
Special Issue on Computing, Engineering and Sciences 

www.jenrs.com                        Journal of Engineering Research and Sciences, 3(4): 01-09, 2024                                            1 

Received: 21 January, 2024, Revised: 22 March, 2024, Accepted: 23 March, 2024, Online: 16 April, 2024 

DOI: https://doi.org/10.55708/js0304001  

 

 

Estimation of Elbow Joint Movement Using ANN-Based      
Softmax Classifier 
Abdullah Y. Al-Maliki *, 1 , Kamran Iqbal 1 , Gannon White 2  
1Department of Electrical and Computer Engineering, University of Arkansas at Little Rock, Little Rock, 72204, USA 
2Department of Kinesiology, Colorado Mesa University, Grand Junction, 81501, USA 
*Corresponding author: Dr. Abdullah Al-Maliki, ayalmaliki@gmail.com 
 

ABSTRACT: Estimating the natural voluntary movement of human joints in its entirety is a 
challenging problem especially when high accuracy is desired. In this paper, we build a modular 
estimator to estimate the elbow joint motion including angular displacement and direction. Being 
modular, this estimator can be scaled for application to other joints. We collected surface 
Electromyographic (sEMG) signals and motion capture data from healthy participants while 
performing elbow flexion and extension in different arm positions and at different effort levels. We 
preprocessed the sEMG signals, extracted features array, and used it to train an ANN-based Softmax 
classifier to estimate the angular displacement and movement direction. When compared against the 
motion cap-ture data, the classifier achieved estimation accuracy ranging from 80% to 90% with a 
resolution of 5°, which translates into Pear-son Correlation Coefficient (PCC) ranging from 0.91 to 0.95. 
Such high PCC values in mimicking the voluntary movement of the upper limb may help toward 
building intuitive prostheses, exoskeletons, remote-controlled robotic arms, and other Human Ma-
chine Interface (HMI) applications. 
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1. Introduction and Literature Review  

An Individual’s intent to perform any physical 
movement that involves the contraction of skeletal 
muscles can be estimated by analyzing the corresponding 
muscles’ electromyography (EMG) signal [1,2]. An EMG 
signal is the electrical manifestation of the neuromuscular 
activation associated with a muscle contraction [3]. EMG 
signals are characterized as a stochastic and nonlinear 
signal due to a large number of motor units and their 
different firing rates, as it carries the brain command to 
create a muscle contraction [4]. Since the EMG signal has a 
low signal-to-noise ratio in addition to its stochastic 
nature, it is hard to fully utilize the information embedded 
in it with high accuracy without implementing various 
filtering, dimension reduction, and/or pattern recognition 
techniques [4,5]. EMG can be measured by using one of 
two methods; surface EMG or sEMG and intramuscular 
EMG. sEMG is measured on the skin above the muscle of 
interest using an electrode to measure the muscle’s 
electrical activity i.e. EMG signal [6]; therefore, this 

technique is categorized as noninvasive [6,7]. 
Intramuscular EMG, on the other hand, is measured from 
within the muscle of interest by inserting thin metal 
electrodes into the muscle and referenced to the surface 
electrode placed above the muscle [8]. Consequently, it 
requires more caution than sEMG to perform and it is 
considered an invasive procedure [9,10]. As a result, 
sEMG is the dominant method to study how the human 
body controls skeletal muscles as it is safer, easier to 
perform, and can be implemented in end products with 
less complexity [7,10]. 

This work focuses on estimating the direction and 
angular displacement of the elbow’s joint flexion and 
extension movement using the information embedded 
within sEMG data of the related muscles. Below we 
mention some of the related research addressing the same 
problem using various methods. The authors trained an 
Artificial Neural Network (ANN) to estimate the upper 
limb joint angles from related muscles’ sEMG data, in their 
experiment setup the upper arm was held fixed at the 
shoulder level [11]. Their ANN was able to follow the 
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target angle in training data, and they showed low average 
Mean Square Error (MSE) for eight participants. The 
authors measured the upper limb joint angles, muscles 
EMG and set a constant load to estimate the angle-torque 
relation during constant muscle activation in able-bodied 
humans using ANN [12]. The authors showed the 
effectiveness of Kalman Filter in linearizing a set of twelve 
time-domain features. They estimated the elbow joint 
angle during elbow flexion with a fixed load and position 
which in turn increased the elbow angle estimation 
accuracy [13]. The authors used least squares support 
vector regression to estimate the knee and hip joint angles 
using sEMG signals [14]. Their data was from able-bodied 
participants performing treadmill and leg extension 
exercises. They were able to achieve single-digit Root 
Mean Square Error (RMSE) between measured and 
estimated joint angles in training data. The authors were 
able to estimate the elbow joint angle in able-bodied 
participants, using multiple time-delayed features of the 
sEMG and random forests [15]. They were able to achieve 
single-digit MSE but they had a fixed time window, with 
strictly one degree of freedom, fixed arm effort, and fixed 
arm orientation. The same authors from [15] used grey 
feature weighted least square support vector machine 
algorithm to estimate the elbow joint angle [16]. Similar to 
[15], the estimation was for one degree of freedom while 
the elbow was fixed on the table, and the starting angle 
between the forearm and the upper arm was 90°and the 
wrist joint was kept along the forearm and again all the 
movements were done with empty hand i.e. single effort 
level. The authors used EMG to model muscle activation 
with the help of a feed-forward ANN and Gaussian 
process to estimate the fingers’ joint angles of ten able-
bodied participants [17]. Their estimation involved more 
than one degree of freedom, but was held constant at one 
effort level. The authors used Radial Basis Function ANN 
to estimate the elbow joint angle for a flexion and 
extension movement in healthy participants [18]. Their 
experimental setup included fixed elbow location, fixed 
elbow orientation, and a fixed effort level. They achieved 
correlation coefficient values between actual and 
estimated angle ranging from 0.76 to 0.91 depending on 
the movement speed.  

The above literature review shows that most, if not all, 
of the related research, did not account for the following 
factors when trying to estimate the elbow’s joint 
movement: 

1. Different limb orientation when performing the 
movement 

2. Carried load changes between trials of the same 
movement 

3. Movement speed variation between trials 

Therefore, the goal of this work is to estimate the 
human elbow joint displacement and direction using 
sEMG signals for one degree of freedom at two different 
limb orientations, two different load levels, and variable 
movement speed, thus expanding on the previously 
mentioned studies. By developing such a versatile joint 
angle estimator, we broaden the utilization of sEMG signal 
data in different Human Machine Interface (HMI) 
application. For an instant prosthesis development has, in 
a way, surpassed the current limb action estimation 
techniques; as modern prostheses have multiple degrees 
of freedom, actuated by motors capable of fine movements 
[19], while the majority of the cur-rent literature focuses on 
the estimation of the limb torque during a muscle 
contraction and not so on the final location of the limb [19–
21]. The estimator developed in this work is designed with 
a modular approach from the software point of view; so it 
can be scaled to other joints and their corresponding 
muscle groups, e.g., the wrist or the shoulder. 

2. Elbow Joint Movement Estimation 

In this section, we describe the biomechanics of the 
elbow joint and which muscles to focus on to estimate the 
elbow flexion and extension movement, we also discuss 
the sEMG signal characteristics and the procedure used in 
collecting sEMG data for this study. Then we show the 
methods used to preprocess this data and the building 
blocks of the elbow angle estimator, and by the end of this 
section, we show the estimation results of the developed 
estimator and the correlation factor between the actual 
and estimated elbow angles.   

2.1. Elbow Joint Anatomy and Biomechanics 

Healthy humans take their elbow joint function for 
granted, but as researchers try to tackle this joint, they 
realize how complicated this joint is. The elbow joint 
consists of and is a pathway to a lot of different types of 
bone structures, tissues, vessels, and fibers [22,23], 
however in this work we are focusing on the muscles 
responsible for flexing and extending the joint which can 
be divided into two groups [23]. 

1. The prime movers and heavy lifters of the forearm are 
[23]: 

A. Biceps   (Elbow Flexion) 

B. Brachialis  (Elbow Flexion) 

C. Triceps   (Elbow Extension) 

2. The secondary movers and supporting muscles are 
[23]: 

A. Brachioradialis  (Elbow Flexion) 

B. Pronator teres  (Elbow Flexion) 

C. Anconeus  (Elbow Extension) 
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The location of the three heavy lifting muscles in 
number 1 above with respect to the upper limb is shown 
in Figure 1 [22]. 
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Head

Triceps 
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Biceps 
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Head

Biceps 
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Figure 1: Shows the location of elbow joint muscles targeted in this 

study [22]. 

What is interesting is that the body utilizes the elbow 
muscles in a selective, highly case-dependent manner [22]. 
For unconstraint and unloaded forearm moving at 
medium speed, and when the arm is on the side of a 
standing hu-man, biceps, and brachialis are mainly used 
to raise and lower the arm, and triceps is mainly used to 
stabilize the elbow. This movement is known as biceps 
curls. And the opposite is true when the hand is raised 
above the shoulder and the arm is extended to the top. In 
this case, the triceps is mainly used to extend the arm, 
biceps and brachialis are used to stabilize the elbow, this 
movement is known as triceps extension [23]. 

2.2. sEMG Signal Limitations 

Many researchers agree that sEMG is the most 
common and most feasible way to study limbs’ 
movements and to control prosthetic limbs [24]. 
Nevertheless, getting useful data from the stochastic 
sEMG signal has its own challenges [25]. Common 
disadvantageous characteristics and noise sources of 
sEMG signal are [26–30]: 

1. sEMG signal is Quasi-Random in nature 

2. High noise to signal ratio (NSR)  

3. Cross-talk noise, which can be mitigated by using 
smaller footprint sensors and by accurately 
targeting the muscles in question 

4. Inherent equipment and electrode noise (can be 
estimated to a certain degree from resting trials of 
sEMG data re-cording session) 

5. Inherent electromagnetic noise from the 
environment e.g. electric power, (part of which can 
be figured out from the power line frequency, 60 
Hz in the USA) 

6. Motion artifact noise (usually high amplitude, 
comparable to sEMG signal and low frequency 1-
10 Hz) 

7. Heartbeat artifact noise, which is usually very 
consistent with Electrocardiographic (ECG) signal. 

8. Other biological noise sources, e.g. blood flow 
velocity, fat index, and skin temperature. 

9. Fatigue resulting from task repetition and/or 
increasing the load has its toll on the sEMG signal. 

10. sEMG signal distribution is highly non-Gaussian 
at low and high levels of force, whereas the 
distribution has its maximum gaussianity at the 
mid-level of maximum voluntary contraction 
(MVC). Therefore some techniques may work well 
at certain levels of the contraction power and fail at 
different levels [28]. 

It is obvious that most of the above-mentioned 
drawbacks are biological noises, some of which can be 
dealt with using different kinds of filters, and others will 
need different approaches to get more accurate data from 
the sEMG. 

2.3. Data Collection 

Since we can reflect the sEMG signal processing and 
classification from able-bodied to amputees with not 
much loss of accuracy [31,32], in this study we will only 
collect data from volunteer able-bodied participants. The 
data collection was done in accordance with the 
Institutional Review Board (IRB) guidelines. Our study 
was approved by IRB with protocol number 18-134-R1. 
After describing the whole procedure to the volunteers 
and signing the consent form, four silver/silver chloride 
(Ag/AgCl) electrodes were put on the muscles responsible 
for flexing and extending the elbow joint. The first channel 
was assigned to the biceps between the long-head and 
short-head, the second to brachialis, the third to triceps 
lateral, and the fourth and last channel was assigned to 
triceps long head. Retro-reflective markers were placed on 
the right arm of the participants to utilize the Vicon motion 
capture system to measure the elbow joint angular 
displacement. Noraxon TeleMyo Direct Transmission 
System (Noraxon  USA Inc)  was used to record the sEMG 
and motion data. The sEMG sampling frequency was set 
to 1500 Hz. Each participant was asked to perform fifteen 
arm flexing and extension movements at their own pace in 
three different arm positions: 

A. The arm is relaxed by the participant side, a.k.a 
biceps curl movement  

B. The arm abducted to shoulder height to the side of 
the participant, in which the elbow flexes and 
extends in the horizontal plane, perpendicular to 
the gravitational force. 

C. Arm above the shoulder, i.e. overhead arm 
extension movement a.k.a triceps extension. 
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All three of the above movements were done with an 
empty hand and while holding a 5-pound weight (two 
effort levels). We also recorded sEMG data for each arm 
position while it’s idle i.e., with no movement. Each trial 
lasted approximately 20 seconds which is the average time 
the participants took to complete 15 repetitions. 

We allocate 80% of the acquired data for training the 
classifier and 20% for testing it. We also implement a five-
fold cross-validation method on the whole data to verify 
the effectiveness of the classifier across all sections of the 
data. 

2.4. Signal Preprocessing 

As mentioned in Section 2.2, sEMG signal suffer from 
different kinds of noise; to address some of these signal 
imperfections, preprocessing is a must to obtain useful 
information out of the signal. In this case, we have 
implemented the following: 

1. Removal of DC bias. 

2. Notch filters to filter out power line fundamental 
and harmonic frequencies. 

3. Bandpass filter allowing frequencies ranging from 
30-400Hz to pass and has a low band stop 
frequency of 25Hz and a high band stop frequency 
of 450Hz. 

4. Scaling up the signal by a factor of two. 

2.5. Elbow Joint Motion Estimator 

In this section, we design the estimator which will 
estimate the elbow joint’s angular displacement 
magnitude in degrees, as well as its movement direction. 
Furthermore, it needs to do so while being insensitive to 
the elbow’s angu-lar speed, orientation, or load changes. 

The designed estimator is a classifier at its core, and to 
be more specific it is an ANN-based Softmax classifier. The 
softmax function is shown in (1) [33]: 

𝑃𝑃(𝑐𝑐𝑟𝑟|𝑥𝑥) =

⎩
⎨

⎧
𝑃𝑃�𝑥𝑥�𝑐𝑐𝑟𝑟�𝑃𝑃(𝑐𝑐𝑟𝑟)

∑ 𝑃𝑃�𝑥𝑥�𝑐𝑐𝑗𝑗�𝑃𝑃�𝑐𝑐𝑗𝑗�𝑘𝑘
𝑗𝑗=1

    , (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐺𝐺𝐹𝐹)

𝑃𝑃(𝑐𝑐𝑟𝑟|𝑥𝑥) = 𝑒𝑒𝑎𝑎𝑟𝑟

∑ 𝑒𝑒𝑗𝑗
𝑎𝑎𝑘𝑘

𝑗𝑗=1
   , � 𝑁𝑁𝐹𝐹𝐺𝐺𝐹𝐹𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐺𝐺𝑁𝑁 

𝐸𝐸𝑥𝑥𝐸𝐸𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸𝑁𝑁𝐺𝐺𝐺𝐺 𝑓𝑓𝐹𝐹𝐺𝐺𝐹𝐹�
 (1) 

Where 

𝐺𝐺𝑟𝑟 = ln�𝑃𝑃(𝑥𝑥|𝑐𝑐𝑟𝑟)𝑃𝑃(𝑐𝑐𝑟𝑟)�  

𝑃𝑃(𝑥𝑥|𝑐𝑐𝑟𝑟) is the conditional probability of the sample 𝑥𝑥 
given class 𝐺𝐺  and it has to satisfy the following two 
conditions: 

0 ≤ 𝑃𝑃(𝑐𝑐𝑟𝑟|𝑥𝑥) ≤ 1   ,   ∑ 𝑃𝑃�𝑐𝑐𝑗𝑗�𝑥𝑥�𝑘𝑘
𝑗𝑗=1 = 1 

𝑃𝑃(𝑐𝑐𝑟𝑟) is the class prior probability 

and the ANN is trained using the scaled conjugate 
gradient algorithm, [34] provides an elaborate explanation 

on this algorithm. The selected loss function for this 
training is cross-entropy which is given in (2) [33]: 

𝐸𝐸 = − 1
𝑛𝑛
∑ ∑ 𝐸𝐸𝑖𝑖𝑗𝑗 ln�𝑦𝑦𝑖𝑖𝑗𝑗� + �1 − 𝐸𝐸𝑖𝑖𝑗𝑗� ln�1 − 𝑦𝑦𝑖𝑖𝑗𝑗�𝑘𝑘

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1  (2) 

Where 

𝐸𝐸 is the loss function 

𝑁𝑁 is the number of samples 

𝐾𝐾 is the number of classes 

𝐸𝐸𝑖𝑖,𝑗𝑗 means the 𝑁𝑁𝑡𝑡ℎ sample belongs to the 𝑗𝑗𝑡𝑡ℎ class 

𝑦𝑦𝑖𝑖𝑗𝑗 is ANN response for sample 𝑁𝑁 for class 𝑗𝑗 

As mentioned in section 2.2 sEMG has some random 
properties and inherited noises associated with it; thus, be-
fore feeding the sEMG data to the estimator it needs to 
undergo a feature extraction process. This process serves 
two key purposes: 

1. Dimension reduction and normalization. 

2. Amplify useful data and suppress noises. 

Then the classifier will use the extracted features array 
instead of the sEMG data to do the classification. 

We have chosen the following time-domain features: 

1. Mean Absolute Value; 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑥𝑥𝑛𝑛|𝑁𝑁
𝑛𝑛=1  

2. Number of Zero Crossings; 𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ 𝑠𝑠(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1)𝑁𝑁−1
𝑛𝑛=1  

 Where 𝑠𝑠(𝑥𝑥, 𝑦𝑦) = �1 𝑁𝑁𝑓𝑓(𝑥𝑥 ∙ 𝑦𝑦) < 0
0 𝑁𝑁𝑓𝑓 (𝑥𝑥 ∙ 𝑦𝑦) ≥ 0 

3. Number of Slope Sign Changes; 𝑆𝑆𝑆𝑆𝑁𝑁 =
∑ 𝑠𝑠𝑠𝑠(𝑆𝑆𝐺𝐺𝑖𝑖 , 𝑆𝑆𝐺𝐺𝑖𝑖+1)𝑁𝑁−1
𝑛𝑛=2  

Where 𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) = �1 𝑁𝑁𝑓𝑓(𝑥𝑥 ∙ 𝑦𝑦) < 0
0 𝑁𝑁𝑓𝑓 (𝑥𝑥 ∙ 𝑦𝑦) ≥ 0   and  𝑆𝑆𝐺𝐺𝑖𝑖 =

𝑦𝑦𝑖𝑖−𝑦𝑦𝑖𝑖−1
𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1

 

4. Root Mean Square Value; 𝑅𝑅𝑀𝑀𝑆𝑆 = �1
𝑁𝑁
∑ 𝑥𝑥𝑛𝑛2𝑁𝑁
𝑛𝑛=1  

5. Variance within each Channel; 𝑁𝑁ℎ𝑀𝑀𝐺𝐺𝐺𝐺 = 1
𝑁𝑁−1

∑ |𝑥𝑥𝑛𝑛 −𝑁𝑁
𝑛𝑛=1

𝜇𝜇|2 

 Where 𝜇𝜇 = 1
𝑁𝑁
∑ 𝑥𝑥𝑛𝑛𝑁𝑁
𝑛𝑛=1  

6. Variance Across Channels; 𝑀𝑀𝑁𝑁ℎ𝑀𝑀𝐺𝐺𝐺𝐺 =
1

𝑛𝑛𝑛𝑛ℎ−1
∑ �𝑥𝑥𝑛𝑛ℎ𝑛𝑛 − 𝜇𝜇�2𝑛𝑛𝑛𝑛ℎ
𝑛𝑛=1  

 Where 𝜇𝜇 = 1
𝑛𝑛𝑛𝑛ℎ

∑ 𝑥𝑥𝑛𝑛ℎ𝑛𝑛
𝑛𝑛𝑛𝑛ℎ
𝑛𝑛=1  

7. RMS Difference between Agonist (𝑀𝑀𝐴𝐴) and Antagonist 
(𝑀𝑀𝐺𝐺𝐸𝐸𝐴𝐴)  Muscles; 𝑅𝑅𝑀𝑀𝑆𝑆𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 = ∑ 𝑅𝑅𝑀𝑀𝑆𝑆𝑛𝑛

𝑁𝑁𝐴𝐴𝐴𝐴
𝑛𝑛=1 −

∑ 𝑅𝑅𝑀𝑀𝑆𝑆𝑛𝑛
𝑁𝑁𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴 
𝑛𝑛=1  

8. Integration of absolute value of sEMG; 𝐼𝐼|𝐸𝐸𝑀𝑀𝐺𝐺| =
∑ |𝑥𝑥𝑛𝑛|𝑁𝑁
𝑛𝑛=1 ∗ 𝐸𝐸𝑠𝑠 

 Where: 𝐸𝐸𝑠𝑠 = 1
𝑠𝑠𝑠𝑠

 ; 𝑠𝑠𝐹𝐹 is the sampling frequency 
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9. Signal Power; 𝑆𝑆𝑃𝑃 = ‖𝑥𝑥‖2

𝑁𝑁
 

 Where ‖𝑥𝑥‖ = �𝑥𝑥12 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑁𝑁2  

10. Average of the Signal RMS Envelope; 𝑅𝑅𝑀𝑀𝑆𝑆𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 =
1
𝑁𝑁
∑ 𝑅𝑅𝑀𝑀𝑆𝑆𝑛𝑛𝑁𝑁
𝑛𝑛=1  

And the following frequency-domain features: 

1. Mean Signal Frequency; 𝐹𝐹𝐹𝐹 = ∑ 𝑆𝑆𝑃𝑃𝑛𝑛∙𝐷𝐷𝑛𝑛𝐹𝐹
𝑛𝑛=1
∑ 𝑆𝑆𝑃𝑃𝑛𝑛𝐹𝐹
𝑛𝑛=1

 

2. Average Waveform Length; 𝑊𝑊𝐿𝐿 = 1
𝑚𝑚𝑠𝑠

 

From section 2.3 and the previously mentioned 
features, we have a 4×12 feature array for each time 
window. This array has a fixed size regardless of the time 
window length and therefore helps the classifier to be 
indifferent to the joint motion speed. Thus, the input layer 
of the ANN classifier is set to be 48. One positive side effect 
of having multiple signal features is the compensation for 
a relatively low number of sEMG signal electrodes [35], as 
we examined only four muscles in this study.  

Since the angular range of motion of a healthy human’s 
elbow joint flexion-extension movement is [0°,145°] [36], 
we have selected the classes to be 0°, -5°, and +5° to keep 
the estimation resolution at 5° or 3.45% at a theoretical 
100% classification accuracy. Where 0° represents a no-
movement, -5° represents 5° flexion movement, and +5° 
represents 5° extension movement. However, 100% 
classification accuracy is hard to achieve especially with 
sEMG data, therefore, we have added two more classes -
10°, and +10° to boost the overall classification accuracy. 
This is true because classes having the same direction but 
different displacements have more features similarity than 
classes with the same displacement and different 
direction. Therefore, the classifier is more likely to miss 
classify +5° as +10° than to miss classify +5° as -5° and vice 
versa. So, adding these extra two classes will aid in 
keeping the classification accuracy within 5°. As a result, 
the output layer of the ANN classifier is set to be 5, 
corresponding to 5 distinct classes. We have chosen 
Matlab R2020a to build the estimator and hence the 
classifier; Figure 2 shows a block diagram of the designed 
ANN classifier, Figure 3 shows the data flow throughout 
the elbow joint motion estimation system. 

Input
Features

Array

Output
Classes

W

b

+

Softmax Layer

 
Figure 2: The ANN softmax classifier block diagram. 
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Figure 3: The elbow joint motion estimator flow chart. 

2.6. Estimation Results 

This section shows the results of the elbow joint 
movement estimation. We first begin by training the ANN 
soft-max classifier for the training data set for a maximum 
of 4000 epochs. Training data and testing data of biceps 
curl motion confusion matrices are shown in Figure 4 and 
Figure 5 respectively. 

 
Figure 4: Classifier’s confusion matrix for the training data. 

 
Figure 5: Classifier’s confusion matrix for the testing data. 
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The order of the classes at the output layer of the 
classifier is as follows +5°, +10°, -5°, -10°, and 0°. If we look 
closer into Figure 4 and Figure 5 we can notice that most 
of the confusion happens between the same direction 
motions. So, if we do a simple probability analysis on the 
testing data, we can see that adding the two longer 
displacement classes helps in keeping the error within 5°. 

𝑘𝑘+5° = 88.1% ; 𝑘𝑘+10° = 89% 
𝑘𝑘−5° = 88.5% ; 𝑘𝑘+10° = 85.5% 

𝑘𝑘+5°𝑜𝑜𝑟𝑟+10° = 88.1% + 89% − (88.1% × 89%) = 98.69% 
𝑘𝑘−5°𝑜𝑜𝑟𝑟−10° = 88.5% + 85.5% − (88.5% + 85.5%)

= 98.33% 
Adding two longer displacement classes helps in 

increasing the accuracy of the classifier in determining the 
direction to more than 98%. This is true because most of 
the confusion happens between the same direction 
movement as they have more similarity across their 
features. 

 
Figure 6: Biceps curls with a 5 pound weight target angle versus 

estimated angle (confusion for training and testing data are 89.2% and 
88.6% respectively). 

 
Figure 7: Biceps curls with empty-handed target angle versus 

estimated angle (confusion for training and testing data are 88.5% and 
80% respectively). 

 
Figure 8: Arm flexion and extension at shoulder level in a horizontal 
plane target angle versus estimated angle (confusion for training and 

testing data are 90.4% and 83.5% respectively). 

Figure 6, Figure 7, and Figure 8 show the actual joint 
angle versus estimated angle, training and testing data, for 
biceps curl with 5 pounds weight, biceps curl empty-
handed and arm at shoulder level flexion and extension 
respectively. 

We have chosen Pearson Correlation Coefficient (PCC) 
as a performance index when comparing the estimated 
elbow angle against the actual angle because unlike other 
commonly used performance indices, it is proven to be 
more accurate in representing the statistical association 
between two continuous variables as it employs the 
covariance between the two variables in its calculation 
[37]. PCC value ranges from +1 to -1, the closest it gets to 
+1 the more the two vectors are similar to each other. PCC 
can be found using (9) [16]: 

𝑃𝑃𝑁𝑁𝑁𝑁(𝑆𝑆𝑁𝑁𝐴𝐴1, 𝑆𝑆𝑁𝑁𝐴𝐴2) = 𝑐𝑐𝑜𝑜𝑐𝑐(𝑆𝑆𝑖𝑖𝑔𝑔1,𝑆𝑆𝑖𝑖𝑔𝑔2)
𝜎𝜎𝑆𝑆𝑖𝑖𝐴𝐴1∙𝜎𝜎𝑆𝑆𝑖𝑖𝐴𝐴2

  (9) 

Where  

𝑐𝑐𝐹𝐹𝑐𝑐(𝑆𝑆𝑁𝑁𝐴𝐴1, 𝑆𝑆𝑁𝑁𝐴𝐴2 )  is the covariance of 𝑆𝑆𝑁𝑁𝐴𝐴1  and 𝑆𝑆𝑁𝑁𝐴𝐴2 
which is given by (10) 

𝑐𝑐𝐹𝐹𝑐𝑐(𝑀𝑀,𝐵𝐵) = 1
𝑁𝑁−1

∑ (𝑀𝑀𝑖𝑖 − 𝜇𝜇𝐴𝐴)∗(𝐵𝐵𝑖𝑖 − 𝜇𝜇𝐵𝐵)𝑁𝑁
𝑖𝑖=1   (10) 

𝜇𝜇𝑥𝑥 is the mean of 𝑥𝑥, which is given by  𝜇𝜇𝑥𝑥 = 1
𝑁𝑁
∑ 𝑥𝑥𝑛𝑛𝑁𝑁
𝑛𝑛=1 , 

and (∗) denotes the complex conjugate. 
𝜎𝜎𝑆𝑆𝑖𝑖𝑔𝑔1 and 𝜎𝜎𝑆𝑆𝑖𝑖𝑔𝑔2  are the standard deviation of 𝑆𝑆𝑁𝑁𝐴𝐴1 and 

𝑆𝑆𝑁𝑁𝐴𝐴2 respectively and it's given by (11) 

𝑆𝑆 = � 1
𝑁𝑁−1

∑ |𝑀𝑀𝑛𝑛 − 𝜇𝜇|2𝑁𝑁
𝑛𝑛=1   (11) 

Table 1 list the PCC values for the estimated elbow joint 
movements for both training and testing sets for the 
designated movement. 
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Table 1: Elbow joint movement estimation correlation coefficient. 

Movement 
Training / 

Testing 
PCC 

Biceps curl with an empty hand 
Training 0.92 
Testing 0.92 

Biceps curl with 5 lbs. 
Training 0.94 
Testing 0.95 

Triceps extension with an empty hand 
Training 0.92 
Testing 0.91 

Triceps extension with 5 lbs. 
Training 0.95 
Testing 0.95 

Arm flexion at shoulder level in a 
horizontal plane with an empty hand 

Training 0.92 
Testing 0.92 

Arm flexion at shoulder level in a 
horizontal plane with 5 lbs. 

Training 0.94 
Testing 0.92 

Figure 9 shows the histogram of time-window length 
in seconds for weighted biceps curls (i.e., 5 lbs) which in 
turn shows that the estimator was able to work with a 
variety of time-window sizes for the same angular 
displacement (and thus variable speeds) and still maintain 
high accuracy, i.e. +80% in classification and 0.91 in 
correlation. 

 
Figure 9: Time-window length in seconds. 

3. Discussion 

This work describes human’s upper limb movement 
estimation using sEMG data. We have designed an 
estimator that can estimate elbow joint movement 
immediately after the neural command sensed through 
sEMG signals at the muscles. Three muscles were targeted 
in this work, biceps brachialis, and triceps. The raw sEMG 
signal underwent preprocessing before it was fed to the 
estimator. The estimator used a combination of time and 
frequency domain features extracted for each sEMG 
channel. The features array is then fed to an ANN-based 
softmax classifier to be trained to classify five classes in 
joint angle displacement. The classifier had an accuracy 
ranging from 80- 90% for different effort levels and limb 
orientation. The classification was easier for the classifier 

when the participant carried weight in his hand, which 
increase the accuracy by 5-7%. The selection of the classes 
and the accuracy of the classifier translates to PCC 
between actual and estimated angles ranging from 0.91 to 
0.95.  

This study aimed to estimate the voluntary movement 
of upper extremities at the joint level. Since the 
appendicular skeleton has 126 bones [22], it’s not feasible 
to estimate all the joints movements in one study. To 
compensate for that we build an estimator that is modular 
from the software point of view. We believe the developed 
estimator can work to estimate the movement of any joint 
in the appendicular skeleton with no modification if we 
use 4 sEMG channels per joint per degree-of-freedom; 
assuming that we can properly distinguish agonistic and 
antagonistic muscles for the chosen joint. 

We have chosen the elbow joint for this study because 
of three main reasons: first, ease of access to its agonistic 
and antagonistic muscle groups; second, its movement can 
be done in different planes with respect to the torso; and 
third, we can vary the joint load easily by asking the 
participant to hold weights. The last two reasons are 
essential to check the versatility of the estimator and to 
make sure it has consistent estimation in different 
movement conditions. We see this as a necessity because 
all the related literature reviewed in this study did not 
account for such variation during joint movement 
estimation  [11–16]. Furthermore, we validate the 
estimator across the whole dataset by implementing a five-
fold cross-validation technique when training and testing 
the estimator. 

Being based on ANN, the softmax classifier took a 
relatively long time to be trained, and it averaged about 30 
minutes for the whole data set. But, on the other hand, the 
average estimation time per segment was about 1 
microsecond, and according to the research in [38], this 
speed is more than sufficient for real-time applications. 
We used Windows 10 Pro 64-bit PC with Intel Core i7-
4790K CPU and 32 GB RAM and Matlab R2020a to train 
and test the estimator, which can be a valid option for 
some but not all Human Machine Interface (HMI) 
applications targeted to benefit from this study. 

The developed estimator can predict the current data 
segment joint angle with high accuracy regardless of the 
previous and the next data segment angle estimation 
accuracy.  In other words, misestimation in a single data 
segment doesn’t affect the consecutive data segments. 
Moreover, due to the selected movement classes, any 
misestimation will stay within the set 5° resolution which 
is reflected by the high PCC values shown in Table 1. The 
choice of features across time-domain and frequency-
domain, the choice of classes, and the choice of the 
classifier all contributed to high estimation accuracy with 
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0.91 to 0.95 correlation between actual and estimated 
elbow angle by using only four sEMG sensors on the 
joint’s agonistic and antagonistic muscles. 

4. Conclusion 

The designed estimator achieved higher accuracy in 
joint movement estimation regardless of the joint 
orientation, speed, or effort level than the similar work 
reviewed in this paper. Which introduces the ability to 
continuously track the intended movement of the elbow 
joint with more than 90% correlation. Although the 
proposed estimator in this work doesn’t have 100% joint 
movement estimation accuracy, section 2.6 and Figures 5 
to 8 show that the estimator has over 98% accuracy in 
predicting the direction of the movement even if it makes 
a mistake whether the movement is 5° or 10°, as its error 
margin to predict the wrong direction of movement is less 
than 2%. 

And since the sEMG signals from able-bodied can be 
used to simulate the human limbs response in amputees 
[17,39,40], this work can be of great help towards a more 
natural myoelectric-prosthesis action, and it can also be 
used to other HMI applications. 
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