3 211 95.48% 0.79
COPOD 0.01 16 11 194 87.78% 0.64
KNN 0.01 20 15 186 84.16% 0.51
SUOD 1.03 15 10 196 88.69% 0.67

Note: imputation (no), hyperparameter optimization (no).

Table 6: Results - Test 2

Algorithm Time
(sec)

False
Neg.

False
Pos.

Correct
/221

Overall
(%)

AUROC

BB 6.94 3 6 212 95.93% 0.90
AdaBoost 22.09 5 6 210 95.02% 0.84
B-RF 59.91 3 8 210 95.02% 0.89
LightGBM 21.50 6 3 212 95.93% 0.82
LDA 0.37 3 7 211 95.48% 0.89
LR 4.40 11 4 206 93.21% 0.67
LR-B 4.09 3 6 212 95.93% 0.90
NB 0.21 12 11 198 89.59% 0.62
NN 46.09 9 3 209 94.57% 0.73
NuSVM 0.79 9 3 209 94.57% 0.73
RF 34.65 15 1 205 92.76% 0.56
RF-B 34.14 3 5 213 96.38% 0.90
SVM 5.22 9 4 208 94.12% 0.73
XGBoost 96.89 5 6 210 95.02% 0.84
LP 0.86 9 0 212 95.93% 0.74

Note: imputation(no), hyperparameter optimization(yes).
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Table 7: Results - Test 3

Algorithm Time
(sec)

False
Neg.

False
Pos.

Correct
/284

Overall
(%)

AUROC

BB 0.03 1 8 275 96.83% 0.95
AdaBoost 0.08 9 4 271 95.42% 0.71
B-RF 0.20 1 9 274 96.48% 0.95
LightGBM 0.08 9 1 274 96.48% 0.72
LDA 0.02 1 8 275 96.83% 0.95
LR 0.06 4 3 277 97.54% 0.87
LR-B 0.11 1 9 274 96.48% 0.95
NB 0.02 1 35 248 87.32% 0.90
NN 0.80 7 5 272 95.77% 0.77
NuSVM 0.02 2 6 276 97.18% 0.93
RF 0.15 13 2 269 94.72% 0.59
RF-B 0.11 12 1 271 95.42% 0.62
SVM 0.01 16 0 268 94.37% 0.50
XGBoost 0.08 8 1 275 96.83% 0.75
LP 0.01 8 4 272 95.77% 0.74
ST 0.01 5 1 278 97.89% 0.84
COPOD 0.01 19 6 259 91.20% 0.78
KNN 0.02 26 13 245 86.27% 0.55
SUOD 1.12 20 7 257 90.49% 0.74

Note: imputation(yes), hyperparameter optimization (no).

Table 8: Results - Test 4

Algorithm Time
(sec)

False
Neg.

False
Pos.

Correct
/284

Overall
(%)

AUROC

BB 7.08 1 9 274 96.48% 0.95
AdaBoost 26.88 1 7 276 97.18% 0.96
B-RF 63.50 1 7 276 97.18% 0.96
LightGBM 26.69 7 1 276 97.18% 0.78
LDA 0.43 1 8 275 96.83% 0.95
LR 4.80 7 3 274 96.48% 0.78
LR-B 5.24 1 7 276 97.18% 0.96
NB 0.22 6 18 260 91.55% 0.78
NN 68.49 6 6 272 95.77% 0.80
NuSVM 0.86 3 7 274 96.48% 0.89
RF 36.07 15 0 269 94.72% 0.53
RF-B 37.11 1 6 277 97.54% 0.96
SVM 14.64 1 7 276 97.18% 0.96
XGBoost 104.79 1 7 276 97.18% 0.96
LP 0.93 8 0 276 97.18% 0.75

Note: imputation (yes), hyperparameter optimization (yes).
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Table 9: Hyperparameter Setting for test 2

Algorithm Hyperparameter setting
BB ’n estimators’: 100
AdaBoost ’learning rate’: 0.01, ’n estimators’: 300
B-RF ’criterion’: ’gini’, ’max depth’: 1, ’n estimators’: 500
LightGBM ’learning rate’: 0.1, ’max depth’: 10,

’n estimators’: 100, ’scale pos weight’: 6
LDA ’solver’: ’svd’, ’tol’: 0.0001
LR ’C’: 100, ’penalty’: ’l2’, ’solver’: ’newton-cg’
LR-B ’C’: 1.0, ’penalty’: ’l2’, ’solver’: ’liblinear’
NB ’alpha’: 9
NN ’activation’: ’relu’, ’alpha’: 0.05, ’hidden layer sizes’: (10, 30, 10),

’learning rate’: ’adaptive’, ’solver’: ’adam’
NuSVM ’gamma’: 0.001, ’nu’: 0.1
RF ’criterion’: ’gini’, ’max depth’: 5, ’n estimators’: 500
RF-B ’criterion’: ’entropy’, ’max depth’: 3, ’n estimators’: 200
SVM ’C’: 1.0, ’gamma’: 0.001, ’kernel’: ’linear’
XGBoost ’colsample bytree’: 1.0, ’gamma’: 2, ’max depth’: 3,

’min child weight’: 1, ’subsample’: 1.0
LP ’gamma’: 0.1, ’kernel’: ’knn’, ’n neighbors’: 3

Table 10: Hyperparameter settings for test 4

Algorithm Hyperparameter setting
BB ’n estimators’: 100
AdaBoost ’learning rate’: 0.001, ’n estimators’: 100
B-RF ’criterion’: ’gini’, ’max depth’: 1, ’n estimators’: 200
LightGBM ’learning rate’: 0.1, ’max depth’: 10,

’n estimators’: 100, ’scale pos weight’: 6
LDA ’solver’: ’svd’, ’tol’: 0.1
LR ’C’: 1.0, ’penalty’: ’l2’, ’solver’: ’liblinear’
LR-B ’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’newton-cg’
NB ’alpha’: 9
NN ’activation’: ’relu’, ’alpha’: 0.0001, ’hidden layer sizes’: (20,),

’learning rate’: ’constant’, ’solver’: ’adam’
NuSVM ’gamma’: 0.01, ’nu’: 0.1
RF ’criterion’: ’entropy’, ’max depth’: 3,

’n estimators’: 200
RF-B ’criterion’: ’gini’, ’max depth’: 3,

’n estimators’: 500
SVM ’C’: 1.0, ’gamma’: 0.001, ’kernel’: ’linear’
XGBoost ’colsample bytree’: 0.8, ’gamma’: 1.5, ’max depth’: 3,

’min child weight’: 10, ’subsample’: 1.0
LP ’gamma’: 0.1, ’kernel’: ’knn’, ’n neighbors’: 3
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Figure 2: Test 1: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [No Imputation, No Hyperparameter Optimization]

Figure 3: Test 1: AUROC of Applying 2 Semi-Supervised Learning Algorithms on the Cervical Dataset [No Imputation, No Hyperparameter Optimization]
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Figure 4: Test 1: AUROC of Applying 3 Unsupervised Learning Algorithms on the Cervical Dataset [No Imputation, No Hyperparameter Optimization]

Figure 5: Test 2: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [No Imputation, Hyperparameter Optimization]
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Figure 6: Test 2: AUROC of Applying 1 Semi-Supervised Learning Algorithms on the Cervical Dataset [No Imputation, Hyperparameter Optimization]

Figure 7: Test 3: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [Imputation, No Hyperparameter Optimization]
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Figure 8: Test 3: AUROC of Applying 2 Semi-Supervised Learning Algorithms on the Cervical Dataset [Imputation, No Hyperparameter Optimization]

Figure 9: Test 3: AUROC of Applying 3 Unsupervised Learning Algorithms on the Cervical Dataset [Imputation, No Hyperparameter Optimization]
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Figure 10: Test 4: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [Imputation, Hyperparameter Optimization]

Figure 11: Test 4: AUROC of Applying 1 Semi-Supervised Learning Algorithms on the Cervical Dataset [Imputation, Hyperparameter Optimization]
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