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ABSTRACT: Fast and accurate observation of an area in disaster scenarios such as earthquake, flood
and avalanche is crucial for first aid teams. Digital surface models, orthomosaics and object detection
algorithms can play an important role for rapid decision making and response in such scenarios. In
recent years, Unmanned Aerial Vehicles (UAVs) have become increasingly popular because of their
ability to perform different tasks at lower costs. A real-time orthomosaic generated by using UAVs can
be helpful for various tasks where both speed and efficiency are required. An orthomosaic provides an
overview of the area to be observed, and helps the operator to find the regions of interest. Then, object
detection algorithms help to identify the desired objects in those regions. In this study, a monocular
SLAM based system, which combines the camera and GPS data of the UAV, has been developed for
mapping the observed environment in real-time. A deep learning based state-of-the-art object detection
method is adapted to the system in order to detect objects in real time and acquire their global positions.
The performance of the developed method is evaluated in both single and multiple UAVs scenarios.

KEYWORDS SLAM (Simultaneous Localization and Mapping), Mapping, Orthomosaic, Object detec-
tion, Aerial imaging

1. Introduction

Classical 2D image stitching methods that perform real-time
mapping from monocular camera in aerial images are built
based on feature extraction and matching in consecutive
frames [1]. These methods are mainly based on the calcula-
tion of homography, which defines the motion between two
image planes. Since the calculations are limited to a planar
surface in these methods, the 3D structure of the observed
environment cannot be obtained. To solve this problem,
authors in [2] used the Kanade-Lucas-Tomasi feature tracker,
and fused the UAV’s IMU (Inertial Measurement Unit) and
GPS (Global Positioning System) sensor data. Dense point
cloud and digital surface model were generated with the
3D camera position obtained by sensor fusion techniques.

Structure from Motion methods can also be used in or-
thomosaic generation. There are several algorithms that
use Structure from Motion methods, such as OpenMVG
[3], PhotoScan [4]. These methods generally follow feature
extraction and matching, image alignment and bundle ad-
justment algorithm, sparse point cloud generation, dense
point cloud and mesh generation, orthomosaic stages. In
order to generate the final orthomosaic image with Struc-
ture from Motion methods, all images to be used in the
mapping process must be prepared in advance and the
mapping process takes a long time. Therefore, Structure
from Motion based methods are not suitable for real-time

and incremental usage.
Aside from Structure from Motion algorithms, SLAM

(Simultaneous Localization and Mapping) methods are used
for real-time 3D mapping and localization. Monocular cam-
era based SLAM applications have recently become one of
the most studied topics in robotics and computer vision.
SLAM is considered a key technique for navigation and
mapping in unknown environments. Monocular SLAM
algorithms are basically categorized as feature-based and
direct methods. Feature-based SLAM algorithms detect
features in frames and track them in consecutive frames.
Then, they use the resulting features to estimate the camera
pose and generate the point cloud map [5, 6, 7]. On the
other hand, direct methods directly use pixel intensities of
the images instead of extracting features from the images.
Therefore, direct methods tend to create a much more de-
tailed map of the observed environment since they use more
information coming from images [8, 9]. However, in case
of illumination changes and sudden camera movements,
feature-based methods are more robust and can estimate
camera pose with higher accuracy compared to direct meth-
ods. There are also semi-direct approaches such as SVO [10]
that compute strong gradient pixels and achieve high speed.
In [11], the authors proposed a dense monocular reconstruc-
tion method that integrates SVO as camera pose estimation
module. In [12], authors use a feature-based SLAM method
and the GPS data of the UAV to generate 2D orthomosaic
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maps from aerial images. In this study, to generate 2D and
3D orthomosaics, ORB-SLAM [6] which is a very fast and
robust feature-based monocular SLAM method is used for
camera pose estimation and spare point cloud generation.
In [13], author propose a monocular SLAM-based method
to generate 2D and 3D orthomosaic images. Similar to our
study, the method uses ORB-SLAM as the monocular SLAM
method. In addition, in their paper, values of the cells on the
overlapping regions were determined by using a probabilis-
tic approach at the orthomosaic stage. As opposed to this
method, the values of the cells are determined according to
the minimum elevation angle similar to [2] in our proposed
method. Moreover, in our method, a deep learning based
object detection method which is trained on a novel dataset
was integrated to the mapping pipeline to detect objects on
the rectified images. By marking these detections on 2D and
3D maps, the real world positions of the detected objects
can be calculated, and these positions can be used to create
a better map. Another method which is similar to ours is
GPS-SLAM [14]. GPS-SLAM is expected to perform well
on scarce datasets where FPS (frames per second) is 1 or
below. The method augments ORB-SLAM’s pose estimation
by fusing GPS and inertial data. In addition to this, the
authors increase the number of features that are extracted by
ORB-SLAM, which highly affects and reduces the computa-
tion speed. The method works robust and more accurately
compared to the ORB-SLAM on scarce datasets where FPS
is 1 or less. A drawback is that as FPS increases (above
1 FPS) GPS-SLAM fails to track and estimate the camera
pose which prevents the usage of the method in the pose
estimation stage of an end-to-end mapping and localization
pipeline. Unlike GPS-SLAM, we can achieve more robust
camera pose estimation compared to ORB-SLAM at higher
FPS as demonstrated in our experiments.

Object detection is the process of estimating the position
and scale of an object instance in an image. Recently, deep
learning based methods have achieved the highest accu-
racies in object detection. With the increasing processing
capabilities of GPUs, deep learning based detection meth-
ods can now operate in real time. YOLOv3 [15], RetinaNet
[16], SSD [17], Faster R-CNN [18] are the most important
object detectors that can work in real time with high accura-
cies. Recently, anchor-free methods are proposed for object
detection task [19, 20]. In this study, YOLOv3, which is a
very fast and highly accurate object detection network, is
used in the proposed mapping pipeline.

Our Contributions: In this study, we propose a novel real-
time mapping and localization pipeline for aerial images
built on top of a highly accurate monocular feature-based
SLAM method. We fuse GPS and SLAM data for better
localization of the UAV and to be able to map the observed
environment in multiple UAVs scenario. Although there are
methods using SLAM as backbone in mapping methods, we
use a fast interpolation method to densify the sparse depth
map of feature-based SLAM in order to generate dense 3D
maps. While this approach generates semantically strong
maps, its main advantage is fast operating time which is
crucial for multiple UAVs scenario. In addition, we integrate
a state-of-the-art object detection method to the pipeline
that allows to acquire real-world positions of the desired

objects in the observed environment. Detection of certain
objects will be extremely useful for certain applications
such as locating lost persons in wilderness or locating some
military targets (e.g., vehicles or radar systems) in military
operations. Moreover, successful object detection systems
return positions of these objects more accurately, therefore
these positions can be used as fiducial marker points to
align different frames and improve the accuracy of the cre-
ated 2D/3D maps. To this end, the positions of stationary
objects such as buildings, bridges, or military targets such
as airports, radomes, and heliports will be extremely useful.
An overview of the proposed mapping pipeline is given in
Figure 1.
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Figure 1: Overview of the proposed 2D/3D mapping pipeline.

2. Method

In this study, a real-time 2D/3D mapping and object detec-
tion pipeline has been developed for both single and multi-
ple UAVs scenarios. The main steps applied for this purpose
are analyzed under the following sections: global pose esti-
mation, dense point cloud generation, digital surface map,
orthorectification, object detection and orthomosaic.

2.1. Camera Pose Estimation, Sparse Point Cloud Generation and
Global Pose Estimation

Digital surface model and orthorectification steps are re-
quired to create an orthomosaic with images acquired from
a ground-facing monocular camera attached to a UAV. For
this purpose, the camera pose estimation and sparse point
cloud generation steps are computed by using a feature-
based SLAM method in the proposed method. The chosen
monocular SLAM method in our work, ORB-SLAM, is a
very fast and robust algorithm that can perform in large
scale environments. It can compute camera pose accurately
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due to its robust ORB-based feature tracking, pose graph
optimization and loop detection features. However, in
monocular SLAM systems, the real world scale cannot be
estimated, and the camera pose is given in a local coordinate
system. The transformation of the camera pose estimated
by the ORB-SLAM to the global coordinate system can
be achieved by fusing the GPS data of the UAV and the
computed camera pose. In order to calculate the real world
scale, the first 20 frames were used for scale estimation at the
initialization stage. To this end, the visual and geographic
distances between frames are calculated first. Then, the
average scale is computed by averaging the scales of the
distances between frames which is calculated as,

mgpsmslam, (1)

where mgps is the distance between the GPS positions of the
two frames, and mslam is the distance between the visual
camera pose of the two frames. Once the scale is computed
and initialization is done, the camera pose transformation
is calculated for the next frames. In order to find the cam-
era pose transformation, a transformation function must be
calculated between the two 3D point models of the global po-
sitions in UTM (Universal Transverse Mercator) coordinates
and the visual poses obtained by ORB-SLAM. Least-squares
estimation of transformation parameters between two point
patterns [21] is used to calculate the transformation param-
eters between two 3D point models. After calculating the
scale and similarity transformation matrix, the camera pose
matrix can be denoted in the global coordinate system as,r11 r12 r13 tE

r21 r22 r23 tN
r31 r32 r33 tA

 (2)

where r
[
ri j
]

represents the rotation matrix and t represents
the position in UTM coordinate system.

2.2. Dense Point Cloud Generation

Sparse cloud interpolation is used to densify the sparse
point cloud of the images after computing global camera
pose. First, the depth values of the 3D points calculated by
ORB-SLAM are written to the pixel positions in the image
plane according to,

d
(
r31 r32 r33 tz

)
·
(
x y z 1

)T
, (3)

where r3
[
r3 j
]

is the last row of the rotation matrix, x, y, z, 1
is the point in the world frame, and z is the height. After
re-projecting depth values to the image plane, inpainting is
applied to fill the spaces between sampling points. Navier-
Stokes based Inpainting [22] method is used for inpainting
process which is inspired from fluid dynamics. This method
travels along the edges of the known regions to the unknown
regions as the edges are intended to be continuous. It contin-
ues isophotes (lines joining points with the same intensity)
and matches gradient vectors at the border of inpainting
regions continuously. Empty pixels are filled in a way to
reduce the minimum variance in the region. Although the
method cannot produce the details of the structures in the

observed regions, the output depth maps usually have low
noise and homogeneous appearance, and the method works
very fast. Sparse point cloud computed by ORB-SLAM must
be highly accurate for the method to produce accurate dense
depth maps.

2.3. Digital Surface Map

A grid-based method as used in [2] is adapted to create a
digital surface map using the generated dense point cloud in
the previous stage. GridMap library [23] is used to efficiently
handle RGB, elevation, point cloud data with multi-layer
grid maps. The library provides rapid manipulation of the
image data represented in global coordinates and speeds up
the global orthomosaic operation with multi-layer approach.
In order to represent the observed surface with a 2.5D grid
map containing elevation data, the x and y coordinates of
the dense point cloud are structured as a 2-dimensional
binary kd-tree [24]. Within a pre-defined interpolation ra-
dius (20 pixels radius), the nearest neighbors of the points
are calculated. Then, inverse distance weighting is applied
to interpolate the map points. Inverse distance weighting
intuitively determines the height of the cell using a linear
weighted combination of the nearest neighbors. Thus, by
giving higher weight to the points closer to the center of the
cell, interpolation provides smooth transition and noiseless
elevations in the elevation map.

2.4. Orthorectification

After digital surface map generation stage, we have all the
data that is required to create the final orthomosaic image.
However, the visual distortion caused by the viewing angle
and surface structure of the images should be corrected.
Rectification of the images is done by using the camera
pose and the digital surface model. Incremental grid-based
orthomosaic method [2] is used in orthorectification step.
With the corresponding camera pose and the intrinsic matrix
of the camera, it is checked whether each cell is in the visible
camera cone. The grid map containing the elevation layer
of the image is re-sized to the desired ground sampling
distance. A 3D point X xi, yi, zi) is created for each cell of the
grid. These 3D points are reprojected to the camera image
as,

x KR|tX, (4)

where K is the intrinsic matrix, R|t is the global camera pose
matrix. Due to the noisy and erroneous pose estimations
on the elevation map, some of the projected points can fall
outside of the image boundaries. These points are specified
as invalid points and were not back-projected to the image
plane.

2.5. Object Detection

The aim of object detection is to classify and localize ob-
jects with their labels and bounding boxes in an image.
The architectures of generic object detectors can mainly be
categorized into two types as regression-based and region
proposal based. Region proposal based frameworks first
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propose regions and then apply regression and classification
on these proposals. The other regression-based frameworks
skip the region proposal stage and directly predict class
probabilities and their bounding boxes using an end-to-end
learnable one stream network. In this study, once the rectifi-
cation stage is completed, object detection can be performed
on the RGB data stored in the multi-layer grid map. We
use YOLOv3 for object detection in the proposed method.
YOLOv3 is an extremely fast regression-based object detec-
tion algorithm. YOLOv3 divides images into S × S grids
and each grid predicts a fixed number of bounding boxes.
YOLOv3 predicts offsets tx, ty, tw, th to the anchor boxes and
box confidence score that represents the class probabilities.
Instead of directly computing the bounding box coordinates,
computing the offsets to the ground-truth box results in
a more robust training procedure. YOLOv3 architecture
uses a more robust and deeper network called Darknet-53
instead of Darknet-19 [25]. There are residual connections
between convolutional layers similar to ResNet [26] struc-
ture. YOLOv3 makes predictions at three different scales to
improve the performance of detecting small objects in the
images which is crucial for aerial images captured in high
altitudes. We also used YOLOv3-Tiny architecture which is
a faster version of YOLOv3. The local and global coordinates
of the detected object can be obtained on rectified images.
Then, these positions can be used as fiducial marker points
to align consecutive frames and improve the quality of the
resulting maps.

2.6. Orthomosaic

All of the data computed in previous stages can be combined
to form high resolution 2D and 3D maps. First image taken
from the orthorectification stage initializes the global map.
After the initialization, the 2D and 3D maps are continu-
ously updated with dense point clouds and orthorectified
images using the multi-layer grid map. There are two con-
ditions in the map updating stage. Observed area in the
image can be a completely unknown region or the image can
overlap with the global map. In the first case, new image
data is directly added to the global map and the map is
updated. In the second case, the color and elevation values
of the intersecting pixels have to be determined in regions
where the global map and the image overlap. The color
and elevation values of the cells in the overlapping regions
are determined by comparing elevation angles between the
global map and the image. Cell values in the global map
are updated if the elevation angle of the cell is smaller in
the new frame. Otherwise, cell values are not updated. The
non-maximum suppression is applied to the global bound-
ing box coordinates of the detected objects in consecutive
frames to prevent the representation of the same object with
more than one bounding box on the global map.

3. Experiments

The performance of the developed mapping and object de-
tection pipeline is evaluated in both single and multiple
UAVs scenarios on two different datasets. In addition, we
also collected a new dataset to train the utilized car detec-

tion algorithm. Here, we will first explain our car detector
below and then evaluate the performance of the proposed
mapping and localization system on two datasets.

Figure 2: Some collected positive car class samples.

Car Detection: Here, we focus on cars in the mapping area,
and train YOLOv3 and YOLOv3-Tiny for car detection in
aerial images. To this end, we created our own data set
consisting of colored digital images obtained in different
weather conditions and scales by using DJI Matrice 600 Pro
and DJI Inspire 1 unmanned aerial vehicles. The data set
consists of approximately 10.000 colored digital images, and
it contains approximately 30.000 aerial view car images. We
annotated the cars by using the bounding boxes and created
the data belonging to the positive class. Figure 2 shows ex-
amples from the data set that contains positive images. We
used 80% of the data (approximately 24 K positive samples)
for training the YOLOv3 and YOLOv3-Tiny detectors and
the remaining 20% of the data is used for testing. NVIDIA
Quadro P5000 GPU was used to train the YOLOv3 and
YOLOv3-Tiny car models.

To evaluate the performance of the trained detectors, we
used PASCAL VOC criterion which is the most commonly
used metric for object detection. According to this metric,
the position of the object is classified as true or false in
accordance with the overlapping ratio of the detected coor-
dinates and the ground truth positions. This overlapping
was calculated by using area|Q∩R|

area|Q∪R| formula. In this formula,
Q shows the ground-truth location of object and R shows
the location returned by the algorithm. If this ratio is over
50%, the detected position is considered as true positive –
TP, otherwise, it is considered as false positive – FP. Then
the mean average precision-mAP was determined by using
precision-recall curves. Table 1 gives the mAP scores and
speeds of the car detectors on the created dataset. The
trained YOLOv3 and YOLOv3-Tiny detectors achieved ac-
curacies of 83.4% and 80.2%, respectively in terms of mAP
score. In terms of the speed, YOLOv3 and YOLOv3-Tiny
methods operate at 22 FPS and 55 FPS respectively, on a
laptop with i7 7700HQ processor and NVIDIA GTX1050TI
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GPU.

Table 1: The mAP scores and speeds of the YOLOv3 and YOLOv3-Tiny
detectors on the created dataset.

Method mAP(%) Speed (FPS)
YOLOv3 83.4 22
YOLOv3-Tiny 80.2 55

Figure 3: Generated orthomosaic in single UAV scenario.

Orthomosaic Generation: For this purpose, aerial images
captured with a ground-facing camera attached to a UAV at
an altitude of approximately 100 meters were used. Images
are captured at 10 FPS with a GoPro Hero3+ camera. The
dataset consists of 1500 frames with a size of 1280×720 and
the GPS data of each frame is kept in Exif format. Fig. 3
shows the generated orthomosaic and the detected objects
in the single UAV scenario. Centers of the detected objects
on the map are indicated with red boxes. The orthomosaic
given in the figure is generated by using the incremental
grid-based orthomosaic approach, selecting the cell values
of the image which has the smallest elevation angle in the
intersection regions. A good orthomosaic should have high
resolution, homogeneous appearance and low geometric
distortion. The observed area should be represented as
much detailed as possible and aligned correctly in global
scale. In the figure, incorrect alignments and seams at the
alignment points can be observed due to the incorrect es-
timation of the global positions computed by fusing the
SLAM and GPS data. However, in the high resolution or-
thomosaic, structures and the roads can be observed well
and cars are localized correctly. The observed environment
is reconstructed in a global coordinate system using UTM
coordinates. Thus, distances can be measured on a real-
world scale, and real-world positions of desired objects can
be obtained.

The real world scaling accuracy of the method can be
observed better in multiple UAVs scenario. In order to
simulate the multiple UAVs scenario, the dataset is divided
into two sets and these sets are arranged to have a small

intersection between them. The method successfully maps
the observed regions to the same plane as shown in Fig. 4
by using the data incoming from different sources.

Figure 4: Generated orthomosaic in multi UAVs scenario.

The generated 3D map by using sparse cloud interpo-
lation is given in Fig. 5. Sparse cloud interpolation fails
to recover information in sharp elevation transitions. This
stems from the fact that the utilized interpolation approach
is based on the sparse point cloud computation of ORB
SLAM, which uses highly discriminative features for 3D
mapping. Consequently, the low resolution of the sparse
cloud leads to uncertain elevations, which distorts visual
appearance. However, the generated 3D map is homoge-
neous with low noise and contains sufficient information
about the structure of the observed area.
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Figure 5: Appearance of 3D map from different angles.

Since there is no ground-truth data to evaluate the per-
formance of the proposed method, ground-truth data is
generated with PhotoScan [4] which is a highly accurate of-
fline photogrammetry software. PhotoScan is an advanced
computer vision algorithm that robustly estimates camera
positions and creates high quality 2D-3D maps. Although
it does not perform well in oblique images, it works better
than other methods such as Bundler and Photosynth in
moving, still, sequential and unordered images. The algo-
rithm consists of three steps. The first step is alignment of
the images, estimating camera parameters and positions.
Second step consists of generating dense point clouds and
building the geometric scene details on these aligned im-
ages. Final step is the texturing of the map with the images.
Map and camera positions generated by using Photoscan
are considered as ground-truth data.

Table 2: RPE scores of the proposed method, orb-slam and gps on first
dataset.

max mean median min rmse sse std
ORB-SLAM 1.12 0.27 0.25 0.02 0.35 47.32 0.22
GPS 2.34 0.60 0.54 0.06 0.69 194.32 0.34
OURS 0.96 0.22 0.17 0.01 0.29 35.08 0.19

Table 3: APE scores of the proposed method, orb-slam and gps on first
dataset.

max mean median min rmse sse std
ORB-SLAM 2.01 0.69 0.62 0.03 0.88 222.54 0.38
GPS 2.78 1.12 1.11 0.08 1.21 595.42 0.46
OURS 1.75 0.52 0.46 0.01 0.63 161.15 0.35

The relative pose error (RPE) and absolute pose error
(APE) metrics were used to evaluate the performance of the
camera pose estimation [27]. APE, is also called the absolute
trajectory error, makes a direct comparison between predic-
tions and reference camera locations. APE tests the global

consistency of the trajectory. RPE compares camera move-
ments, motions and calculates translational and rotational
drift per meter. We generated trajectories of the proposed
method, ORB-SLAM and GPS on the dataset. RPE and
APE values of the generated trajectories are compared to
the ground-truth data generated by Photoscan in Table 2
and Table 3. The low standard deviation (std) values in the
table (below 1 meters for both RPE and APE) indicate that
camera pose estimation has low error. In addition, proposed
method obtains lower error values than ORB-SLAM and
GPS. Which shows that proposed method increases the
robustness of ORB-SLAM’s pose estimation.
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Figure 6: Trajectory graphs of method and ground-truth.

Fig. 6 shows the trajectory graphs according to the plane
x, y, z for orthomosaic generated in single UAV scenario.
In the x and y planes, the method has not suffered from
any shifts or errors. However, when the elevation increases,
an instant shift and error occurs in the z plane. The main
reason for this situation is ORB-SLAM’s erroneous depth
estimation in regions with insufficient features to detect and
track. Generated trajectory of the UAV is given in Fig. 7.
Robustness and success of the method can also be observed
from the figure since trajectory generated with the method
is almost equal to ground-truth trajectory. Operation time
for the dataset is approximately 4 FPS.

The performance the method is also evaluated in sin-
gle UAV scenario on phantom3-village dataset introduced
in Map2DFusion [12]. Video sequence is recorded at an
altitude of approximately 160 meters using DJI Phantom3
equipped with a ground-facing GoPro Hero3+ camera. The
dataset consists of 200 frames. Fig. 8 shows the generated
orthomosaic and the detected objects on phantom3-village
dataset in single UAV case. Generated map achieves satisfac-
tory results on plain regions and areas containing buildings
and trees. The method fails to recover information on water
regions since generation of the map is highly dependent
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to the feature-based SLAM approach. This results in some
mis-alignments on the generated orthomosaic. Since the
altitude is very high, YOLOv3 model failed to detect some
of the vehicles.
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Figure 7: Generated and ground-truth trajectory of the UAV in single UAV
scenario.

Figure 8: Generated orthomosaic in single UAV scenario on Phantom3-
village dataset.

The 3D map generated by using sparse cloud interpola-
tion is given in Fig. 9. Phantom3-village dataset is captured
at 1 FPS. Low frame rate severely reduces the ORB-SLAM’s
depth map generation performance and this highly affects
the depth map interpolation. Pipeline cannot generate 3D
surfaces properly on featureless regions due to nature of
the feature-based SLAM. Sparse cloud interpolation has

difficulties in sharp elevation transitions as in the previous
experiment. As seen in the generated 2D map, the method
also fails to generate map points for water regions because
of the featureless surface of the water.

Figure 9: 3D map of Phantom3-village dataset from different angles.

Since there is no ground-truth data for the dataset,
ground-truth data is generated with Photoscan as before.
We generated trajectories of the proposed method, ORB-
SLAM and GPS on the dataset. RPE and APE values of the
methods are compared to the ground-truth data in Table
4 and Table 5. Similar to first dataset, proposed method
achieves lowest error for both APE and RPE. The large
standard deviation (std) values indicate erroneous camera
pose estimations. In the dataset, images captured in high
altitudes. This highly affects ORB-SLAM’s pose estimation
performance. Fig. 10 shows the trajectory graphs according
to the x, y, z plane for orthomosaic generated in single UAV
scenario on phantom3-village dataset.

Table 4: RPE scores of the proposed method, orb-slam and gps on
phantom3-village dataset.

max mean median min rmse sse std
ORB-SLAM 16.23 6.23 5.92 0.82 7.02 591.33 4.01
GPS 25.95 11.23 10.68 1.32 9.42 1042.58 6.23
OURS 14.68 5.63 4.81 0.73 6.49 486.70 3.21

Table 5: APE scores of the proposed method, orb-slam and gps on
phantom3-village dataset.

max mean median min rmse sse std
ORB-SLAM 28.12 14.02 14.75 1.28 16.12 2304.39 8.01
GPS 38.17 22.19 21.34 2.26 23.12 2884.42 9.54
OURS 26.11 12.69 13.63 1.07 14.34 2165.06 6.68

Similar to Fig. 6, the method has not suffered from any
shifts or errors in the x and y planes. However, instant shifts
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and errors can be observed in the z plane. These errors
are due to the erroneous depth estimations in featureless
regions such as water regions and due to the capturing
images at very high altitudes. Generated trajectory of the
UAV is given in Fig. 11. Operation time for the dataset is
approximately 4.5 FPS.
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Figure 10: Phantom3-village dataset trajectory graphs of method and
ground-truth.
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Figure 11: Generated and ground-truth trajectory of the UAV in single
UAV scenario on Phantom3-village dataset.

4. Conclusion

In this study, a real-time 2D and 3D mapping pipeline
with object detection ability is developed by combining
the camera and GPS data of UAVs. The method uses a
robust monocular SLAM method, ORB-SLAM, and point
cloud interpolation algorithm, which operates at a very high
speed to generate the dense point cloud efficiently. The pro-

posed method creates semantically strong, high-resolution
maps and detects objects in real-time using incremental
grid-based mosaic and YOLOv3 object detection methods.
The proposed method also reconstructs the map in a global
coordinate system and obtains the real-world positions of
the detected objects. The developed method performs global
scaling, object detection, alignment operations efficiently
and accurately in both single and multiple UAVs scenarios.
The experimental results on two tested datasets show that
the mapping pipeline generates a 3D map in real world
scale, operates in real time, and the resulting generated map
contains semantically strong information about structure of
the observed region.
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