An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal

Journal Menu

Journal Browser

Open AccessArticle

An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal

1 Escuela de Ingeniería C. Biomédica, Universidad de Valparaíso, Valparaíso, Chile.
2 Centro de Investigación y Desarrollo en Ingeniería en Salud, CINGS-UV, Universidad de Valparaíso, Valparaíso, Chile.
3 Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso, Chile.
4 Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile.
*whom correspondence should be addressed. E-mail: rodrigo.salas@uv.cl

Journal of Engineering Research and Sciences, Volume 1, Issue 4, Page # 161-174, 2022; DOI: 10.55708/js0104018

Keywords: Extreme Learning Machines, Adaptive Estimation, Biomedical Measurement, Photoplethysmography, Noninvasive treatment, Medical Devices

Received: 7 March 2022, Revised: 5 April 2022, Accepted: 6 April 2022, Published Online: 23 April 2022

(This article belongs to the Special Issue on SP1 (Special Issue on Multidisciplinary Sciences and Advanced Technology 2022) and the Section Medical Informatics (MDI))

Export Citations
Share
Cite
APA Style
Tapia, G. , Salas, R. , Salinas, M. , Saavedra, C. , Veloz, A. , Arriola, A. , Chabert, S. and Glaría, A. (2022). An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal. Journal of Engineering Research and Sciences, 1(4), 161–174. https://doi.org/10.55708/js0104018
Chicago/Turabian Style
Gonzalo Tapia, Rodrigo Salas, Matías Salinas, Carolina Saavedra, Alejandro Veloz, Alexis Arriola, Steren Chabert and Antonio Glaría. "An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal." Journal of Engineering Research and Sciences 1, no. 4 (April 2022): 161–174. https://doi.org/10.55708/js0104018
IEEE Style
G. Tapia, R. Salas, M. Salinas, C. Saavedra, A. Veloz, A. Arriola, S. Chabert and A. Glaría, "An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal," Journal of Engineering Research and Sciences, vol. 1, no. 4, pp. 161–174, Apr. 2022, doi: 10.55708/js0104018.
542 Downloads

Share Link