
Special Issue on Multidisciplinary Sciences and Advanced Technology 2024

Received: 04 January, 2024, Revised: 09 February, 2024 Accepted: 14 February, 2024, Online: 29 February, 2024

DOI: https://dx.doi.org/10.55708/js0302004

Robust Localization Algorithm for Indoor Robots Based on the
Branch-and-Bound Strategy
Huaxi (Yulin) Zhang1, Yuyang Wang2, Xiaochuan Luo∗,3, Baptiste Mereaux4, Lei Zhang5

1LTI, Université de Picardie Jules Verne, Saint Quentin, 02100, France
2Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 201210, China
3College of Information Science and Engineering,Northeastern University, Shenyang, 110819, China
4Independent Researcher, Saint Quentin, 02100, France
5euroDAO S.A.S., Saint Quentin, 02100, France
∗Corresponding author: Xiaochuan Luo, Northeastern University, Shenyang, 110819, China, Contact Email: luoxch@mail.neu.edu.cn

ABSTRACT: Robust and accurate localization is crucial for mobile robot navigation in complex indoor
environments. This paper introduces a robust and integrated robot localization algorithm designed
for such environments. The proposed algorithm, named Branch-and-Bound for Robust Localization
(BB-RL), introduces an innovative approach that seamlessly integrates global localization, position
tracking, and resolution of the kidnapped robot problem into a single, comprehensive framework. The
process of global localization in BB-RL involves a two-stage matching approach, moving from a broad
to a more detailed analysis. This method combines a branch-and-bound algorithm with an iterative
nearest point algorithm, allowing for an accurate initial estimation of the robot’s position. For ongoing
position tracking, BB-RL uses a local map-based scan matching technique. To address inaccuracies that
accumulate over time in the local maps, the algorithm creates a pose graph which helps in loop-closure
optimization. Additionally, to make loop-closure detection less computationally intensive, the branch-
and-bound algorithm is used to speed up finding loop constraints. A key feature of BB-RL is its Finite
State Machine (FSM)-based relocalization judgment method, which is designed to quickly identify and
resolve the kidnapped robot problem. This enhances the reliability of the localization process. BB-RL’s
performance was thoroughly tested in real-world situations using commercially available logistics
robots. These tests showed that BB-RL is fast, accurate, and robust, making it a practical solution for
indoor robot localization.

KEYWORDS Branch-and-bound, Global localization, Position tracking, Robot kidnapping

1. Introduction

The growing demand for mobile robots in tasks such as
repair, transportation, and cleaning necessitates the devel-
opment of efficient techniques for robot localization [1]–[5].
Particularly in known environments, robots should be able
to localize themselves within a prebuilt map, enabling them
to position themselves based on data collected from various
sensors. The problem of localizing mobile robots in indoor
environments can be categorized into three sub-problems:
position tracking, global localization, and the kidnapped
robot problem [6, 7]. This paper proposes a fast, robust,
and accurate algorithm to achieve indoor localization of
mobile robots, effectively solving the three localization sub-
problems simultaneously in real-world applications.

Recent advancements in indoor robot localization re-
search have shown significant progress, yet challenges
remain in simultaneously addressing three critical local-
ization issues. The first issue involves global localization.
Often, an initial pose is determined by observing the robot’s
approximate position in the environment to reduce compu-

tational effort and maintain localization stability. Despite
this, without an initial estimate, achieving desirable global
localization remains difficult.

The second issue is position tracking. Here, the chal-
lenge lies in the timely elimination of accumulated errors.
To address this, two main strategies are employed. The first
is simultaneous localization and mapping (SLAM), which
involves frontend scan matching and backend optimiza-
tion. While effective, SLAM methods are computationally
demanding and rely on loop-closure detection to correct
errors. The second strategy involves odometry, such as
visual or LiDAR odometry, which calculates the robot’s
relative pose incrementally using adjacent data. However,
these methods are prone to error accumulation over time,
making them suitable primarily for short-term tracking.

Finally, the third issue is the kidnapped robot problem.
This occurs when a robot, initially well-localized, is unex-
pectedly moved to an unknown location. This problem
can be split into two scenarios: real kidnapping, where
the robot is physically relocated by external forces such as

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 22

https://dx.doi.org/10.55708/js0302004
http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

human intervention or an accident, and perceived kidnap-
ping, which results from localization failures. Addressing
this issue effectively remains a challenge for most existing
approaches.

Considering these aspects, we propose a robust and ac-
curate robot localization algorithm, which consists of three
parts: global localization, position tracking, and relocaliza-
tion judgment.

• The global localization algorithm, which is used to deter-
mine the robot’s initial pose, can be divided into two
stages. In the coarse matching stage, the branch-and-
bound algorithm based on depth-first search (DFS)
is used to promptly identify the absolute position of
the robot on the map without any initial estimate. In
the fine matching stage, the iterative nearest point
algorithm is used to perform iterative optimization to
determine the optimal initial pose of the robot. This
algorithm can rapidly converge anywhere on the map,
and the robot pose exhibits global optimality.

• The position tracking algorithm is used for the contin-
uous localization of the robot when the initial pose
is known. A local map-based scan matching method
is used to estimate the relative pose of the robot and
simultaneously build a local map. Moreover, a global
pose graph optimization algorithm is used to eliminate
the accumulated errors between local maps. Addi-
tionally, to ensure that the computing time is nonin-
tractable, a DFS-based branch-and-bound algorithm is
used to accelerate the process of identifying the loop
constraints.

• The relocalization judgment algorithm is used to address
the problem of robot kidnapping and eliminate the
accumulated errors of the robot. We propose an
FSM-based relocalization judgment method based on
confidence calculation and dual-threshold judgment
to effectively monitor the localization status of the
robot. When the calculated confidence is less than the
minimum threshold, the global localization algorithm
is invoked for localization recovery.

The main contributions of this research can be summa-
rized as follows:

1. Development of a Two-Stage Global Localization Algorithm:
We introduce a novel two-stage global localization
algorithm that combines the broad search capabilities
of the branch-and-bound algorithm with the local
optimization efficiency of the iterative closest point
algorithm. This ensures the robot quickly identifies
the globally optimal initial pose without relying on
any preliminary estimates.

2. Establishment of a Position Tracking Algorithm: Our re-
search incorporates a position tracking algorithm that
integrates frontend local map-based scan matching
with backend pose graph optimization. This approach
provides a highly accurate state estimation of the robot,
crucial for precise navigation.

3. Creation of an FSM-based Relocalization Judgment Algo-
rithm: We have developed an innovative FSM-based

relocalization judgment algorithm that utilizes an in-
flated occupancy grid map to minimize the impact of
sensor measurement noise. This algorithm is adept
at efficiently detecting instances of robot kidnapping,
thereby safeguarding against localization failures in
diverse scenarios and ensuring swift and effective
localization recovery.

4. Proposal of a Joint Localization Algorithm: The research
culminates in a comprehensive joint localization al-
gorithm capable of concurrently addressing the chal-
lenges of global localization, position tracking, and
robot kidnapping in indoor settings. The efficacy of
this algorithm has been rigorously validated using
commercial logistics robots, demonstrating its success-
ful application in real-world environments.

2. Related work

Consistent and efficient localization is a core concept of in-
door robot navigation, as knowledge of the robot position is
crucial in deciding future actions [8]. In recent years, several
researchers have focused on indoor robot localization [9].
However, most of the existing approaches focus on solving a
specific problem of localization (such as global localization),
which is fundamentally different from the motivation of our
work.

Localization refers to the procedure of determining the
robot pose with respect to its environment by using various
noisy sensors. According to the type of measurement data,
the sensors used in the process of robot localization can be
divided into two classes: proprioceptive sensors and extero-
ceptive sensors. Proprioceptive sensors (such as encoders
and IMUs) measure the robot motion by using deduced
reckoning to calculate the relative robot displacement [10]–
[12]. Since such sensors consider the instantaneous speed
or acceleration to estimate the robot state, the integrated
error in the localization process increases in a nonbounded
manner over time. Hence, such sensors are usually used
in combination with exteroceptive sensors that can deter-
mine the absolute positions to enhance the robot’s ability in
managing uncertainties [13]–[16]. Proprioceptive sensors
address position tracking issues due to their inability to
sense environmental information.

In addition to the methods based on proprioceptive
sensors for localization, several approaches use exterocep-
tive sensors to recognize the environment around a robot
to estimate the robot location. Among these methods,
SLAM is widely used. In terms of the primary type of
adopted sensor, the SLAM algorithm can be divided into
two classes: visual SLAM and LiDAR SLAM. Visual SLAM
aims to address the pose estimation of cameras with visual
information. This method has evolved from the use of
monocular cameras [17] to stereo cameras [18] and depth
cameras [19]. The classic variants of monocular SLAM
include ORB-SLAM [20], DSO [21], LSD-SLAM [22], and
SVO [23]. Certain researchers, [24] adapted ORB-SLAM to
a fisheye camera, tightly coupled visual information and
IMU data to robustly estimate the camera pose and used
the multimap technology to effectively solve the problem

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 23

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

of localization failure. In another study [25], a rolling-
shutter camera and IMU were tightly coupled to minimize
the photometric error to estimate the robot pose. Other
researchers [26, 27, 28] used deep neural networks to elimi-
nate the scale ambiguity of monocular cameras and extract
high-level semantic features to enhance the system robust-
ness and accuracy. The classic variants of stereo SLAM
include ORBSLAM2 [29], ORBSLAM3 [30], PL-SLAM [31],
and SOFT2 [32]. An event camera [33] was used to ad-
dress the problems of high dynamics and low light, and the
depth estimation of multiple viewpoints was merged in a
probabilistic manner to build a semidense point cloud map.
Notable research on RGB-D SLAM includes that on the
RTAB-MAP [34], bundle fusion [35], and Kintinuous [36].
Moreover, a lightweight semantic network model was pro-
posed [37], which integrates multiple technologies such as
VIO, pose graph optimization, and semantic segmentation,
to achieve the high-precision reconstruction of the three-
dimensional environment. Deep learning techniques have
also been employed in visual SLAM to extract features, en-
hancing the algorithm’s ability to interpret and understand
the visual information as in LIFT-SLAM [38] and Object-
Fusion [39]. Because depth cameras can directly obtain
the depth information of the environment, their use has
been widely considered [40]. However, processing of the
depth data is computationally expensive, and it is difficult
to satisfy the real-time operation requirements of the CPU.
Moreover, the frontend odometry aspects of visual SLAM
can only estimate the relative pose of the robot, and back-
end loop-closure detection can only achieve relocalization
in similar scenes. Therefore, this approach cannot realize
global localization.

LiDAR SLAM can be divided into 2D LiDAR SLAM and
3D LiDAR SLAM according to the type of LiDAR used. The
classic 3D LiDAR SLAM algorithms include LOAM [41],
HDL graph slam [42], and SuMa++ [43]. LOAM exhibits
a high performance on the KITTI dataset, and thus, many
improved versions of this algorithm have been proposed.
In [44], the distinctive edge features and planar features
were extracted to achieve two-step Levenberg–Marquardt
optimization. In [45], the LiDAR and IMU data were tightly
coupled. The IMU preintegration factor was introduced
in the pose graph optimization to update the bias of the
IMU, and the accumulated errors were corrected through
loop-closure detection. Moreover, excellent schemes for
2D LiDAR SLAM have been proposed in recent years. The
classic filter-based algorithms include Fast SLAM [46] and
Gmapping [47], and graph-based algorithms include Karto
SLAM [48] and Cartographer [49]. Cartographer, devel-
oped by Google engineers, has been proven to be a complete
SLAM system that integrates localization, mapping, and
loop-closure detection. At the frontend of this algorithm,
the relative pose of the robot is calculated using the scan-
to-submap matching method, which has a significantly
lower accumulated error than the scan-to-scan matching
method [50]. Additionally, compared with the scan-to-map
matching method [51], it is considerably less computation-
ally intensive and can run in real time. Similarly, since the
origin of the robot localization is determined when initializ-
ing the algorithm, LiDAR SLAM is essentially an odometry

technique and cannot solve the problems of global localiza-
tion and robot kidnapping. To realize indoor localization,
2D LiDAR has been widely used due to its cost and accuracy.
Certain researchers [52] and [53] attempted to enhance the
accuracy of their localization system by using the extended
Kalman filter to achieve multisensor fusion. However, these
approaches cannot solve the problems of global localization
and robot kidnapping. In [54], a quasistandardized 2D
dynamic time warping (QS-2DDTW) method was proposed
to solve the problem of robot kidnapping. The approach
uses scan data for two consecutive ranges to obtain the
geometric shape similarity of the environment to determine
the robot state. Nevertheless, this approach cannot solve the
position tracking problem. However, other studies [55]–[59]
addressed the three major localization problems by using
the adaptive Monte Carlo localization algorithm. Notably,
using only ultrasonic sensors, the localization accuracy of
the order of decimeters can be achieved.

In addition to the two types of exteroceptive sensors for
localization, several wireless devices (such as WiFi, UWB,
Bluetooth, and RFID) can be deployed indoors to realize
reliable localization. In [60] and [61], the Kalman filter
was used to fuse IMU and UWB data to obtain a relatively
accurate robot pose. However, these approaches could
not solve the problems of global localization and robot
kidnapping. In addition, high accuracy localization was
achieved using commercial WiFi devices [62]. The robust
principal component analysis for extreme learning machine
algorithm (RPCA-ELM) could suppress the effect of mea-
surement noise in the localization process. In [63] and [64],
to enhance the robustness of localization, UHF radio fre-
quency identification technology was adopted. However,
the system accuracy depended on the RFID tag, and global
localization could not be realized at arbitrary positions.
Furthermore, localization was realized in [65] and [66] by
deploying a set of photoresistor sensors on a robot to collect
information regarding an LED array in the environment.
However, high-precision position tracking could not be
realized. In addition, a robot localization system based
on asynchronous millimeter-wave radar interference was
proposed [67], which used the interference between mul-
tiple millimeter-wave radars with known positions in the
environment to calculate the position of the robot. However,
the system exhibited limited localization accuracy.

In summarizing the state of the art in indoor robot lo-
calization, it is clear that researchers have made significant
strides using a variety of methodologies and sensor tech-
nologies. From SLAM implementations—both visual and
LiDAR-based—to sophisticated sensor fusion techniques
leveraging proprioceptive and exteroceptive sensors, in-
cluding the use of wireless technologies like WiFi, UWB,
Bluetooth, and RFID to enhance localization capabilities,
each method aims to address specific facets of the complex
challenge of localization, focusing on global localization,
position tracking, or resolving the kidnapped robot problem.

Despite these advances, a comprehensive solution that
simultaneously addresses all three critical challenges of
indoor robot localization remains elusive. Existing studies
tend to focus on optimizing specific aspects of localization
rather than offering a unified algorithm capable of han-

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 24

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

dling global localization, precise position tracking, and the
kidnapped robot scenario in an integrated manner. This
gap in the research landscape underscores the innovative
potential of the proposed BB-RL algorithm, which aims to
provide a holistic approach to the multifaceted problem of
autonomous indoor navigation. By doing so, BB-RL aspires
to establish a new method in the field, offering a more ro-
bust, accurate, and comprehensive solution to indoor robot
localization than currently available methods.

Some literature mentions studies that attempt to address
all three major localization challenges simultaneously using
the Adaptive Monte Carlo Localization algorithm [55]–[59].
These studies illustrate the potential of multi-sensor fusion
and intelligent algorithms to enhance indoor localization
accuracy and robustness. However, despite offering a com-
posite solution, these approaches may still face limitations
in practical application, such as dependency on specific
types of sensors, the impact of environmental complexity on
localization accuracy, and challenges in maintaining high
precision in dynamic and unknown environments.

The Self-Adaptive Monte Carlo Localization (SA-MCL)
method represents an advancement in addressing the inher-
ent challenges of robot localization, including global local-
ization, position tracking, and the "kidnapping" problem,
where a robot is moved to an unknown location. Previ-
ous studies have shown that by employing the adaptive
Monte Carlo localization algorithm, significant strides can
be made in solving these three major localization challenges.
These methods, however, are predominantly based on 2D
environments and utilize ultrasonic sensors for sensing.

Transitioning from 2D to 3D environments introduces
new challenges for the Monte Carlo Localization (MCL)
algorithm. In [68], the authors propose a pure 3D MCL
localization algorithm to address these challenges directly.
Meanwhile, other approaches, such as the one by [69], adapt
2D MCL for localization in 3D maps. These methods il-
lustrate the diversity of strategies being explored to solve
localization problems in three-dimensional spaces using the
MCL framework in 3D Map. The demand for computational
resources and memory usage significantly increases in 3D
Monte Carlo localization due to the necessity to process
and track a much larger number of particles to accurately
estimate a robot’s pose in three-dimensional space. Each par-
ticle’s position, orientation, and weight must be maintained,
leading to escalated memory requirements as the particle
count increases. Furthermore, without prior knowledge of
the robot’s approximate location, distributing particles ef-
fectively throughout the three-dimensional space to ensure
comprehensive coverage and, by extension, the accuracy of
the localization process, presents a considerable challenge.
This challenge underscores the complexity of initializing
the algorithm in 3D spaces, which is vital for the successful
application of Monte Carlo localization methods in more
complex environments.

In [70], the authors developed a branch-and-bound
(BnB)-based 2D scan matching technique utilizing hier-
archical occupancy grid maps of varying sizes. While this
approach provides accurate and fast global localization on
2D maps, its processing time significantly increases when
applied to 3D maps. In [71], the authors advanced this

research by introducing a BnB-based method for 3D global
localization, which more effectively addresses the challenges
of extending the work of [70] to three-dimensional environ-
ments. However, these studies primarily focus on global
localization issues without offering an integrated solution.

In summary, despite attempts to address the three major
localization challenges simultaneously and the existence of
various methods focusing on solving specific issues, there
remains a significant research gap in developing an accurate
and robust comprehensive localization system. This high-
lights the importance and innovative value of proposing
new algorithms, such as the BB-RL algorithm introduced in
this paper, aimed at enhancing the performance of indoor
robot localization. The BB-RL algorithm seeks to overcome
the limitations of existing solutions through innovative tech-
niques and methods, providing a more comprehensive and
effective solution to meet the demands of complex indoor
environments for robot navigation.

3. System overview

3.1. Hardware setting

The hardware settings are shown in Figure 1. The adopted
autonomous mobile robot (AMR) is a commercial differen-
tial wheeled logistics robot, model IR300, which is equipped
with an Intel NUC8BEH minicomputer as the computing
platform of the robot; two SICK TIM561 LiDAR for range
measurements, which are deployed diagonally on the left
front and bottom right of the robot and have a measure-
ment frequency of up to 10 Hz; an inertial measurement
unit model LMPS-be1, which is used for high-frequency
linear acceleration and angular velocity measurement and
can exhibit a measurement frequency of up to 200 Hz; two
wheel encoders, which are used to measure the wheel speed
with a measurement frequency of up to 50 Hz.

3.2. System architecture

The system architecture of the proposed algorithm is shown
in Figure 2. The algorithm is composed of three parts: global
localization, position tracking, and relocalization judgment.

Figure 1: IR300 robot, manufactured by Sunspeed Robotics Ltd, Co.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 25

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

Figure 2: System architecture

In the localization process, we first obtain the robot’s
initial pose in the environment through the global localiza-
tion algorithm, which is a two-stage matching algorithm
composed of a branch-and-bound algorithm and an iterative
closest point algorithm. After determining the robot’s initial
pose, we implement the position tracking algorithm, which
uses the initial pose as the robot’s initial state to realize
local map-based scan matching. To effectively eliminate
the accumulated errors between local maps, we maintain a
global pose graph at the backend of the algorithm. When a
valid loop closure is detected, the algorithm is implemented
to correct the accumulated errors. Finally, we use a single
thread to implement the relocalization judgment algorithm
to monitor whether the robot can be located correctly when
the position tracking algorithm is used. When the confi-
dence of the current localization result is less than the set
dual-thresholds, the global localization algorithm is called
to reinitialize the algorithm.

4. Global Localization

Global localization, as an indispensable part of our algo-
rithm, is mainly used to determine the robot’s initial pose
and ensure localization recovery when the robot is kid-
napped. When the algorithm is implemented, we first con-
vert the prebuilt point cloud map into multiple occupancy
grid maps with different resolutions. Subsequently, we use
the DFS-based branch-and-bound algorithm to accelerate
the matching of the current LiDAR data with the occupancy
grid maps. Finally, the iterative nearest point algorithm
is used to continue the optimization on the computational
results of the DFS-based branch-and-bound algorithm and
ensure rapid convergence to obtain the optimal pose of the
robot.

4.1. Global search using the branch-and-bound algorithm

We formulate global localization as a search problem on the
occupancy grid map. The linear and angular search window
sizes can be easily determined according to the map size. To
ensure the search accuracy, we set the linear step size as the
grid size. The angular step size can ensure that the farthest
LiDAR point smax moves once without exceeding the map
resolution r. Thus, the angular step size ε can be estimated
using the following equation:

ε arccos1 −
r2

2s2
max

(1)

Furthermore, the integral number of steps covering the
set linear and angular search window sizes can be computed
as:

sx ⌈
S x

r
⌉, sy ⌈

S y

r
⌉, sθ ⌈

S θ
ε
⌉ (2)

where S x and S y are the linear search window sizes in
the x- and y-directions, respectively. S θ is the angular search
window size. sx and sy are the integral numbers of the
linear steps in the x- and y-directions, respectively, and sθ
is the integral number of the angular steps. If the center of
the occupancy grid map is assumed to be the origin of the
search process, the search set can be defined as:

W {−
1
2

sx, ...,
1
2

sx} × {−
1
2

sy, ...,
1
2

sy} × {−
1
2

sθ, ...,
1
2

sθ} (3)

Because the time to search an occupancy grid map in-
creases exponentially with increasing map size, we apply
the branch-and-bound algorithm to accelerate the search
process. In practical applications, we build a global search
tree to determine the initial pose for a given occupancy grid
map, where each node in the tree represents a search result.
The map search process is converted into node transversal
in the search tree, and the target is to identify the leaf node
with the best score.

In contrast to the breadth-first search-based branch-and-
bound algorithm, which traverses most of the nodes in the
search tree to identify the leaf node with the best score, we
use the DFS-based branch-and-bound algorithm to promptly
evaluate the nodes by performing a layer-by-layer search on
multiple occupancy grid maps with low to high resolutions
and prune the intermediate nodes that do not meet the
boundary conditions and all the corresponding subnodes.
Therefore, only a few nodes need to be traversed to identify
a leaf node with the best score. The flow of the algorithm is
illustrated in Figure 3.

Schematic of the DFS-based Branch-and-Bound Method
(Search Tree Depth d 3). The root node is implicitly divided
into different subnodes to form a set N0, and a node n0 is
extracted to illustrate the algorithmic process.

First, we use the prebuilt point cloud map to create
multiple occupancy grid maps with high to low resolutions.
Specifically, we first rasterize the point cloud map according
to the required highest resolution r0. The probability value
of each grid is averaged according to the number of point
clouds in the grid, and the resulting occupancy grid map
is denoted as map0. Subsequently, according to the depth d
of the global search tree, map0 is downsampled d − 1 times.
The resolution of mapii 1, ..., d − 1 obtained by each down-
sampling is doubled to 2ir0. Finally, we save these maps
from low to high resolutions.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 26

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

Figure 3: Schematic of the DFS-based branch-and-bound method (search
tree depth d 3). The root node is implicitly divided into different subnodes
to form a set N0, and a node n0 is extracted to illustrate the algorithmic
process.

Second, we consider the search strategy. In the global
search tree, the root node corresponds to the set of all possi-
ble solutions. We do not explicitly express this node but only
branch it into a series of child nodes, which can be denoted
as the set N0 of all possible solutions searched on mapd−1.
The leaf nodes represent a possible solution searched on
map0. Each node ni in the tree is represented as a tuple of
integers:

ni dx, dy, dφ, ch (4)

where dx and dy represent the position offsets in the x-
and y-directions relative to the origin of the search process,
respectively. dφ is the rotation offset relative to the positive
direction of the search process, and ch represents the height
of the search tree in which the node is located. Each node
in the search tree is defined as a search area with a certain
boundary.

Each node with ch > 1 can branch into four child nodes
of height ch − 1:

Nn {2dx, 2dx 1} × {2dy, 2dy 1} × {dφ} × {ch − 1} (5)

For each leaf node with ch 0, branching cannot continue
to generate new nodes. Thus, the search pose corresponding
to the leaf node is a possible solution. When the leaf node
with the best score is found, the optimal solution to the
problem can be expressed as

ξ∗n r0dx, r0dy, εdφ (6)

Finally, the upper bound calculation strategy is imple-
mented. An excellent upper bound can help promptly
identify the optimal solution to the problem. To ensure
the accuracy of the upper bound, when building multiple
occupancy grid maps with low to high resolutions, the
probability value of each grid in mapii 1, ..., d − 1 is the
maximum probability value of the corresponding 2i × 2i

grids in map0. Therefore, the grids on the occupancy grid
map with a lower resolution have a higher probability value:

S coren N

i1
Fch

MultimapTξn si (7)

where Fch
Multimap transforms the LiDAR point to the map

frame to obtain the probability of the corresponding grid
according to the prebuilt multiple occupancy grid maps.
The search process is essentially a table lookup process,
and thus, the computational complexity of the algorithm is
always maintained in a constant range. The specific steps of
the algorithm are shown in Algorithm 1.

Algorithm 1: Branch-and-bound Algorithm Based
on Depth First Search.

Input: current period t, current scan St , point cloud
map mp

Parameters : search tree depth d, search window
sizes S x, S y, S θ, occupancy grid map
highest resolution r0

Output: robot initial guess ξ∗n
Convert point cloud map mp to multiple occupancy grid
maps;

sx ← ⌈S xrd−1⌉;
sy ← ⌈S yrd−1⌉;
ε← arccos1 − r2

02s2
max;

sθ ← ⌈S θε⌉;
best_score← 0;
ch ← d − 1;
for jx ← −sx to sx do

for jy ← −sy to sy do
for jθ ← −sθ to sθ do

n← jx, jy, jθ, ch;
Push n into N0;

end
end

end
initialization;
Initialize a priority queue N to save each node in N0
according to the score;

while N , empty do
Pop the node n with the beat score from N;

end
if S coren > best_score then

if n is a leaf node then
ξ∗n ← ξn;
best_score← S coren;

end
else

Split n→ Nn :
{2dx, 2dx 1} × {2dy, 2dy 1} × {dφ} × {ch − 1};

Compute the score of each node in Nn;
Store each node in Nn into N according to the
score;

end
end

4.2. Optimization of the initial pose using the iterative nearest
point algorithm

Although the pose ξ∗n specified by the DFS-based branch-
and-bound algorithm has global optimality, the final search
accuracy is inevitably limited by the highest resolution of
the occupancy grid map. Hence, we use the iterative closest

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 27

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

point algorithm to further optimize ξ∗n.
The iterative nearest point algorithm calculates the rigid

transformation matrix between the two sets of point clouds
in an iterative manner. We convert the matching problem
between the two sets of point clouds into a nonlinear least
squares problem and iteratively compute the rigid transfor-
mation matrix around the initial value ξ∗n. We assume that
the robot pose in the iterative process is ξ x, y, φ, the point
in the point cloud map is p′i , the current LiDAR point is pi,
and the error function e is defined as

eξ argmin
1
2

N

i1

∥∥∥pi − expξ∧ p
′

i

∥∥∥2
2 (8)

where exp· represents the exponential mapping of so3→
S O3. We can use iterative algorithms (e.g., Gauss–Newton
and Levenberg–Marquardt) to solve this problem. The Jaco-
bian matrix of the iterative update process can be expressed
as follows:

∂e
∂δξ

−I expξ∧ p
′

i
∧ (9)

The convergence speed of the iterative nearest point algo-
rithm is affected by the maximum number of iterations and
the robot pose difference calculated by two consecutive itera-
tions. When the algorithm is used on hardware-constrained
robot platforms, and it is necessary to consider the oper-
ating efficiency and localization accuracy, the convergence
conditions can be alleviated. Our algorithm provides a
satisfactory initial guess. Additionally, the number of point
clouds involved in the matching is small. Hence, the con-
vergence condition can be met after several iterations.

5. Position Tracking

The position tracking algorithm is of significance in enhanc-
ing the performance of the localization algorithm, especially
in challenging circumstances such as those involving map
expiration or environmental changes due to dynamic ob-
stacles. In this paper, we use a scan matching method that
aligns the current LiDAR data with the local map. The local
map contains a certain number of LiDAR frames, which are
expressed in an occupancy grid map. The map is updated
continuously with each new LiDAR data. When the local
map is built, it is added to the backend pose graph for
optimization. The accumulated errors are corrected with
the introduction of loop constraints to ensure the accuracy
of the position tracking algorithm.

5.1. Frontend local map-based scan matching

The matching process involves inserting the current LiDAR
data into the appropriate position in the local map. We
formulate this process as a local nonlinear optimization
problem, in which the LiDAR pose is optimized relative
to the current local map. The problem is solved using the
Gauss–Newton method. By iteratively optimizing the er-
ror function, a LiDAR pose with the highest probability
is identified. In the optimization problem, Tξ denotes the
transformation matrix that transforms the LiDAR data into
the local map. The error function can be expressed as:

Eξ argmin N

i1
1 − FTξ si

2 (10)

where F : R2 → R represents a bicubic interpolation
function that smooths the sum of the probability values of
each LiDAR point in the local map. Specifically, we assume
that Tξ s is defined as a point x, y in the two-dimensional
plane. In this case, the bicubic interpolation function is:

Fx, y 3

i1

3

j0
f xi, y jWx − xiWy − y j (11)

where f xi, y j is the probability of the four neighborhoods
xi, y j around the point x, y, and W· represents the weight of
the xi, y j interpolation on x, y, computed as:

Wx


a 2|x|3 − a 3|x|2 1 f or|x| ≤ 1

a|x|3 − 5a|x|2 8a|x| − 4a f or1 < |x| < 2
0 otherwise

(12)

where a takes values in the range −0.75,−0.5. Solving Eξ
is a local nonlinear optimization problem. Thus, a satisfac-
tory initial guess is critical. Before scan matching, we use a
two-stage pose prediction method to obtain this initial guess.
First, we use the extended Kalman filter (EKF) algorithm
to fuse the wheel odometry and IMU data. The process
uses these two types of data as observation information to
update the state of the moment, as in [12].

Second, we use a multilocal-map-based scan matching
method to further optimize the fusion result. The specific
process is shown in Algorithm 2.

In the beginning, we perform a 2× downsampling on
the local map to generate multiple local maps with resolu-
tions ranging from high to low. Subsequently, we intend to
find a LiDAR pose that maximizes the probabilities at the
current LiDAR data in the lowest resolution local map. The
initial pose is provided by the fusion result. Moreover, to
ensure the matching accuracy, the pose obtained by match-
ing against this local map is used as the initial value of
the subsequent matching. This process is repeated until
the matching against the highest resolution local map is
realized, and the optimal initial guess is obtained.

After identifying the appropriate position, we insert the
LiDAR data into the local map. This process updates the
probability value of the corresponding grid. Each insertion
of the LiDAR data is equivalent to adding an observation,
and the result of the observation is saved using a hit set and
miss set. According to the ray-tracing model, we use the
projected LiDAR point as the hit point and save the grid
point closest to this hit point in the hit set. Each grid point
passing through the rays between the hit point and LiDAR
data origin is saved in the miss set.

When the grid in the local map has never been observed
previously, the probability is zero. When the grid is ob-
served for the first time, it is assigned a probability value
determined by its set (hit set or miss set). Each subsequent
observation is based on the following formula to update the
probability value of the grid:

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 28

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

Algorithm 2: Multilocal-map-based Scan Match-
ing.

Input: current local map mapt, current scan St
Parameters : search window sizes S x, S y, S θ,

downsampling times num
Output: ekf predicted pose ξek f

t , current predicted
matching pose ξmul

t

initialization;
2 times downsampling the current local map mapt to
form a set {map1

t ,map2
t , ...,mapnum

t };
count ← 0;
best_score← 0;
while count ≤ num do

rcur ← resolution of mapnum−count
t ;

sx ← ⌈S xrcur⌉;
sy ← ⌈S yrcur⌉;
ε← arccos1 − r2

02s2
max;

sθ ← ⌈S θε⌉;
for jx ← −sx to sx do

for jy ← −sy to sy do
for jθ ← −sθ to sθ do

score← K
k1 FT

ξ
ek f
t rcur jx,rcur jy,rcur jθ

hk;
if score > best_score then
ξek f

t ← ξek f
t rcur jx, rcur jy, rcur jθ;

best_score← score;
end

end
end

end
count ← count 1;

end
ξmul

t ← ξek f
t ;

S S − LogMeas (13)

where S is the probability value of grid s after observa-
tion z, S − is the probability value of grid s before observation,
and LogMeas represents the measurement model of the up-
date process, which can be defined as

S logOdds | z (14)

S − logOdds log
ps 1
ps 0

(15)

LogMeas log
pz | s 1
pz | s 0

, z ∈ {0, 1} (16)

where the logOdd function converts the product op-
eration between the probability values into an addition
operation, ps 1 is the probability that grid s is occupied
before the observation, and ps 0 is the probability that grid
s is free before the observation. According to the value of z,
LogMeas has two states. The specific value is determined
by the sensor characteristics.

5.2. Backend pose graph optimization

The local map-based scan matching method can only de-
crease the short-term accumulated errors. However, the

built local maps also accumulate errors over time, which can
be optimized by building a global pose graph in the backend.
In this process, we first use LiDAR frames that satisfy both
rotation and translation conditions as key frames. Subse-
quently, we add all the keyframes and local maps to the
pose graph as nodes to be optimized. Finally, the estimated
trajectory is smoothed according to the constraints between
the keyframe nodes and local map nodes. The optimization
process of the pose graph is shown in Figure 4.

After a new loop constraint is constructed in the backend
of the algorithm, we optimize the pose graph. We formulate
the optimization process as a nonlinear least squares prob-
lem, in which the error term describes the error between the
measured and estimated values. We consider the keyframe
i and local map j as examples. The pose of keyframe i in the
world frame is ξs

i , and the pose of local map j in the world
frame is ξ l

j. The error term can be expressed as

ei j zi j − hξs
i , ξ

l
j (17)

where zi j is the relative pose measured between keyframe
i and local map j, calculated through loop-closure detection.
hξs

i , ξ
l
j is the relative pose estimated between keyframe i

and local map j, which represents the result of the local
map-based scan matching.

The algorithm involves two types of constraints, namely,
internal and loop constraints. The internal constraints are
generated by keyframes and local maps that have subordina-
tion relationships. Specifically, the keyframes are inserted in
the local map. In contrast, the loop constraints are generated
by keyframes and other local maps, that is, the keyframes
are associated with historical local maps. When more local
maps are added to the pose graph, the time to identify
the loop constraints gradually increases. Therefore, a DFS-
based branch-and-bound algorithm is used to accelerate the
search for loop constraints.

The process of loop-closure detection is similar to that of
the DFS-based branch-and-bound algorithm used in global
localization, except that the search range is changed from
a global map to historical local maps. Hence, the search
window no longer contains the prebuilt map but a partial
area inside the local map. Because the frontend provides
the current pose estimation ξ f ront of the robot, we use the
pose as the search origin to traverse the search space around
it. The result ξloop is defined as

ξloop ξ f ront r0dx, r0dy, εdφ (18)
If k represents the constraint between local map i and

keyframe j, the error function can be expressed as

argmin K

k1
eT

kξ
s
k, ξ

l
kΣ
−1
k ekξ

s
k, ξ

l
k (19)

where Σ−1
k is the information matrix of the error term

formed by keyframe i and local map j. The objective of opti-
mizing the error function is to adjust ξs and ξ l to minimize
the trajectory errors formed by all nodes. Since no constraint
relationship exists between each local map and keyframe
in the pose graph, in solving the nonlinear optimization
problem, considerable time is not required to calculate the
Hessian matrix and only the pose increment needs to be
solved via the Cholesky decomposition.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 29

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

Figure 4: Schematic of the optimization of the backend pose graph.

6. Relocalization judgment

In numerous practical application scenarios, such as in ware-
house logistics, robots are required to accomplish specific
tasks within extensive workspaces. Due to the inability
to form loop closures within short periods, robots tend to
accumulate errors gradually. Furthermore, challenges arise
when incorrect observational data leads to ’robot kidnap-
ping’, making it arduous to achieve localization recovery
solely through position tracking algorithms.

In light of these challenges, we introduce an FSM (Finite
State Machine)-based relocalization judgment algorithm.
This algorithm initiates by acquiring the confidence level
of the robot’s current pose through the alignment of cur-
rent LiDAR data with an inflated occupancy grid map.
Subsequently, based on pre-set dual-threshold conditions,
we assess the necessity to engage the global localization
algorithm for timely localization recovery.

6.1. Confidence calculation and dual-threshold judgment

We use a method similar to the calculation of scores in
scan matching to verify the pose ξpt obtained by the po-
sition tracking algorithm. In contrast to the point cloud
registration algorithm that adopts the Euclidean distance to
calculate the matching score between the two point clouds,
we use the pose ξpt to project the current LiDAR data S
onto the occupancy grid map and calculate the sum of the
probability values of each LiDAR point si falling on the
corresponding grid:

S coreξpt
1
N

N

i1
MTξpt si (20)

where Tξpt converts the current LiDAR data S from the
LiDAR frame to the map frame, and M· is used to calculate
the probability value of each LiDAR point projected onto
the occupancy grid map.

In this process, the occupancy grid map is converted
from the prebuilt point cloud map. The resolution of this
map is the same as that of the local map generated by the
position tracking algorithm.

In practical applications, since there are relatively few
valid points in the LiDAR frame, the measurement error of
each valid point affects the confidence calculation results.

Considering this aspect, we use an inflated occupancy grid
map instead of the original occupancy grid map to suppress
the impact of LiDAR measurement errors.

In contrast to the cost map used to set the expansion
areas to avoid robot collisions, we use the inflated occu-
pancy grid map to reduce the error caused by noisy LiDAR
measurements. When designing the inflated occupancy
grid map, we first set the expansion radius rin f according to
the sensor range accuracy and extend it outward from the
obstacle to obtain the expansion area according to rin f . The
grid probability in the expanded area is

Pin f x, y e−kδd (21)

where δd is the distance between grid x, y and the ob-
stacle, and k is the scale factor. When k is large, the grid
probability Pin f x, y decreases rapidly. The probability of
Pin f x, y is limited to the range 0, 1. The process of generating
an inflated occupancy grid map is shown in Figure 5. We
update the confidence calculation formula as follows:

S coreξpt
1
N

N

i1
MIn f MapTξpt si (22)

Figure 5: Process of generating an inflated occupancy grid map.

After calculating the confidence according to the above

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 30

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

formula, we use the dual-threshold judgment to evaluate
the pose ξpt .

1. When the confidence is greater than the set threshold
Th2, the LiDAR data are projected inside the expan-
sion area of the map, and the errors of the confidence
calculation are generated by the noisy LiDAR mea-
surements.

2. When the confidence is between the two thresholds
Th1 and Th2 Th2 > Th1, the accumulated errors exceed
expectations, and the robot kidnapping problem does
not occur. Therefore, we call the global localization
algorithm to complete the search in the local area near
the pose ξpt to correct the accumulated errors.

3. When the confidence is less than the set threshold Th1,
the robot kidnapping problem is considered to occur.
We invoke the global localization algorithm to search
the whole map. Specifically, the search window of the
branch-and-bound algorithm covers the occupancy
grid map to complete the localization recovery.

6.2. Relocalization judgment based on finite state machine

To monitor the localization state in real time, we use the
idea of a finite state machine to model the relocalization
judgment process. The mathematical model for a certain
finite state machine can be defined as

M Q,Σ, δ, q0, F (23)

where Q is a nonempty set consisting of a finite number
of states. According to the results of the position tracking
algorithm, the states of the whole algorithm are divided into
three categories: normal localization qnorm, large localization
error qerr, and localization failure qkid, which correspond to
three cases of the dual-threshold judgment. Therefore, Q
can be defined as

Q qnorm, qerr, qkid (24)

where Σ represents the set of all inputs that can be ac-
cepted by each state, that is, the set of trigger conditions
that cause the state transition. In this algorithm, we use the
result of the dual-threshold judgment as the trigger condi-
tion. Additionally, we use enorm, eerr and ekid to represent the
inputs of the algorithm in the transition between qnorm, qerr
and qkid. At this time, Σ is defined as

Σ enorm, eerr, ekid (25)

where δ : Q × Σ→ Q represents the state transition func-
tion, which is mainly based on the current trigger condition
e to complete the state transition of the algorithm from the
current state qcur to the second state qsec:

qsec δqcur, e (26)

where q0 is the initial state. F is the set of termina-
tion states, which is a subset of Q that represents that the
algorithm is acceptable in this state (for instance, qnorm).

At the beginning of the algorithm operation, the robot is
normally located. We first define the initial state q0 as the

state qnorm and subsequently determine the trigger condition
according to the result of the confidence calculation.

1. If the result of the confidence calculation is greater
than Th2, the condition enorm is triggered. The algo-
rithm maintains the state qnorm and outputs the result
of the position tracking algorithm.

2. When the result of the confidence calculation is be-
tween Th1 and Th2 Th2 > Th1, the condition eerr is trig-
gered. The algorithm executes the function δqnorm, eerr
to achieve the transition from qnorm to qerr, that is, the
global localization algorithm is called to perform a
search in the local range.

3. When the result of the confidence calculation is less
than Th1, the condition ekid is triggered. The algorithm
executes the function δqnorm, ekid for the transition be-
tween the two states of qnorm to qkid. Specifically, the
global localization algorithm is invoked to perform a
search on the global map.

The state transition relationship in the finite state ma-
chine is shown in Figure 6. The specific steps of the FSM-
based relocalization judgment algorithm are shown in Al-
gorithm 3.

Figure 6: State transition relationship in the finite state machine.

This algorithm is expected to solve the problem of robot
kidnapping. Hence, it is necessary to search for the best
matches on the global map. To ensure the stability of the
algorithm, we limit the number of calls to the global local-
ization algorithm to manage the errors in the confidence
calculation caused by environmental changes (such as dy-
namic environments). Our confidence calculation method
averages the matching probabilities of each LiDAR point
participating in the scan matching. The method exhibits a
certain degree of robustness in scenarios involving slight
environmental changes; however, its performance is limited
in cases involving severe environmental changes. Thus, it is
preferable to limit the number of calls to global localization.
When the set maximum number of times is reached, the
relocalization judgment algorithm is automatically termi-
nated.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 31

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

7. Experiments

As described in this section, we validate the robustness and
accuracy of our algorithm through extensive experiments.
First, we present the implementation details, including the
experimental environment and preparation steps. Second,
we describe the evaluation of our algorithm in a simulated
laboratory environment and analysis of the performance of
different parts. Finally, we assess the performance of our
algorithm in an actual workshop environment.

Algorithm 3: Relocalization judgment based on
finite state machine.

Input: current period t, current scan St , inflated
occupancy grid map m, position tracking
pose ξpt

Parameters :confidence thresholds Th1, Th2, Number
of relocalization Nrel

Output: optimal robot pose ξ∗t
initialization;
score← 0;
S tatusFlag← f alse;
count ← 0;
while S tatusFlag f alse do

score← S coreξpt ;
if score < Th2 then

if Th1 ≤ score ≤ Th2 then
ξ∗t ← GlobalLocalizationξpt , S t;
count ← count 1;

end
else
ξ∗t ← GlobalLocalizationS t;
count ← count 1;

end
end
else
ξ∗t ← ξpt ;
count ← 0;

end
if count ≥ Nrel then

S tatusFlag← true;
end

end

7.1. Implementation Details

Using the Gazebo physical simulation platform, we build
a virtual laboratory environment that mimics the layout
and dimensions of the real-world laboratory. In such a
typical structured environment, we use a simulated jackal
robot with basic sensors (e.g., 2D LiDAR, IMU, and wheel
encoders) to perform the experiments. To perform the as-
sessment in an actual workshop environment, we use the
IR300 commercial logistics robot to conduct the experiments.
The environments are shown in Figure 7(a) and Figure 7(b).

In the preparation stage, we use an open-source 2D Li-
DAR SLAM algorithm to build a point cloud map of the
environment. The process can be divided into three stages:

1. Data preprocessing: Raw sensor data for time synchro-

nization are collected to alleviate the errors caused by
the difference in the working frequency of different
sensors;

2. Mapping: The handle is used to ensure that the robot
can traverse the complete environment to build a point
cloud map in real time;

3. Postprocessing: The built point cloud map is filtered
to eliminate anomalies and outliers.

(a) Simulated laboratory environ-
ment with dimensions of 20 m×20
m.

(b) Actual workshop environment
with dimensions of 30 m×60 m

Figure 7: Experiment environment.

7.2. Localization experiment in the simulated laboratory environ-
ment

We first test the global localization in the simulated labo-
ratory environment. The size of the laboratory is approxi-
mately 20 m×20 m; thus, we set the linear search window
sizes in the x- and y-directions as 30 m, respectively, and
the angular search window size is set as 2π. The depth
of the search tree in the branch-and-bound algorithm is
7. Correspondingly, there exist seven built occupancy grid
maps, in which the highest resolution of the occupancy
grid map is r0 0.4 m. To ensure that the iterative nearest
point algorithm can achieve the highest accuracy, we set
the maximum number of iterations as 100 and maximum
tolerance of two consecutive iterations as 10−13.

In the experiment, we select six positions on the map to
test the performance of the algorithm. To uniformly cover
the free space of the environment, the selected adjacent
positions are separated by ∆d 5 m, and the orientations of
each position are uniformly distributed in −π, π, as shown
in Figure 8(a). When the robot starts operating, it automati-
cally implements the global localization algorithm to obtain
the robot’s initial pose based on the current LiDAR data, as
shown in Figure 8(b) and Figure 8(c).

ex and ey denote the position error between the real posi-
tion and estimated position of the robot, and eφ represents
the difference between the real and estimated orientations.
In addition to these standard criteria, we consider the run-
time and success rate of the algorithm. The runtime refers to
the time from the beginning of the algorithm to the time at
which the final result is obtained. The success rate describes
the probability of successful localization at the specified
position. When the error between the real position and
estimated position of the robot is less than 0.05 m and the
orientation error is less than 2◦, the localization is considered
successful. We perform 20 experiments for each specified
position.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 32

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

(a) Positions selected on the map for the
global localization experiment

(b) Before global localization at #3 (c) Global localization at #3

Figure 8: Evaluation of the global localization algorithm in the simulated laboratory environment.

In the test, we verify the performance of the proposed al-
gorithm. Hence, a comparison experiment is not conducted
for the following reasons:

1. The localization result is compared with the real posi-
tion of the robot;

2. Few open-source algorithms can achieve global local-
ization. Actual results for the few algorithms that
can accomplish this function have been extensively
reported. Therefore, the details do not need to be
presented.

According to Table 1, the average orientation error is
less than 0.2◦, the average position errors in the x- and
y-directions are less than 0.03 m and 0.01 m, respectively.
As described in Section 4, the search accuracy of the branch-
and-bound algorithm is limited by the highest resolution of
the occupancy grid map (0.4 m). However, the two-stage
matching algorithm achieves a localization accuracy that
is higher than that of algorithms that use an occupancy
grid map with a resolution of 0.05 m for scan matching.
Moreover, we achieve a 100% localization success rate in
each position.

The runtime varies considerably across positions (Fig-
ure 9). According to the runtime of each stage in the global
localization algorithm, the most notable time consumption
pertains to the determination of the initial pose by the
branch-and-bound algorithm. In contrast, the runtime of
the iterative closest point algorithm is stable and occupies
only a small proportion. Although the runtime does not
meet the requirements of real-time localization, considering
the actual size of the map used in the search process, our
algorithm can promptly find the global pose of the robot and
dramatically decrease the time associated with redundant
calculations.

In the algorithm, when the depth (d 7) is constant,
the resolution r0 of map0 used in the branch-and-bound
algorithm directly influences the localization accuracy and
runtime. We analyze the impact of the different resolu-
tions r0 on the algorithm at position 4 −6.33, 1.23,−45◦. The
results are shown in Table 2. When r0 is small, although
the solution obtained by the branch-and-bound algorithm
is closer to the optimal solution, the search time is large.
In contrast, the proposed algorithm achieves a reasonable
balance between the efficiency and localization accuracy.
The localization result obtained by the proposed algorithm

does not considerably fluctuate with the change in r0, and
the runtime is exponentially decreased.

Figure 9: Runtime distribution for specific positions (BBS: branch-and-
bound algorithm, ICP: iterative closest point algorithm, BB-RL: proposed
algorithm).

To assess the accuracy of our algorithm, we conducted
50 experimental runs in the simulation environment, and
for each run, we randomly selected a position on the map
to measure the error. The results are shown in Figure 10.
The average position errors in the x- and y-directions are
0.02037 m and 0.00648 m, respectively. The average ori-
entation error is 0.00129 rad, and the average runtime is
576.35 ms. Additionally, the maximum position error in
the x- and y-directions are 0.0317 m and 0.0185 m, respec-
tively. The maximum orientation error is 0.00353 rad, and
the maximum runtime is 1027.67 ms.

Next, we conduct the position tracking experiment. We
assume that the robot’s initial pose is known (automatically
obtained by Gazebo). In the test, the robot moves in a
circle around the indoor environment. The starting and
ending points coincide. We evaluate the error of the robot
between the starting and ending points. The process is
shown in Figure 11. As a reference, we compare the AMCL
and Cartographer frameworks to verify the accuracy of the
algorithm.

In the parameter settings, the number of local maps for
multi-local-map-based scan matching was established as 3.
For loop-closure detection, the linear search window size
was set at 20 m and the angular search window size for loop
detection at 2π radians. Additionally, the search depth was
defined as 7.

The trajectory of each algorithm is shown in Figure 12.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 33

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

Table 1: Global localization results for specific positions in the simulated laboratory environment.

Position exm eym eφrad Runtimems Success Rate%

#1 0.0249 -0.00631 0.000119 277.806 100
#2 0.0130 -0.00529 0.00123 440.500 100
#3 0.0191 -0.00455 0.000581 585.314 100
#4 0.0236 -0.00971 0.00267 380.872 100
#5 0.0246 -0.00933 0.000609 809.102 100
#6 0.0180 -0.00303 0.000237 734.903 100

0 10 20 30 40 50
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

x
di

re
ct

io
n

po
si

tio
n

er
ro

r(m
)

Number of experiments

(a) Position error in the x-direction

0 10 20 30 40 50
-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

y
di

re
ct

io
n

po
si

tio
n

er
ro

r(m
)

Number of experiments

(b) Position error in the y-direction

0 10 20 30 40 50
-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

O
rie

nt
at

io
n

er
ro

r (
ra

d)

Number of experiments

(c) Orientation error

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

1000

1100

R
un

tim
e

(m
s)

Number of experiments

(d) Runtime

Figure 10: Experimental results of 50 positions randomly selected for global localization in the simulated laboratory environment.

(a) Operation of the robot in the
simulated laboratory environment

(b) Real-time trajectory of the
robot shown on the map

Figure 11: Evaluation of the position tracking algorithm in the simulated laboratory environment.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 34

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

Table 2: Experimental results of global localization algorithm at position 4 with different resolutions r0.

r0 exm eym eφrad Runtimems

0.5m
BB-RL 0.02319 0.00626 0.00426 329.356
BBS 0.33 0.27 0.03045 262.846

0.4m
BB-RL 0.02236 0.00546 0.00271 411.043
BBS 0.07 0.03 0.01378 295.019

0.3m
BB-RL 0.02332 0.00480 0.00609 647.166
BBS 0.03 0.03 -0.03621 531.401

0.2m
BB-RL 0.02331 0.00633 0.00209 1069.53
BBS 0.07 0.03 0.00163 1016.26

0.1m
BB-RL 0.02019 0.00332 0.00584 6069.81
BBS 0.03 0.03 -0.00288 5980.87

0.05m
BB-RL 0.02148 0.00370 0.00198 31851
BBS 0.02 0.02 0.00211 31808.9

Results obtained using AMCL, Cartographer, and the pro-
posed algorithm are relatively close to the ground truth
because the sensor data obtained in the simulation environ-
ment are ideal, and no sensor failures or other emergencies
occur. However, according to the analysis of trajectory de-
tails, the proposed algorithm fits the ground truth more
closely. According to the trajectory error comparison shown
in Table 3, the proposed algorithm outperforms the com-
pared algorithms in terms of the accuracy. The Figure 13
shows the time-based error of the position on both the x-
axis and y-axis, as well as the orientation error during the
position tracking experiment.

Figure 12: Comparison of trajectories of different position tracking algo-
rithms in a simulated laboratory environment.

Finally, the relocalization experiment is conducted. Since
the correction of the accumulated errors is reflected in the
experimental results of the position tracking, we test only
the localization recovery ability of the algorithm in the case
of robot kidnapping. First, we initialize the robot and con-
trol it to move in the environment. Second, we suddenly
move the robot to positions A, B, C, and D (Figure 14) to
artificially create a robot kidnapping situation to verify the
effectiveness of the relocalization. Due to only a few existing
open-source algorithms can solve the robot kidnapping
problem. Additionally, no uniform standard for the ex-
perimental procedure exists. Hence, we do not conduct a
comparison experiment in this test.

Table 3: Comparison of the position tracking error in the simulated labora-
tory environment.

exm eym eφrad

BB-RL 0.01398 -0.00176 0.00108
AMCL -0.06515 -0.070497 -0.0278

Cartographer -0.05141 0.043688 0.00232

(a) Position error in the x-direction and y-direction

(b) Orientation error in the y-direction

Figure 13: Time-based error analysis of the BB-RL position tracking algo-
rithm compared to ground truth data.

Before the test, to ensure that the map has the same reso-
lution as that of the local map used in the position tracking

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 35

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

algorithm, we convert the prebuilt point cloud map into an
occupancy grid map with a resolution of 0.05 m. According
to the range accuracy of the LiDAR, the expansion radius rin f
is set as 0.1 m, the scale factor is set as 1, and the thresholds
Th1 and Th2 are set as 0.5 and 0.8. The experimental results
are shown in Figure 15.

(a) Specific positions to which the
robot travels

(b) Position at which robot kidnap-
ping occurs

Figure 14: Process of relocalization experiment in the simulated laboratory
environment.

(a) Relocalization at #A (b) Relocalization at #B

(c) Relocalization at #C (d) Relocalization at #D

Figure 15: Relocalization results for positions A, B, C, and D following a
robot-kidnapping.

The quantitative results are shown in Table 4. Among
these results, the average position errors in the x- and y-
directions are less than 0.03 m and 0.01 m, respectively, the
orientation error is less than 0.1◦, the runtime is within 600
ms, and the success rate at each position is consistent with
global localization, remaining at 100%. From the overall
perspective, the relocalization results are similar to those of
the global localization in the simulation environment. When
the relocalization judge algorithm is used to identify if the
robot is kidnapped, localization recovery can be effectively
realized by calling the global localization algorithm.

7.3. Localization experiment in the actual workshop environment

A global localization experiment is conducted in the actual
workshop environment. In this experiment, the parameters

of the branch-and-bound algorithm are changed. Because
the size of the workshop is approximately 60 m ×30 m, we
set the linear search window sizes in the x- and y-directions
as 70 m and 40 m, respectively. All other parameter settings
are the same as those in the global localization experiment
in the simulated laboratory environment.

Similarly, we select six positions on the map to analyze
the performance of the algorithm. Each adjacent position is
separated by ∆d 15 m, and the orientation of each position
is uniformly distributed in −π, π. The selected positions are
shown in Figure 16. The localization process of position 3 is
shown in Figure 17 and Figure 18. The evaluation criteria
and number of experiments are the same as those in the
global localization experiment in the simulated laboratory
environment.

Figure 16: Positions selected on the map for the global localization experi-
ment.

Figure 17: Robot-kidnapping on position #3.

Figure 18: Global localization on position #3.

According to Table 5, the average position errors in the
x- and y-directions are less than 0.032 m and 0.02 m, re-
spectively, and the average orientation error is less than
1.2◦. Compared with the experimental results of global
localization in the simulated laboratory environment, the
error of global localization in the workshop environment is
significantly larger. The sensor noise and interference of the
dynamic environment in the actual environment are more

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 36

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

Table 4: Relocalization results for specific positions in the simulated laboratory environment.

Position exm eym eφrad Runtimems Succuess Rate%

A 0.02448 0.000870 -0.000313 401.946 100
B 0.02017 -0.00485 0.000605 376.736 100
C 0.02452 0.00723 -0.00116 538.637 100
D 0.02205 0.00374 0.00114 329.169 100

Table 5: Global localization results for specific positions in the actual workshop environment.

Position exm eym eφrad Runtimems Succuess Rate%

#1 0.02261 -0.00402 0.00711 459.686 100
#2 0.02289 -0.00326 0.00884 605.213 100
#3 0.02382 0.01919 0.01673 633.351 95
#4 0.03064 0.01212 0.01193 1260.876 90
#5 0.02819 0.00895 0.00416 833.633 95
#6 0.02775 -0.01226 0.01938 671.117 95

unpredictable than those in the simulation environment
and directly affect the localization accuracy.

The success rate is slightly decreased at positions 3-6 be-
cause the current LiDAR data tend to produce mismatches
with the occupancy grid map. The runtime associated with
each stage in the global localization algorithm (Figure 19)
shows that the overall runtime at each position increases. Es-
pecially, at position 4, the overall running time is 1260.87 ms,
1226.81 ms of which correspond to the branch-and-bound
algorithm. This finding demonstrates that most of the time
consumed by the global localization algorithm pertains to
the branch-and-bound algorithm implementation.

1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

R
un

tim
e(
m
s)

Position

 ICP
 BBS
 BB-FL

Figure 19: Runtime distribution for specific positions.

Moreover, in this experiment, we test the impact of dif-
ferent resolutions r0 of map0 used in the branch-and-bound
algorithm on the localization accuracy and runtime when
the depth (d 7) remains unchanged. The experimental
results at position 1 −0.43,−0.365, 0◦ are shown in Table 6.
Compared with the results of the simulated laboratory en-
vironment, the runtime at different resolutions r0 is higher
due to the increased size of map0. However, the proposed
algorithm exhibits similar localization accuracies at different
resolutions r0. Therefore, we can choose r0 0.4 m to balance
localization efficiency and accuracy.

Table 6: Experimental results of global localization algorithm at position 1
with different resolutions r0.

r0 exm eym eφrad Runtimems

0.5m
BB-RL 0.02313 -0.00623 0.00505 398.397
BBS -0.145 0.31 0.0333 369.458

0.4m
BB-RL 0.02281 -0.00172 0.00545 532.387
BBS -0.145 0.11 0.0133 507.262

0.3m
BB-RL 0.02273 -0.00901 0.00462 934.256
BBS -0.145 -0.09 0.03 910.888

0.2m
BB-RL 0.02205 -0.01520 0.00489 1878.96
BBS 0.055 -0.09 0.00667 1864.33

0.1m
BB-RL 0.01898 -0.01287 0.00465 14806.3
BBS 0.055 0.01 0.0133 14796.1

0.05m
BB-RL 0.02157 -0.00126 0.00537 296631
BBS 0.005 0.01 0.01167 296612

To assess the accuracy of the global localization algo-
rithm, we conducted 50 experiments in a real-world envi-
ronment. For each experiment, we randomly selected a
position on the map to evaluate the error. The results are
shown in Figure 20. The average position errors in the x-
and y-directions are 0.02516 m and 0.0079 m, respectively.
The average orientation error is 0.0089 rad, and the average
runtime is 734.18 ms. Additionally, the maximum position
errors in the x- and y-directions are 0.03675 m and 0.02669
m, respectively. The maximum orientation error is 0.0193
rad, and the maximum runtime is 1407.48 ms. Compared
with the results in the simulated laboratory environment,
the position error and runtime are higher, although the
actual engineering needs can still be satisfied.

Next, we perform the position tracking experiment. First,
we assume that the robot’s initial pose is the origin of the
map in this experiment. Subsequently, we control the robot
to move in a circular path in the workshop to return to the
starting point. Finally, the error between the starting point
and ending point is calculated as the accuracy criterion. As
a reference, we compare the results of EKF fused with IMU
and wheel odometry, AMCL, and Cartographer to verify
the accuracy of the algorithm. The experiment is shown in
Figure 21 and Figure 22 .

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 37

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

0 10 20 30 40 50
0.015

0.020

0.025

0.030

0.035

0.040

x
di

re
ct

io
n

po
si

tio
n

er
ro

r (
m

)

Number of experiments

(a) Position error in the x-direction

0 10 20 30 40 50

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

y
di

re
ct

io
n

po
si

tio
n

er
ro

r (
m

)

Number of experiments

(b) Position error in the y-direction

0 10 20 30 40 50

-0.005

0.000

0.005

0.010

0.015

0.020

O
rie

nt
at

io
n

er
ro

r (
ra

d)

Number of experiments

(c) Orientation error

0 10 20 30 40 50
200

400

600

800

1000

1200

1400

R
un

tim
e

(m
s)

Number of experiments

(d) Runtime
Figure 20: Experimental results of 50 positions randomly selected for global localization in the actual workshop environment.

Figure 21: Operation of the robot in the actual workshop environment

Figure 22: Real-time trajectory of the robot shown on the map in the actual
workshop environment.

All the parameter settings are the same as those in the
position tracking experiment in the simulated laboratory
environment. The trajectory of each algorithm is shown
in Figure 23. Notably, (1) the trajectory error associated
with the EKF fusion is the largest; (2) there exists a certain
deviation in the local details between each trajectory; and
(3) the trajectory of the AMCL near the starting point is not
closed.

Figure 23: Comparison of trajectories of different position tracking algo-
rithms in an actual workshop environment.

According to Table 7, the position error in the x-direction
of EKF fusion is approximately 1 m, the position error in
the y-direction of AMCL is approximately 0.9 m, and the
orientation error of AMCL exceeds 4.5◦. In contrast, the pro-
posed algorithm achieves satisfactory results in all aspects:
the position errors in the x- and y-directions are both less
than 0.05 m, and the orientation error is less than 1◦.

Table 7: Comparison of position tracking errors in the actual workshop
environment.

exm eym eφrad

BB-RL -0.03780 0.04696 0.01111
AMCL 0.16055 0.87677 0.08407

Cartographer -0.08248 0.12581 0.01017
IMUOdom -0.96486 0.16832 0.05129

Finally, a relocalization experiment is conducted in the

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 38

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

(a) Specific positions to which the robot travels (b) Position at which robot kidnapping occurs (c) Relocalization at #A

(d) Relocalization at #B (e) Relocalization at #C (f) Relocalization at #D

Figure 24: Relocalization results for positions A, B, C, and D (the red line represents the trajectory of the robot before robot kidnapping occurs, the
measurement data of the LiDAR are represented by the green line, and the position of the robot is represented by the orthogonal coordinate axes)

Table 8: Relocalization results for specific positions in the actual workshop environment.

Position exm eym eφrad Runtimems Succuess Rate%

A 0.02819 0.00895 0.00416 904.561 95
B 0.02686 -0.00881 0.00632 630.238 95
C 0.02246 -0.00195 0.00937 374.754 100
D 0.02302 -0.00736 0.00207 434.718 100

actual workshop environment. The same experimental
method as that of the relocalization experiment in the simu-
lated laboratory environment is followed: First, the robot
is controlled to move in the workshop through the handle.
Second, a robot kidnapping situation is created by artificially
moving the robot to positions A, B, C, and D (Figure 24(a)
and Figure 24(b)). Finally, the position error and orientation
error of different positions are calculated. In terms of the
parameter settings, the thresholds Th1 and Th2 are set as 0.5
and 0.75, respectively. The resolution of the inflated occu-
pancy grid map is 0.05 m, the expansion radius rin f is set as
0.2 m, and the scale factor k is set as 1. The experimental
results are shown in Figure 24(c), Figure 24(d), Figure 24(e)
and Figure 24(f).

According to Table 8, the error in the actual workshop
environment is higher than that in the simulated laboratory
environment. At position A, the position error in the x-
direction exceeds 0.028 m, the orientation error exceeds 0.2◦,
and the runtime is close to 1 s. Additionally, the runtime
at positions C and D is significantly decreased with values
of only 374.754 ms and 434.718 ms, respectively. For the
success rate, relocalization failures occur at positions A and
B. However, overall, the success rate is maintained at each
selected position.

Building on the introduction of the Branch-and-Bound
for Robust Localization (BB-RL) algorithm, the experimental
findings can be effectively summarized. The BB-RL algo-
rithm offers a potent solution for indoor robot localization
by harmoniously integrating position tracking, global local-

ization, and the resolution of the kidnapped robot dilemma
within a cohesive framework. The evaluation shows that
BB-RL achieves a balance among speed, accuracy, and ro-
bustness, establishing it as an effective and practical choice
for indoor robot localization scenarios.

In summary, the proposed trajectory aligns more closely
with the ground truth compared to those generated by other
compared algorithms. The BB-RL algorithm surpasses
competing algorithms in accuracy. Regarding the kidnap-
ping problem, robots equipped with BB-RL successfully
overcome localization failures, maintaining a commendable
success rate. The effectiveness of the BB-RL algorithm in
solving the three core localization challenges has been con-
firmed in real-world settings, achieving sustained accuracy
and an appropriate execution frequency. This underscores
the algorithm’s viability and efficiency in practical appli-
cations, particularly in navigating and localizing within
indoor environments.

8. Conclusion and Future Work

A robust and accurate localization is crucial for effective path
planning, precise motion control, and reliable obstacle avoid-
ance in the field of autonomous robotics. Recognizing the
need for accurate and robust localization in real-world ap-
plications, this paper presents a BB-RL (Branch-and-Bound
for Robust Localization) algorithm for indoor mobile robots.
Its novelty lies in the comprehensive and integrated ap-
proach to addressing the three key localization tasks: global

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 39

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

localization, position tracking, and the kidnapped robot
problem.

The approach begins with a two-stage global localization
algorithm to determine the robot’s initial pose. A DFS-based
branch-and-bound algorithm ensures the search solution is
globally optimal. To achieve localization precision beyond
grid resolution, the iterative closest point (ICP) algorithm
refines this solution locally.

For continuous position tracking, a local map-based scan
matching technique is used. To achieve reliable results, a
two-tier prediction method combining an Extended Kalman
Filter (EKF) with multi-local map-based scan matching is
proposed, ensuring initial guesses converge to the global
optimum. Additionally, a global pose graph is constructed
to minimize accumulated errors across local maps, while a
DFS-based branch-and-bound algorithm accelerates loop-
closure detection.

Long-term stability of the algorithm is maintained
through an innovative Finite State Machine (FSM)-based
relocalization judgment method, which uses an inflated
occupancy grid map to reduce LiDAR measurement noise
effects on confidence calculations. A dual-threshold judg-
ment strategy accurately identifies the robot’s localization
state, triggering the global localization algorithm as needed
for timely localization recovery.

In conclusion, our algorithm shows out for its robust-
ness, scalability, and practicality, underscored by its fast
processing capabilities. Extensively tested in both simu-
lated laboratory environments and real-world workshops,
it has also been successfully implemented on a commercial
logistics robot platform. This deployment demonstrates not
only its high localization accuracy but also its robust and
rapid performance in diverse operational contexts.

Finally, we have underscored the advantages of our local-
ization framework, especially in indoor environments prone
to localization difficulties, such as logistics warehouses and
factory inspections. These environments require a robust
and accurate localization algorithm. By integrating existing
sensor data with advanced algorithms, our framework sig-
nificantly improves localization accuracy and robustness in
these complex scenarios.

In the future, our research will focus on utilizing a
broader array of features for robot localization, including
the features from 3D point cloud maps and camera sensors.
These data types promise to enhance localization accuracy
by providing a richer set of environmental information.
However, incorporating these algorithms and features is
expected to increase computational demands. A key direc-
tion for our future work will be to find a balance between
integrating these diverse and multi-dimensional features
and maintaining efficient processing speeds. We aim to in-
tegrate 3D point cloud features for improved relocalization
without compromising computational efficiency.

Another aspect of our future work will address the chal-
lenges posed by complex, dynamic environments, such as
scenarios where robots are surrounded by crowds. Identify-
ing the cause of localization failures—whether due to actual
kidnapping scenarios or temporary disruptions caused by
dynamic environmental factors—and deciding whether to
initiate relocalization presents a challenge we plan to ad-

dress. This involves differentiating between true kidnapping
situations and temporary conditions caused by dynamic
environments, thereby guiding the decision on whether
relocalization is necessary.

This comprehensive approach, leveraging a variety of
data sources and technologies, is designed to ensure that
localization challenges, even in the most demanding en-
vironments, can be effectively addressed. Our goal is to
provide a more comprehensive and reliable solution for
indoor robot localization, overcoming current limitations
and preparing for future challenges.

Conflict of Interest The authors declare no conflict of
interest.

References

[1] DeSouza, Guilherme N and Kak, Avinash C, “Vision for mobile robot
navigation: A survey”, IEEE transactions on pattern analysis and machine
intelligence, vol. 24, no. 2, pp. 237–267, 2002.

[2] Georgiev, Atanas and Allen, Peter K, “Localization methods for a
mobile robot in urban environments”, IEEE Transactions on Robotics,
vol. 20, no. 5, pp. 851–864, 2004.

[3] Alatise, Mary B and Hancke, Gerhard P, “A review on challenges of
autonomous mobile robot and sensor fusion methods”, IEEE Access,
vol. 8, pp. 39830–39846, 2020.

[4] Altan, Aytaç and Bayraktar, Köksal and Hacıoğlu, Rıfat, “Simulta-
neous localization and mapping of mines with unmanned aerial
vehicle”, 2016 24th Signal Processing and Communication Application
Conference (SIU), pp. 1433–1436, 2016, doi:10.1109/SIU.2016.7496019.

[5] Aytaç Altan and Rıfat Hacıoğlu, “Model predictive control of three-
axis gimbal system mounted on uav for real-time target tracking
under external disturbances”, Mechanical Systems and Signal Process-
ing, vol. 138, p. 106548, 2020, doi:https://doi.org/10.1016/j.ymssp.
2019.106548.

[6] Cox, Ingemar Johansson and Wilfong, Gordon Thomas, Autonomous
robot vehicles, Springer, Schweiz, 1990.

[7] Thrun, Sebastian and Beetz, Michael and Bennewitz, Maren and
Burgard, Wolfram and Cremers, Armin B and Dellaert, Frank and Fox,
Dieter and Haehnel, Dirk and Rosenberg, Chuck and Roy, Nicholas
and others, “Probabilistic algorithms and the interactive museum
tour-guide robot minerva”, The international journal of robotics research,
vol. 19, no. 11, pp. 972–999, 2000.

[8] Alqahtani, Ebtesam J and Alshamrani, Fatimah H and Syed, Ha-
jra F and Alhaidari, Fahd A, “Survey on algorithms and tech-
niques for indoor navigation systems.”, 2018 21st Saudi Computer
Society National Computer Conference (NCC), pp. 1–9, 2018, doi:
10.1109/NCG.2018.8593096.

[9] Zafari, Faheem and Gkelias, Athanasios and Leung, Kin K, “A sur-
vey of indoor localization systems and technologies”, IEEE Com-
munications Surveys & Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019,
doi:10.1109/COMST.2019.2911558.

[10] Liu, Wenxin and Caruso, David and Ilg, Eddy and Dong, Jing and
Mourikis, Anastasios I and Daniilidis, Kostas and Kumar, Vĳay
and Engel, Jakob, “Tlio: Tight learned inertial odometry”, IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 5653–5660, 2020,
doi:10.1109/LRA.2020.3007421.

[11] Brossard, Martin and Bonnabel, Silvere, “Learning wheel odom-
etry and imu errors for localization”, 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 291–297, 2019, doi:
10.1109/ICRA.2019.8794237.

[12] Moore, Thomas and Stouch, Daniel, “Intelligent autonomous
systems 13”, pp. 335–348, Springer, Padua, 2016, doi:10.1007/
978-3-319-08338-4_25.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 40

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

[13] He, Chengyang and Tang, Chao and Yu, Chengpu, “A federated
derivative cubature kalman filter for imu-uwb indoor positioning”,
Sensors, vol. 20, no. 12, p. 3514, 2020, doi:10.3390/s20123514.

[14] Liu, Fei and Li, Xin and Wang, Jian and Zhang, Jixian, “An adaptive
uwb/mems-imu complementary kalman filter for indoor location
in nlos environment”, Remote Sensing, vol. 11, no. 22, p. 2628, 2019,
doi:10.3390/rs11222628.

[15] Cui, Jishi and Li, Bin and Yang, Lyuxiao and Wu, Nan, “Multi-source
data fusion method for indoor localization system”, 2020 IEEE/CIC
International Conference on Communications in China (ICCC), pp. 29–33,
2020, doi:10.1109/ICCC49849.2020.9238826.

[16] Yang, Xiaofei and Wang, Jun and Song, Dapeng and Feng, Beizhen
and Ye, Hui, “A novel nlos error compensation method based imu for
uwb indoor positioning system”, IEEE Sensors Journal, vol. 21, no. 9,
pp. 11203–11212, 2021, doi:10.1109/JSEN.2021.3061468.

[17] Davison, Andrew J and Reid, Ian D and Molton, Nicholas D and
Stasse, Olivier, “Monoslam: Real-time single camera slam”, IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1052–1067, 2007, doi:10.1109/TPAMI.2007.1049.

[18] Pire, Taihú and Fischer, Thomas and Castro, Gastón and De Cristóforis,
Pablo and Civera, Javier and Berlles, Julio Jacobo, “S-ptam: Stereo
parallel tracking and mapping”, Robotics and Autonomous Systems,
vol. 93, pp. 27–42, 2017, doi:10.1016/j.robot.2017.03.019.

[19] Kerl, Christian and Sturm, Jürgen and Cremers, Daniel, “Dense
visual slam for rgb-d cameras”, 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 2100–2106, 2013, doi:
10.1109/IROS.2013.6696650.

[20] Mur-Artal, Raul and Montiel, Jose Maria Martinez and Tardos, Juan
D, “Orb-slam: a versatile and accurate monocular slam system”,
IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163, 2015, doi:
10.1109/TRO.2015.2463671.

[21] Engel, Jakob and Koltun, Vladlen and Cremers, Daniel, “Direct sparse
odometry”, IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 3, pp. 611–625, 2017, doi:10.1109/TPAMI.2017.2658577.

[22] Engel, Jakob and Schöps, Thomas and Cremers, Daniel, “Lsd-slam:
Large-scale direct monocular slam”, European conference on computer
vision, pp. 834–849, 2014, doi:10.1007/978-3-319-10605-2_54.

[23] Forster, Christian and Pizzoli, Matia and Scaramuzza, Davide, “Svo:
Fast semi-direct monocular visual odometry”, 2014 IEEE interna-
tional conference on robotics and automation (ICRA), pp. 15–22, 2014,
doi:10.1109/ICRA.2014.6906584.

[24] Campos, Carlos and Elvira, Richard and Rodríguez, Juan J Gómez
and Montiel, José MM and Tardós, Juan D, “Orb-slam3: An accurate
open-source library for visual, visual–inertial, and multimap slam”,
IEEE Transactions on Robotics, 2021, doi:10.1109/TRO.2021.3075644.

[25] Schubert, David and Demmel, Nikolaus and von Stumberg, Lukas
and Usenko, Vladyslav and Cremers, Daniel, “Rolling-shutter mod-
elling for direct visual-inertial odometry”, 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2462–2469, 2019,
doi:10.1109/IROS40897.2019.8968539.

[26] Li, Guangqiang and Yu, Lei and Fei, Shumin, “A deep-learning
real-time visual slam system based on multi-task feature extraction
network and self-supervised feature points”, Measurement, vol. 168, p.
108403, 2021, doi:10.1016/j.measurement.2020.108403.

[27] Kang, Rong and Shi, Jieqi and Li, Xueming and Liu, Yang and Liu,
Xiao, “Df-slam: A deep-learning enhanced visual slam system based
on deep local features”, arXiv preprint arXiv:1901.07223, 2019.

[28] Li, Ruihao and Wang, Sen and Long, Zhiqiang and Gu, Dongbing,
“Undeepvo: Monocular visual odometry through unsupervised deep
learning”, 2018 IEEE international conference on robotics and automation
(ICRA), pp. 7286–7291, 2018, doi:10.1109/ICRA.2018.8461251.

[29] Mur-Artal, Raul and Tardós, Juan D, “Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras”, IEEE
transactions on robotics, vol. 33, no. 5, pp. 1255–1262, 2017, doi:
10.1109/TRO.2017.2705103.

[30] Campos, Carlos and Elvira, Richard and Rodríguez, Juan J Gómez
and Montiel, José MM and Tardós, Juan D, “Orb-slam3: An accurate
open-source library for visual, visual–inertial, and multimap slam”,
IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.

[31] Gomez-Ojeda, Ruben and Moreno, Francisco-Angel and Zuniga-Noël,
David and Scaramuzza, Davide and Gonzalez-Jimenez, Javier, “Pl-
slam: A stereo slam system through the combination of points and
line segments”, IEEE Transactions on Robotics, vol. 35, no. 3, pp. 734–746,
2019, doi:10.1109/TRO.2019.2899783.

[32] Cvišić, Igor and Marković, Ivan and Petrović, Ivan, “Soft2: Stereo
visual odometry for road vehicles based on a point-to-epipolar-
line metric”, IEEE Transactions on Robotics, pp. 273–288, 2023, doi:
10.1109/TRO.2022.3188121.

[33] Zhou, Yi and Gallego, Guillermo and Shen, Shaojie, “Event-based
stereo visual odometry”, IEEE Transactions on Robotics, 2021, doi:
10.1109/TRO.2021.3062252.

[34] Labbé, Mathieu and Michaud, François, “Rtab-map as an open-source
lidar and visual simultaneous localization and mapping library for
large-scale and long-term online operation”, Journal of Field Robotics,
vol. 36, no. 2, pp. 416–446, 2019, doi:10.1002/rob.21831.

[35] Dai, Angela and Nießner, Matthias and Zollhöfer, Michael and Izadi,
Shahram and Theobalt, Christian, “Bundlefusion: Real-time globally
consistent 3d reconstruction using on-the-fly surface reintegration”,
ACM Transactions on Graphics (ToG), vol. 36, no. 4, p. 1, 2017, doi:
10.1145/3072959.3054739.

[36] Whelan, Thomas and Kaess, Michael and Fallon, Maurice and Johanns-
son, Hordur and Leonard, John and McDonald, John, “Kintinuous:
Spatially extended kinectfusion”, 2012.

[37] Rosinol, Antoni and Abate, Marcus and Chang, Yun and Car-
lone, Luca, “Kimera: an open-source library for real-time metric-
semantic localization and mapping”, 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1689–1696, 2020, doi:
10.1109/ICRA40945.2020.9196885.

[38] Bruno, Hudson and Colombini, Esther, “Lift-slam: a deep-learning
feature-based monocular visual slam method”, Neurocomputing, vol.
455, 2021, doi:10.1016/j.neucom.2021.05.027.

[39] “Objectfusion: Accurate object-level slam with neural object priors”,
Graphical Models, vol. 123, p. 101165, 2022, doi:https://doi.org/10.
1016/j.gmod.2022.101165.

[40] Qing Li and Rui Cao and Jiasong Zhu and Hao Fu and Baoding
Zhou and Xu Fang and Sen Jia and Shenman Zhang and Kanglin Liu
and Qingquan Li, “Learn then match: A fast coarse-to-fine depth
image-based indoor localization framework for dark environments
via deep learning and keypoint-based geometry alignment”, ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 195, pp. 169–177,
2023, doi:https://doi.org/10.1016/j.isprsjprs.2022.10.015.

[41] Zhang, Ji and Singh, Sanjiv, “Loam: Lidar odometry and mapping in
real-time.”, Robotics: Science and Systems, vol. 2, 2014.

[42] Koide, Kenji and Miura, Jun and Menegatti, Emanuele, “A portable
3d lidar-based system for long-term and wide-area people be-
havior measurement”, IEEE Trans. Hum. Mach. Syst, 2018, doi:
10.1177/1729881419841532.

[43] Chen, Xieyuanli and Milioto, Andres and Palazzolo, Emanuele and
Giguere, Philippe and Behley, Jens and Stachniss, Cyrill, “Suma++:
Efficient lidar-based semantic slam”, 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 4530–4537, 2019,
doi:10.1109/IROS40897.2019.8967704.

[44] Shan, Tixiao and Englot, Brendan, “Lego-loam: Lightweight and
ground-optimized lidar odometry and mapping on variable terrain”,
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4758–4765, 2018, doi:10.1109/IROS.2018.8594299.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 41

http://www.jenrs.com

Zhang et al., Robust Localization Algorithm

[45] Shan, Tixiao and Englot, Brendan and Meyers, Drew and Wang,
Wei and Ratti, Carlo and Rus, Daniela, “Lio-sam: Tightly-coupled
lidar inertial odometry via smoothing and mapping”, 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
5135–5142, 2020, doi:10.1109/IROS45743.2020.9341176.

[46] Montemerlo, Michael and Thrun, Sebastian and Koller, Daphne and
Wegbreit, Ben and others, “Fastslam: A factored solution to the simul-
taneous localization and mapping problem”, Aaai/iaai, vol. 593598,
2002.

[47] Grisetti, Giorgio and Stachniss, Cyrill and Burgard, Wolfram, “Im-
proved techniques for grid mapping with rao-blackwellized particle
filters”, IEEE transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007,
doi:10.1109/TRO.2006.889486.

[48] Konolige, Kurt and Grisetti, Giorgio and Kümmerle, Rainer and Bur-
gard, Wolfram and Limketkai, Benson and Vincent, Regis, “Efficient
sparse pose adjustment for 2d mapping”, 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 22–29, 2010,
doi:10.1109/IROS.2010.5649043.

[49] Hess, Wolfgang and Kohler, Damon and Rapp, Holger and Andor,
Daniel, “Real-time loop closure in 2d lidar slam”, 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 1271–1278,
2016, doi:10.1109/ICRA.2016.7487258.

[50] Konolige, Kurt and Grisetti, Giorgio and Kümmerle, Rainer and Bur-
gard, Wolfram and Limketkai, Benson and Vincent, Regis, “Efficient
sparse pose adjustment for 2d mapping”, 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 22–29, 2010,
doi:10.1109/IROS.2010.5649043.

[51] Kohlbrecher, Stefan and Von Stryk, Oskar and Meyer, Johannes and
Klingauf, Uwe, “A flexible and scalable slam system with full 3d mo-
tion estimation”, 2011 IEEE international symposium on safety, security,
and rescue robotics, pp. 155–160, 2011, doi:10.1109/SSRR.2011.6106777.

[52] Lv, Wenjun and Kang, Yu and Qin, Jiahu, “Indoor localization for
skid-steering mobile robot by fusing encoder, gyroscope, and magne-
tometer”, IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 49, no. 6, pp. 1241–1253, 2017, doi:10.1109/TSMC.2017.2701353.

[53] Jiang, Ping and Chen, Liang and Guo, Hang and Yu, Min and Xiong,
Jian, “Novel indoor positioning algorithm based on lidar/inertial
measurement unit integrated system”, International Journal of Ad-
vanced Robotic Systems, vol. 18, no. 2, p. 1729881421999923, 2021,
doi:10.1177/1729881421999923.

[54] Ismail, Zool H and Bukhori, Iksan, “Efficient detection of robot
kidnapping in range finder-based indoor localization using quasi-
standardized 2d dynamic time warping”, Applied Sciences, vol. 11,
no. 4, p. 1580, 2021, doi:10.3390/app11041580.

[55] Zhang, Lei, “Self-adaptive markov localization for single-robot and
multi-robot systems”, Ph.D. thesis, Université Montpellier II-Sciences
et Techniques du Languedoc, 2010.

[56] Zhang, Lei and Zapata, Rene and Lepinay, Pascal, “Self-adaptive
monte carlo localization for mobile robots using range finders”, Robot-
ica, vol. 30, no. 2, pp. 229–244, 2012, doi:10.1017/S0263574711000567.

[57] Zhang, Lei and Zapata, René and Lépinay, Pascal, “Self-adaptive
monte carlo localization for mobile robots using range sensors”, 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1541–1546, 2009, doi:10.1109/IROS.2009.5354298.

[58] Zhang, Lei and Zapata, René, “A three-step localization method for
mobile robots”, Proceedings of International Conference on Automation,
Robotics and Control Systems (ARCS 2009), pp. 50–56, 2009.

[59] Zhang, Lei and Zapata, René, “Probabilistic localization methods
of a mobile robot using ultrasonic perception system”, 2009 Interna-
tional Conference on Information and Automation, pp. 1062–1067, 2009,
doi:10.1109/ICINFA.2009.5205075.

[60] Yu, Wei and Li, Jie and Yuan, Jing and Ji, Xi, “Indoor mobile robot posi-
tioning based on uwb and low cost imu”, 2021 IEEE 5th Advanced Infor-
mation Technology, Electronic and Automation Control Conference (IAEAC),
vol. 5, pp. 1239–1246, 2021, doi:10.1109/IAEAC50856.2021.9390754.

[61] Liu, Jianfeng and Pu, Jiexin and Sun, Lifan and He, Zishu, “An ap-
proach to robust ins/uwb integrated positioning for autonomous
indoor mobile robots”, Sensors, vol. 19, no. 4, p. 950, 2019, doi:
10.3390/s19040950.

[62] Cui, Wei and Liu, Qingde and Zhang, Linhan and Wang, Haixia
and Lu, Xiao and Li, Junliang, “A robust mobile robot indoor po-
sitioning system based on wi-fi”, International Journal of Advanced
Robotic Systems, vol. 17, no. 1, p. 1729881419896660, 2020, doi:
10.1177/1729881419896660.

[63] Motroni, Andrea and Nepa, Paolo and Buffi, Alice and Tellini,
Bernardo, “Robot localization via passive uhf-rfid technology: State-
of-the-art and challenges”, 2020 IEEE International Conference on RFID
(RFID), pp. 1–8, 2020, doi:10.1109/RFID49298.2020.9244884.

[64] Bernardini, Fabio and Buffi, Alice and Fontanelli, Daniele and Macii,
David and Magnago, Valerio and Marracci, Mirko and Motroni, An-
drea and Nepa, Paolo and Tellini, Bernardo, “Robot-based indoor
positioning of uhf-rfid tags: The sar method with multiple trajecto-
ries”, IEEE Transactions on Instrumentation and Measurement, vol. 70,
pp. 1–15, 2020, doi:10.1109/TIM.2020.3033728.

[65] Al-Forati, Israa Sabri Abdulameer and Rashid, Abdulmuttalib, “De-
sign and implementation an indoor robot localization system using
minimum bounded circle algorithm”, 2019 8th International Conference
on Modeling Simulation and Applied Optimization (ICMSAO), pp. 1–6,
2019, doi:10.1109/ICMSAO.2019.8880404.

[66] Alfurati, IS and Rashid, Abdulmuttalib T, “An efficient mathematical
approach for an indoor robot localization system”, Iraqi Journal of
Electrical and Electronic Engineering, vol. 15, no. 2, pp. 61–70, 2019,
doi:10.37917/ĳeee.15.2.7.

[67] Albuquerque, Daniel F and Gonçalves, Edgar S and Pedrosa, Eurico
F and Teixeira, Francisco C and Vieira, José N, “Robot self position
based on asynchronous millimetre wave radar interference”, 2019
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp. 1–6, 2019, doi:10.1109/IPIN.2019.8911809.

[68] Perez-Grau, Francisco J and Caballero, Fernando and Viguria, Antidio
and Ollero, Anibal, “Multi-sensor three-dimensional monte carlo lo-
calization for long-term aerial robot navigation”, International Journal
of Advanced Robotic Systems, vol. 14, no. 5, p. 1729881417732757, 2017.

[69] Chen, Xieyuanli and Läbe, Thomas and Nardi, Lorenzo and Behley,
Jens and Stachniss, Cyrill, “Learning an overlap-based observation
model for 3d lidar localization”, 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4602–4608, IEEE, 2020.

[70] Wolfgang Hess and Damon Kohler and Holger Rapp and Daniel
Andor, “Real-time loop closure in 2d LIDAR SLAM”, 2016 IEEE
International Conference on Robotics and Automation, ICRA 2016, Stock-
holm, Sweden, May 16-21, 2016, pp. 1271–1278, IEEE, 2016, doi:
10.1109/ICRA.2016.7487258.

[71] Koki Aoki and Kenji Koide and Shuji Oishi and Masashi Yokozuka and
Atsuhiko Banno and Junichi Meguro, “3d-bbs: Global localization for
3d point cloud scan matching using branch-and-bound algorithm”,
CoRR, vol. abs/2310.10023, 2023, doi:10.48550/ARXIV.2310.10023.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 42

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

	Introduction
	Related work
	System overview
	Hardware setting
	System architecture

	Global Localization
	Global search using the branch-and-bound algorithm
	Optimization of the initial pose using the iterative nearest point algorithm

	Position Tracking
	Frontend local map-based scan matching
	Backend pose graph optimization

	Relocalization judgment
	Confidence calculation and dual-threshold judgment
	Relocalization judgment based on finite state machine

	Experiments
	Implementation Details
	Localization experiment in the simulated laboratory environment
	Localization experiment in the actual workshop environment

	Conclusion and Future Work

