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Editorial 
In this edition of our journal, we feature three groundbreaking research papers that highlight 
advancements in network management, nonlinear circuit design, and hyperspectral image 
classification. Each study offers innovative methodologies and insights that address complex 
problems in their respective fields, contributing significantly to technological development and 
practical applications. 

The first paper focuses on the development and evolution of a specialized tool designed to 
verify the health status and availability of residual bandwidth across the Lepida ScpA 
broadband network. This tool addresses a critical issue: ensuring that the physical bandwidth 
allocated corresponds to the active contractual obligations of local network operators. 
Previously, this verification process was manual and time-consuming. The introduction of this 
in-house developed tool has significantly reduced the time required for verification and 
provided a comprehensive overview of network status. By leveraging graph representation 
and well-known graph algorithms, the tool enhances the efficiency and accuracy of bandwidth 
verification, streamlining the process for local customers and operators [1]. 

The second paper introduces an advanced load-line analysis software for the design and 
simulation of nonlinear microwave circuits, specifically focusing on low-distortion, high-
efficiency, and high-power GaN HEMT amplifiers. This software integrates DC, small-signal, 
and large-signal performances of GaN HEMT devices into a single package, allowing for 
detailed analysis of nonlinear behaviors such as AM-AM and AM-PM modulations, 
intermodulation distortion (IMD), and error vector measurement (EVM). Utilizing behavioral 
modeling and time-domain analysis, the software provides deep insights into the nonlinear 
characteristics of GaN HEMT devices and the design techniques for achieving low-distortion 
and high-efficiency amplifiers. Compared to the harmonic-balance method, this software has 
demonstrated comparable performance for an L-band 10W GaN HEMT amplifier, making it a 
valuable tool for nonlinear circuit designers [2]. 

The third paper explores the effectiveness of 3D Convolutional Neural Networks (CNNs) in 
classifying hyperspectral images (HSIs). Traditional 3D CNNs often generate an excessive 
number of parameters, which can hinder the extraction of spectral-spatial properties of HSIs. 
To address this, the study introduces a channel service module and a spatial service module 
to optimize feature maps and enhance classification performance. The research evaluates 
various CNN methodologies for HSI categorization, examining the replacement of 
conventional 3D CNNs with mixed feature maps to reduce spatial redundancy and expand the 
receptive field. The study elaborates on the efficacy of these approaches and identifies gaps 
in current methods, offering insights into how these gaps can be addressed to improve image 
classification accuracy [3]. 

The three papers featured in this edition exemplify the innovative and impactful research that 
our journal aims to publish. From optimizing network bandwidth verification to advancing 
nonlinear circuit design and improving hyperspectral image classification, these studies 
provide valuable contributions to their fields. We are honored to share these insights with our 
readers and anticipate that they will inspire further advancements and research. 
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ABSTRACT:
This paper focuses on the genesis and evolution of our specific Company tool. It is aimed to tackle the
problem of verifying the health status and availability of residual bandwidth between any node over the
Lepida ScpA broadband network. In fact, there must be a correspondence between active contractual
obligations signed by local network operators and the physical bandwidth which we allocate. This is
the key factor that must be addressed in the early phases when processing any bandwidth requests
from local customers. Before the introduction of our tool, this verification process has been carried out
almost manually with a substantial cost in terms of time. The adoption of this in-house developed tool
allowed us to substantially shrink of the verification time required and to provide an overview of the
network status. Our tool is grounded on building a graph representation of the network and on well
known graph algorithms.

KEYWORDS Graphs, Network bandwidth, Broadband

1. Introduction

The access to broadband Internet connection for citizens and
companies is considered critical for the social and economi-
cal development of a modern Country. The geographical
diversity of the territory of Italy created a situation in which
a non negligible amount of areas suffer from poor connectiv-
ity. Unfortunately, there are cases in which these areas are
not covered at all. These situations pave the road to what it
is usually called as "digital divide".

Trying to limit and hopefully eliminate this problem is
on top of the National and European Union (EU) agenda. At
a Regional level, our company -Lepida ScpA[1]- is the main
operational instrument regarding the Regional Information
and Communication Technologies (ICT) Plan implementa-
tion. It has been created in 2007 by the Emilia-Romagna
Regional Government (as unique shareholder and founder);
currently, it has several hundreds Public Administrations
(PAs) and Public Entities (PEs) as shareholders, and its
activities are dedicated to them.

In order to accomplish the Plan, Lepida ScpA manages
the strategies of broadband networks and several other ac-
tivities such as: ensures and optimizes the delivery of ICT
services and develops cloud infrastructures. In addition,
it implements and manages innovative solutions for the
modernization of healthcare paths in order to improve the
relationship between citizens and the Regional Health Ser-
vice in accordance with the provisions of EU, National and
Regional Digital Agendas.

One of the core businesses of Lepida ScpA is selling
its fiber optics network bandwidth at fair prices to local

network operators. In turn, network operators sell an In-
ternet connectivity service to their customers. Often, these
operators offer their service to the specific niche of customers

which are located in poorly covered areas or not covered yet.
Knowing how much bandwidth Lepida ScpA can pro-

vide from a particular network location, is just the first
basic step to provide a quality service. When the customer
request cannot be satisfied, it has to be aborted. In this
case, it is required to plan an action in order to update the
infrastructure and to satisfy similar requests in the same
area ad soon as possible.

The band allocation is just one step in a wider and more
sophisticated process that allows our Company to manage,
update and expand the Regional broadband network.

It is important to note that bandwidth checking or mon-
itoring here has nothing to deal with traditional real time
bandwidth consumption monitoring. What really matters
for us, is that when we sell some band to a customer (i.e.,
an operator), the sum of all bands sold must be compatible
with the actual physical network capabilities of the area
where the service is going to be provided.

In the last few years, the process of checking the band
availability over the network had a significant evolution and
lead to the creation of a specific tool having a set of continu-
ously growing capabilities. This tool, Banda Calculus, is a
building block that is going to integrate with several other
tools that are on the way. In this work we are going to show
the evolution of Banda Calculus and we provide the vision
of our end goal in which Banda Calculus will inter operate
with the other company tools which are part of the process.

Banda Calculus started as a data science notebook dealing
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with just one network node at a time, but now it is a stan-
dalone web application. Over the years, it become an holistic
instrument capable of providing the bandwidth status of
the whole network and to highlight the less capable parts or
the ones already in a suffering state. The network topology
is another key aspect when dealing with the healthy of
a network. Identifying specific patterns that potentially
lead to issues became one of the available features of Banda
Calculus.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the current state of the art, then
we discuss the specific scenario we tackle in Section 3. After
presenting our algorithms and their implementations in re-
spectively Section 4 and 5, we finally draw our conclusions
in Section 6.

2. State of the Art

Since the kind of monitoring or sanity checks to the net-
work topology are very dependent to our Company’ specific
needs, it is quite hard to make any comparison with existing
tools.

In fact, there are plenty of monitorin] tools [2, 3] and
estimation mechanisms available [4]–[5] on the market and
in the open-source community which are suitable for band-
width monitoring for example. Essentially, the idea behind
these kind of tools is collecting data from network devices
(such as: server hosts, routers or switches), usually via Sim-
ple Network Management Protocol (SNMP). Alerts can be
set when specific parameters go beyond a predefined range.
In particular, more sophisticated tools are not just limited to
present charts in a dashboards, but they can also react to un-
desirable events by exploiting collected data with machine
learning algorithms [6], [7] and making predictions.

However, our aim is different. We already have these
kind of tools for monitoring network resource consump-
tion, such as bandwidth, detecting anomalous behaviors
and/or listening for alarms. Here, as stated in Section 1, we

are not interested in real-time monitoring or consumption of the

bandwidth.
Graph databases, such as Neo4J [8], are an emerging

breed of tools coming from data science aimed to organize
and gather data on complex structures such as graphs.

Neo4j would be ideal to build our network graph and
to check its structural topology. Unfortunately, when an
algorithm has to modify or add new node attributes and
eventually change the structure links, it becomes highly
complicated. Essentially these tools are mostly designed
and optimized for querying complex structures but not for
making modifications on the fly.

Since our needs are very specific and our algorithms are
not just graph queries but complex procedures that shapes
the structure in a specific manner, we decided to build an
in-house, custom solution and to ground it on more general
graph computing libraries and other high-level abstraction
frameworks.

3. The General Problem

Table 1: Types of node elements in Lepida ScpA network. Unfortunately,
for non-Italian speakers, many of their acronym come from their Italian
name.

Acronym Description
PAL Lepida ScpA Access Point (Italian: "Punto di Accesso

Lepida")
AG Aggregator (Italian: "Aggregatore")
PR Radio bridge (Italian: "Ponte Radio")
DC Data center
MIP Final endpoint to the core network

END POINT Union between the DC and MIP node sets

The broadband network is make of several types of nodes
(e.g., PAL, AG, PR, DCand MIP), which are listed in Table 1.
This list in not exhaustive, but just the nodes significant for
this paper are present.

The set of ENDPoints represent our core network, while
the rest is the access part providing end-users up-links. In
the core network we can manage the bandwidth by choosing
between (i) tuning specific Quality of Service (QoS) strate-
gies or (ii) upgrading the backbones. In the access network
instead, where Banda Calculus comes into play, our policy is
to do not allow any overbooking.

When an operator makes a bandwidth request, the re-
quested band has to be booked for a specific network node,
which is usually a PAL or AG node type. The fundamental

role of Banda Calculus is ensuring that the operator band re-

quests are compatible with the current state of network bandwidth

capabilities.
The information that is adopted to build the network

representation as a graph structure is mainly taken from
our Network Management System (NMS). This is where the
information about the whole broadband network infrastruc-
ture is stored. This knowledge is essentially maintained by
human intervention through our NMS web interface. Since
several people are involved in these maintenance activities,
which are mostly manual, this process tends to be error
prone. In this vein, our goal is to exploit Banda Calculus in
order to perform sanity checks and to iron out the majority
of mistakes. In fact, this focus on sanity checks is one of the
latest updates we performed on our tool and we are going
to address this topic in the next chapters. We exploited two
(REST) APIs to ingest network data:

1. single node oriented: data from a single node can be
queried by name1; it returns who are the node’s im-
mediate neighbor, details of each interface and the
(total) current bandwidth reserved by operators. The
former item is a key factor for bandwidth calculation.
Unfortunately, this API has several limitations, such
as: it has no access to PR nodes and it is slow.

2. graph oriented: it is the newest API and it has been
built for the purpose of our tool. This service provides
a representation of the whole network in a JSON for-
mat structure that is in turn converted into a directed
graph object. Essentially, it has the same features of

1This is not a fully qualified DNS name, but follows an ad-hoc, internal naming scheme.
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the previous API but non of its limitations. In fact, it
has access to PR nodes and it is much faster, since it
collects all data with a single call.

The fact of only considering a subset of network entities
(see Table 1) leads to the chance of having a disconnected
graph. In practice, this possibility becomes a certainty and
our graph is actually disconnected and scattered in about 30
components. However, the not considered entities are not
very relevant in topological terms. This allows us to have
98% of nodes inside the graph largest component, where
the bandwidth algorithms are run.

MIP1

A

dn

MIP2

dn

up

up

B
30

dn

C
10

dn

D
50

dn

E
10

dn

F

dnup

H
30

dn

G

dnup

up

I

dn

J

dn

up

L

dn

up

P
300

up

up

up up up

K

dn

up

dn

M

dnup up

N

dn up

O

dn up

Figure 1: Network graph from which has been extracted the node L sub-
graph. END POINTs are depicted as a rectangular box, while other nodes
are elliptic boxes. When present, the number inside a node box represents
the allocated, total operator bandwidth.

An simplified example of the particular structures
(graphs) we have to deal with is provided in Figure 1,
where a sub-graph for a target node L is shown. Suppose that
an operator requests to allocate a band amount x over node
L. From the whole graph, we have to extract or isolate the
sub-graph in which node L is located including its neighbors
and their (eventual) sub-trees in a recursive fashion. More
precisely, staring from node L, we add nodes until: (a) a
leaf node is found or (b) an END POINT node is found. We
remind the reader that the ENDPoints set is given by the
union of MIP and DC node sets (see Table 1). In order to
simplify the plot even further, all links speed is set 1 Gbit/s
and it is not shown explicitly.

Since we have a directed graph, each node can have in-
bound and outbound edges which are respectively marked
as down-link or up-link. Each connection between a pair of
nodes it is actually implemented by a pair of edges: an up-
link and a down-link edge. The route direction of up-link
edges is towards an END POINT, while the route direction
of down-links is towards leaf nodes.

Every node is enriched with its current reserved operator
bandwidth (op_band) if it is , 0. Note that current reserved

operator band parameter represents the cumulative amount

of band reserved by any operator on that node. Dotted edges
represents inactive links. This kind of edges usually connects
a node A to one of the MIP nodes available. As depicted
in Figure 1) node A is configured using an active-standby

pattern, where the connection to MIP2 is the standby or
back-up part which is exploited if and only if MIP1 link fails.

Node L sub-graph
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up up
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Figure 2: Prototypical, but more realistic representation of node L sub-
graph. The gray filled shapes of nodes Q, R, K and S represent a chain

structure where all edges are tagged as up-links. Two distinct pairs of MIP
nodes are shown and are linked to distinct (PAL) nodes (i.e., A and U).
The box on the left encloses node L sub-graph (LG) after the final filtering.
Due to consecutive filtering processes, only up-links are left as they are
exploited by the calculation algorithms.

From Figure 1 it is intuitive to understand that the avail-
able bandwidth from node L have to take into account any
consumption at any node in the sub-graph; in other words,
each node that stem from any down-link sub-tree might
contribute to bandwidth consumption and it must be taken
into account.

The general idea is to manipulate the graph structure
by enriching edges with a parameter (i.e., AvailBand) which
keeps track of the current band availability measured in
Mbit/s.

This annotated graph is suitable to calculate the residual
band between any node ad its END POINT by running any
well known algorithm [9, 10]. The algorithm is going to
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calculate the residual band on every edge in the sub-graph
(by definition) and not just over the path between a target
node and its END POINT.

Unfortunately, real world conditions often present more
complex scenarios. Figure 2 shows a prototypical, but re-
alistic representation of a target node (L) sub-graph in our
broadband network.

This sub-graph exhibits two main peculiarities: (i) it has
two chain structures and (ii) two pairs of END POINT nodes.
The former peculiar structure represents an exception to
previous schema in which for any node pair (X,Y) we could
only have one up-link and one down-link edge. Here, both
edges are marked as up-links. This exception often allows
the target node to reach multiple pairs of ENDPoints and
this can complicate the band calculation as several (short-
est) paths per END POINT becomes available. In addition,
the larger the graph, the more challenging becomes its
visualization and understanding.

In order to overcome these issues, we first need to clarify
and impose that data traffic must follow the shortest path
available to the closest END POINT and following the fastest
links when possible. The closest MIP pair for a target node
L is identified by the first steps of the algorithm. In the
sub-graph, the set of nodes (LG) sharing the same closest
MIP with target node L are the ones over which the actual
band calculation is performed. In Figure 2, graph LG is the
portion enclosed in the box.

More formally, we can express the available or resid-
ual band (RB) of node L in its sub-graph (i.e., see the box
enclosed sub-graph shown in Figure 2) as:

RB (L) = min
(
band

(
pathL,ENDPOINT

)) (1)

where the shortest path (path(L,ENDPOINT )) is the smallest
set of edges {ei,i+1, ei+1,i+2, . . . , ei+(n−1),i+n} connecting L to its
END POINT. The band value for each ei, j is the difference
between the edge link physical bandwidth and the (total)
operator band associated with the Xi-th node of the edge:

band
(
ei, j

)
= phyband

(
ei, j

)
− op_band (Xi) (2)

However, in order to address any operator band con-
tribution from any node in the sub graph that may affect
the edges over path(L,ENDPOINT ), we must consider all short-
est paths starting from any node in the sub-graph having
op_band , 0. Essentially, in the case depicted by Figure 2,
we have to consider the following set of paths and their
corresponding band contribution over each edge:

D
50
→ A

50
→ MIP1

P
300
→ L

300
→ D

300
→ A

300
→ MIP1

R
10
→ M

10
→ L

10
→ D

10
→ A

10
→ MIP1

H
30
→ B

30
→ A

30
→ MIP1

C
10
→ A

10
→ MIP1

E
10
→ A

10
→ MIP1

By summing all instances of the same edge ei, j in the
above schema (e.g., D

300
→ A + D

10
→ A = 310 Mbit) we ob-

tain the total amount of band consumption over each edge.
Essentially, we can rewrite (2) as:

band
(
ei, j

)
= phyband

(
ei, j

)
−
∑
k∈I

(
ei, j

)
k

(3)

where I represents the set of instances, as visible in the
previous schema, for each individual edge ei, j. In (3), for
any edge ei, j we can actually calculate the (residual) band
over an edge ei, j by subtracting all op_band contributions
from the physical bandwidth available on the edge link.

This approach [11, 12] allows us to calculate the avail-
able band for any target node in our broadband network no
matter the complexity of the corresponding sub-graph.

3.1. Towards an ’holistic’ approach

After being able to estimate the residual operator bandwidth
for a single node in the network, we started to focus our
efforts in extending the calculation to the entire broadband
network. In fact, in order to monitor our network health
from a topological point of view, the fact of being able to
check one node at a time quickly became too limiting.

Since our basic mechanism is capable of calculation the
residual band for (any) node L and since each all sub-graphs
adopted for the computation are not overlapping, extending
the calculus over the whole graph2 sounds straightforward
at least on paper. By adopting this approach, we can provide
a global view of the bandwidth status of the broadband
network and, by knowing which are the zones where band
availability is suffering or barely sufficient, we can plan for
an infrastructure upgrade.

Actually, we can move even forward.
Our tool, while searching paths over the graph struc-

ture can collect many interesting information. In particular,
checking any topological issue is a natural consequence of
visiting/searching over the graph. For example, we realized
that the two following main issues are more common: (i)
a path between two nodes is absent or (ii) a node from
the sub-graph is absent. Especially the latter issue might
stem from a mis-configured link property lying on the NMS
which triggered a node removal from the sub-graph in one
of the filtering phases.

In addition, we can build a timeline or history of the
band allocation for any node and showing its evolution
over time in terms of band allocation and infrastructure
upgrades.

Finally, our goal is to enable the following three new
features or sanity checks into Banda Calculus:

1. extract all critical path. A critical path is a path between
any two nodes A and B where the available band is
lower than a threshold band_tsd. We are interested in
all critical paths according to the currently selected
band threshold (band_tsd).

2. provide human readable information about any topo-
logical issue eventually spotted by the algorithm while
visiting the graph. The fact of having readable informa-
tion is particularly important in order to simplify the

2Here, we consider the largest component of the original network graph.
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task of fixing the (NMS) database, since it is carried
out by a group of people.

3. build a time history about operator band for each node
in order to be able to keep track of any change.

4. Algorithms

Our algorithm discussion is split into three distinct parts:
the first one (a) is dedicated to the residual band calculation,
the second one (b) is dedicated to the holistic sanity check
features, while the latter (c) is about the graph visualization
algorithm.

4.1. Bandwidth Algorithm

The basic idea underlying the algorithm in order to calcu-
late the residual band for a single node is to first annotate
the graph with an AvailBand parameter and calculating the
bandwidth, as previously stated in Section 3. The annotation
process requires several filtering steps over the graph which
are aimed to ensure data consistency and normalization.
These steps are summarized as follows:

• consistency check: it guarantees that each record in the
JSON structure coming from the NMS API contains all
parameters which are relevant for the band calculation.
It ensures that their values are in their corresponding
ranges and are not null or NaN. A graph object G is
generated at the end of this step.

• first filtering: from the previous polished graph G it
is extracted a sub-graph S G according top a selected
target node L. The graph S G is identified through a
Breadth-First Search (BFS) over G starting from node L.
The search stops when an END POINT or a leaf node
is found.

• second filtering: S G sub-graph is refined a second time
in order to just select only the relevant edges. More
precisely, only edges with the following characteristics
are kept:

– edge parameter is_active is true
– edge parameter template is not "NA"
– edge parameter dir is "uplink"

During this step, each edge is annotated with an
AvailBand which is initialized to the current edge speed
parameter value.

• third filtering: finally, graph S G is further reduced in
case multiple ENDPoints are present. According to
the chosen target node L, its closest MIP (or MIP pair)
is selected (i.e., MIP_closest) and all nodes sharing
MIP_closest as their closest END POINT are kept in S G.
This third filtering is only applied when the actual
band calculation is triggered.

The requirement to address each allocation contribution
provided by nodes in any graph sub-tree as well as in chain

structures, forces the algorithm to consider all shortest paths
from every node to the MIP and not just from leaf nodes.

Figure 3 shows the calculation algorithm using a pseudo-
code notation. The code does not take into account the
consistency check filter. It is basically split into three parts.
The first one is dedicated to the filtering processes (i.e., lines
1-9).

The second one (i.e., lines 10-14) computes all shortest
paths between every node and the sub-graph ENDPoints.
paths is a map or dictionary structure which collects the path
set for each node. The latter part instead (i.e., lines 15-28)
perform the actual graph visit and updates the AvailBand
field over each visited edge. During the visit, any node
having allocated bandwidth - op_band field > 0 - and being
still unknown, becomes part of the already known nodes in
order to guarantee an exactly once semantic of the algorithm.

4.2. Sanity check algorithm

The sanity checks algorithm, expressed in a pseudo-code
notation, is depicted in Figure 4. The idea is simple and its
actuation is scheduled at regular intervals (i.e., ∆=24 hours).
For each node in the main graph (component) G we call the
main function (get_banda()) which is the one depicted in Fig-
ure 3) which provides specific data structures required for
our application needs. More precisely, it works as follows.
The initialization phase (e.g, lines 1-4) prepares several data
object, such as a set for basic nodes (i.e, no ENDPoints), a
set for collecting topological issues and a database handle
where the band history is actually stored.

The procedure runs until the node set is not empty (e.g.,
line 5). Nodes are pulled from the set one at a time in a (uni-
formly) random order and the residual band is calculated
on the selection (e.g., lines 6,7). The get_banda() function
invocation generates two structures: (a) a banda_path object
holding the path from a target node to its MIP and the
corresponding residual band and (b) a subG object which
represents the target node sub-graph with nodes and edges
enriched. Nodes are annotated with their allocated opera-
tor band, while edges are annotated with their respective
residual band values.

At line 8, nodes belonging to the current target node
sub-graph are removed from the node set since the band
is computed for all nodes in the sub-graph. Any eventual
node band update is propagated on stable storage over the
database (e.g., line 9).

Finally (e.g., lines 11, 12), in case of exception, a handler
manages any arising error. Three kinds of exceptions are
actually trapped, which are the following:

• NoPathException: no path is found between node A
and B, where B is a MIP. This exception may arise
when there is a missing up-link edge between the two
nodes. Actually, it is likely due to a mis-configuration
in the NMS: in fact the edge can be present but it might
have a wrong label, such as configured as ’down-link’
instead of ’up-link’.

• NoNodeFoundException: a target node A or the MIP B is
not found in the graph. The reason for this exception
is likely due to the removal of this node during one
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1 G← 1st_filtering()
2 G← 2nd_filtering()
3 nodes← G.nodes()⋂ ENDPoints
4 avail_mips← G.sample()
5 known← SET()
6 if avail_mips.length > 2 then
7 G.filter_closest_mip(target_node)
8 avail_mips← G.sample()
9 end

10 foreach node ∈ nodes do
11 foreach mip ∈ avail_mips do
12 paths[node]← G.dijkstra(node,mip,weight=SPEED)
13 end
14 end
15 foreach node ∈ paths do
16 used_band← 0.0
17 path← paths[node]
18 source← node
19 foreach item ∈ path do
20 cur_band← G[source][item][AVAIL_BAND]
21 if G.nodes[source][OP_BAND] > 0.0 ∧ source < known then
22 used_band← used_band + G.nodes[source][OP_BAND]
23 known← source
24 end
25 G[source][item][AVAIL_BAND]← cur_band - used_band
26 source← item
27 end
28 end

Figure 3: Residual band algorithm pseudo code.

of the filtering processes. Again it is likely due to a
NMS bad configuration: in fact a node might has been
removed from the graph if all its edges are marked as
’down-link’.

• BadLinkException: in this case the system cannot calcu-
late any path since there are no ENDPoints available
in the sub-graph. Here, it is very likely that the sub-
graph MIPis connected through ’inactive’ edges and
this triggered its removal from the graph. Again, the
underlying reason is a badly configured NMS.

4.3. Visualization Algorithm

It is important to note that this algorithm just focuses on
graph visualization and it does not affect the band calcula-
tion in any manner. While the graph objects we manage are
not huge, their size is in a range that poses a challenge when
trying to display them into a graphic interface window. In
fact, it is not unusual to deal with a node whose sub-graph
is about 1000 nodes in size. This especially happens when
radio bridge (i.e., PR) nodes are involved: since all their
edges are marked as uplink, they are likely to join distinct
parts (sub-graphs) of the broadband network by creating
loops that are not filtered out by the standard processing
that is performed.

Even a few hundreds nodes and their edges end up in

chaotic plot when trying to display them. In addition, this
plotting effort is quite useless because it is likely that the
vast majority of the (sub) graph does not participate to the
bandwidth consumption: only the set of nodes having the
same closest MIP as the target node are actually involved.
We remind the reader that the third filtering step is only
applied when the actual band calculation takes place. There-
fore, the sub-graph is not simplified yet. However, even if
the sub-graph would have been simplified at this time, it
might be too large as well to obtain a non chaotic plot.

In any case, when dealing with such oversize sub-graphs
we need to make a decision and choosing what we are really
interested to. It is not a matter to choose or design a new
plotting layout. When a user have to check the residual
band for a target, the goal is to see the situation over the
path that links the target node to its ENDPoints. The more
we move far from this path, the less is the interest and the
value for the information.

The amount of available band along this path is of course
dependent by the eventual contribution coming from any
sub-branch at each path node, but these contributions are
calculated by the previous algorithm (see: 4.1) and affect
the band availability at each edge.

According to what we just stated, the basic idea underly-
ing the visualization algorithm is to first focus on the shortest
path connecting the target node to its closest MIP (i.e., or
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1 repeat periodically every ∆ time units % Code executed every ∆=24 hours
2 nodes← G.nodes()⋂ ENDPoints
3 G_errors← ∅
4 history← DB.instance()
5 while nodes , ∅ do
6 node← nodes.sample(1)
7 banda_path, subG← get_banda(G, node)
8 nodes.pop(subG.nodes())
9 history.update(node, banda_path, subG)

10 end
11 on GraphException : ex do
12 G_errors← ⟨ ex.node, ex.info ⟩
13 end
14 end

Figure 4: Algorithm pseudo code for sanity checks calculation.

1 K_MAX ← 50; % Constant: max number of nodes for visualization graph
2 avail_mips← G.getMips()
3 mip← avail_mips[0]
4 path← G.dijkstra(target_node, mip, weight=SPEED)
5 simple_G← G.subgraph(path).copy()
6 foreach item ∈ path and simple_G.size() ≤ K_MAX do
7 if not item.isMIP() then
8 extra_nodes← G.subgraph([G.allNeighbors(item) + item]).copy()
9 simple_g← compose(simple_g, extra_nodes, K_MAX)

10 end
11 end

Figure 5: Banda Calculus Algorithm pseudo code for generating the simplified graph suitable for visualization.

MIP pair), then to expand this "graph-path" by adding the
neighbors of each node belonging to the shortest path. Any
i+1 level of nodes can be added by iterating the last step over
the previous level of added neighbors. As a general rule,
this process can stop when the graph size reaches K_MAX
(e.g., with K_MAX=50).

In such a manner, we can plot what it is really required.

The actual algorithm pseudo code is depicted in Figure
5. The first four lines are in charge to detect the MIP nodes
in the target node sub-graph (e.g., which is G in the code).
Shortest paths are calculated using Dĳkstra algorithm and a
simple_G graph object is generated. This graph just contains
the path items, the original sub-graph MIPs and their arcs.

The simple_G object is enriched by adding all neighbors
for each node member of the shortest path (i.e., see lines
5-10). Any member being a MIP is skipped. The graph size
is limited by the constant K_MAX both in the loop statement
and by the commodity function compose() which actually
merges two graphs together. More precisely, these graphs
are: (i) the simple_G object and (ii) the graph made by the
current loop node (i.e. item) and its neighborhood (i.e., see
line 8). Any node or arc is added just once.

5. Implementation

Banda Calculus is implemented in Python3 language and
through the adoption of other several frameworks for spe-
cific tasks.

Actually, the evolution of Banda Calculus leaded to sev-
eral implementation over time since 2019 [11]. At first, it
was designed as a Jupyter [13] notebook. This choice is
quite common in the data science area and it turned out to
be rewarding for our goal as well.

When started, this work shared many similarities with
data science projects, where data sets have to be understood,
analyzed and verified. For this reason, Jupyter turned out to
be a stand out candidate for prototyping our tool. Usually,
the best practice working with Jupyter involves trying ideas
and distilling a corpus of functions or classes and use them
as basic building blocks, then this process is iterated until
the problem is solved.

By following this practice, we first designed the Banda
Calculus application as a Jupyter notebook by exploiting
exploits the set of modules we distilled. By mixing code
and code and formatted text elements, a notebook can
simplify documentation management. The notebook imple-
mentation helps the user in how to install a Python virtual
environment and the required project dependencies. In
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addition, the built-in documentation provides a user with a
step by step explanation of (i) what he is supposed to do in
order to use the tool and (ii) how it works.

Among the several solutions to manage a graph struc-
ture in Python, we selected NetworkX[14] library. The main
reasons is that it is strongly supported by the Open Source
community, it has a wide collection of state-of-the-art grade
graph algorithms, and it is symbol oriented; in other words,
any element identifier of a graph can be a symbol (e.g., a
string or any complex object instead of a numeric id) and
this simplifies data management. Symbolic graph libraries
are not as fast as lower level ones, but the graph we are
working with are in a manageable range (e.g., ∼3550 nodes
and ∼8100 edges).

For visualizing graphs inside a notebook we adopted
frameworks (e.g., Holoviews and Panel) taken from the data
science world. These are high level frameworks suited for
large data-sets.

Figure 6 shows the output of Banda Calculus notebook
application. It performs the following logical activities:

• Graph creation: the application downloads a graph
structure using the API and stores the corresponding
graph object on stable storage labeling the file with
the current date in graphml format. However, if the
current date matches the one of any available graph
file, then this file is loaded instead. When the API fails
for any issue, the most recent available file is loaded.

• Target node selection: through a Graphic User Interface
(GUI) widget the user can select the desired target node
from a drop-down list containing all valid nodes found
in the graph. This choice is recorded and remains set
for the entire notebook.

• Sub-graph initialization and visualization: graph initial-
ization and its visualization are split in two distinct
notebook cells. The output of the latter is depicted
in Figure 6. The first two plots (see Figure 6(a) and
(b)) are respectively dedicated to the visualization of
nodes and edges attributes.

The item color code is the following: target node is
yellow, ENDPoints are green and standard nodes are
blue. The edge color scheme instead is given by a
(linear) color gradient function based on the corre-
sponding speed field: faster edges are towards green,
while slower ones are towards red. Any part of the
sub-graph can be inspected by dragging any element
or zooming. Due to their average length, node names
are only visualized when moving the cursor close to
their shape. By exploiting this visualization the user
can check the current op_band allocation and the edges
speed field.

• Operator band calculation and visualization: the sub-plot
in Figure 6(c) shows the target node sub-graph after
the residual band calculation. As sub-plot (b), this
visualization is edge focused. By inspecting the edge
(i.e.: linking: ’ngn-pa-modigliana-co’→ ’mip-07’) we
can see the AvailBand field annotated with the actual
residual bandwidth. From the GUI it is possible to
follow any path and inspecting the bandwidth at each
hop. In addition, the output cell of the notebook shows
bandwidth information along the path between the
target node and its END POINT:

ngn-pa-modigliana-ai-alpi --[a. band: 700.00 Mbit/s]->
ngn-pa-modigliana-co
ngn-pa-modigliana-co --[a. band: 460.00 Mbit/s]-> mip-07

One of the notebook features we believe is very beneficial
for our goal is the possibility to convert it into a standalone

web application in a straightforward manner.
For example, this would open the road to deploy our

tool in a container and serving users on the one with a
traditional server approach.

Unfortunately, while the notebook app is up to the task of
calculating the residual band and by exploiting the adopted
frameworks it is possible to obtain a working web applica-
tion with zero effort, the GUI offered by the notebook is too
limiting and the documentation provided by the notebook
itself is still too technical for non-tech users. Expanding and
adding more sophisticated features to the notebook app
is likely to became quite challenging. For this reason, we

(a) (b) (c)

Figure 6: Notebook app (sub) graph visualizations. Plots (a) and (b) are respectively dedicated to node and edges. Plot (c) instead shows the graph
residual band allocation after a run of the calculation algorithm. The node color schema is the following: target node is yellow, ENDPoints are green
and standard nodes are blue.
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(a) (b)

Figure 7: The Banda tab is where the residual band is calculated for a single, selected target node. When the filtered graph is too large, as depicted in the
left graph plot window (7a), by enabling the Simplify graph widget the graph is reduced and simplified while still retaining the information about the
selected target residual band (7b).

decided to refactor our design and to switch to a different
implementation capable of providing a full web application.

5.1. Web Implementation

Our implementation of the web version of the application
and its ’holistic’ features for network sanity checks is still
grounded on Python3, but the adoption of another frame-
work - Plotly-Dash [15] - is responsible of enabling the web
interface without requiring any knowledge of standard web
technologies (e.g., Javascript or CSS). Surprisingly, we man-
aged to keep Jupyter in our design pipeline since Plotly-Dash
is compatible with it and a single statement is just required
to switch the application from running inside Jupyter to
running standalone.

In other words, our approach of prototyping the basic
functionalities into a Jupyter notebook [13] still holds.

Other frameworks has been adopted and are responsi-
ble for specific tasks such as Cytoscape [16] for rendering
graphs on a web interface.

The new feature of keeping track of node band allocation
over time requires some kind of database storage. Both a
relational or NO-SQL approach are suitable and we decided
to go for the traditional (relational) approach. In particular,
we just adopted a SQL interface provided by the SQLite
package and not a full database system. In fact, at the time
of writing, the amount of stored data does not deserve a
more sophisticated solution. However, this is likely going to
change in the near future in order to improve the robustness
and flexibility of the system. Since the application runs in a

Docker container in our production environment, adding a
database system is straightforward. Two persistent volumes
has been added to the container to preserve data on stable
storage which are respectively dedicated to: (a) database
file and (b) daily graph files.

All sanity checks discussed in Section 3.1 are computed
(once a day) when the application downloads the raw net-
work data from the NMS API and builds an updated graph
structure. Both sanity checks and the download procedure
run inside a background service written in 100% Python
as well. The web app exhibits the same behavior as in the
previous implementation (see Section 5).

Figure 7 shows our tool GUI dedicated to the residual
bandwidth calculation of a specific, single target node. In
fact, note that the GUI has a first tab labeled as: "Banda"
activated. The application GUI has been refreshed to better
integrate the new features related to graph health.

The button labeled "Reload fresh graph" on the web
Graphical User Interface (GUI) manually triggers the load
of the freshest available graph from local storage. This tab
performs the same task as the previous notebook application
with some usability improvements.

After choosing a target node from the drop-down widget
labeled "Choose a target node", the corresponding sub-graph
is rendered in the "Topological graph" widget window. After
applying the filtering process (until the second filter, see
Section 4), the graph is still too large and its rendering
provides little help to the user trying to visually verify the
sub-graph topology. In these cases, enabling the switch
labeled "Simplify graph" substantially simplifies the graph
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rendering and allows users to concentrate over the inter-
esting part of the sub-graph. After enabling the switch, by
pressing the Calculate button the bandwidth calculation is
performed and this triggers to effects: (i) the amount of
available bandwidth appears close to the button and (ii) the
simplified graph is rendered on the Bandwidth graph window.
By enabling the simplified rendering before choosing the
target node, it would have also simplified the rendering for
the Topological graph. Here, only the graph on the right is
simplified because the switch has been enabled after the
target node selection.

In graph renderings, all nodes have a rounded shape
except MIP nodes, which are squared and green. Target
nodes instead are yellow and any other node is blue. When
graph simplification is enabled (see ’Simplify graph’ switch
widget in Figure 7), border nodes are rendered in a hexagonal
shape. Border nodes are neighbors of any node being part
of the shortest path starting from the selected target node.
Node size is dynamic and changes according to a linear
function applied to its op_band value.

The edge color meaning varies according to the particu-
lar graph window. In the topological graph widget (i.e. the
left widget), the edge color represents the link speed: faster
links are green, while slower links tends towards red. In
the bandwidth graph widget instead (i.e., the right widget),
the edge color shows the calculated residual band over that
link. Its color scheme is the same as in the previous widget.
Any edge connecting to a MIP node in standby mode is
represented as a black dashed line and labeled by a red
"standby" text on top.

Also in this application version, graph plots are dynamic
and each element can be dragged and zoomed.

In addiiton to the "Banda" tab, this version has been
enriched by three other tabs which respectively correspond
to the graph sanity check features. The new tabs are named as
follows: "Critical Banda", "Topological Issues" and "Banda
Node History". In the following, we are going to focus on
their respective interfaces.

The "Critical Banda" tab interface is shown in Figure 8.
The graph plot shows the topology of a sub-graph which
is the one in which lies the selected edge picked from the
bottom table. The plot edges color shows their status. In
fact, the selected edge is represented in red color as well as
"ngn-pa-ozzano-ai-iaco"→ "mip-13" edge.

The threshold that defines a critical link is towards the
top of the GUI page and it stays visible no matter which tab
is selected (see 7). The threshold (band_tsd) default is set
to 300Mbit/s and can be overridden by editing its widget.
Any edge whose residual band is less than the threshold is
collected into the bottom table.

The table content can exported (in CSV format) through
the "Export" button on the table top left corner.

The next tab is dedicated to topological issues and it is
shown in Figure 9. Here, a table collects any exception error
triggered by search algorithm over the graph (i.e., G_errors
data structure). For each target node triggering an exception
we have a table record with a corresponding "Node" column.
The "Error" column contains all the required information
(such as: node names, device interfaces, template descrip-
tion, . . . ) in a human readable form in order to fix the

corresponding issue on the NMS. As in the previous tab, the
table data can be downloaded for offline processing through
the "Export" button.

Figure 10 shows the tab dedicated to node history. A
user, by choosing a target node through the left drop-down
widget, can query the underlying knowledge-base about any
bandwidth allocation change over time. The node selection
triggers the visualization of the corresponding information
by populating the table on the right.

These new features allows to obtain an overview of the
bandwidth status of the whole network graph and they fo-
cus on emphasizing those elements that are likely to deserve
a special attention.

5.2. Banda Calculus API Integration

In order to support and integrate with other Company
services, Banda Calculus implements a basic REST API in
order to allow systems to interact together without human
intervention. The API exposes a single resource via GET
HTTP method. It is just sufficient to specify the target node
symbol name as the only parameter. The back-end system
reply is represented by a JSON structure as follows:

{
’target_node’: <node_name>,
’avail_band’: <band-int>,
’path_to_mip’: [(<node-A>, <node-B>, <band-int>), ..., ()],
’from_graphfile’: <graph_filename.graphml>,
’message’: ’OK’
}

The object contains the target node symbol provided
as parameter and the field avail_band shows the final re-
sult of the banda calculation process towards the closest
MIP. In path_to_MIP field, a list of tuples depicts the exact
path followed by the algorithm and specifies the residual
band for each edge. Other information, such as the specific
graphml file adopted as data source (i.e., from_graphfile)
and a human readable outcome message (i.e., message). The
former field contains the string ’OK’ or an error string in case
of any issue.

6. Discussion and Conclusions

In this paper, we presented the problem we tackled when
dealing with checking residual bandwidth availability in
our Regional broadband network. Our ad-hoc and in house-
developed solution, Banda Calculus, is coming from this
particular need. Since the very beginning, the main benefit
introduced by our tool is the substantial reduction (e.g.,
seconds versus hours) of the time required to calculate the
residual available bandwidth over a specific node. Just this
step turned out to be a game changer in order to provide
our services to customers.

The benefits introduced by Banda Calculus are not lim-
ited to getting faster, streamlined business procedures. In
fact, its evolution over time introduced several features ad-
dressing other needs. It first evolved in terms of (a) usability
by becoming a web application deployed in our Intranet and
in terms of (b) focusing on the whole network instead of a
single node at a time. In particular, the latter avenue of evo-
lution expanded the range of features at our disposal. These
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Figure 8: The Critical Banda tab is where paths considered critical from a residual band point of view are shown in a tabular format. By default, all links
are ordered from most critical in a decreasing manner and the band_tsd is set to 300 Mbit/s as depicted in the text widget on top of the page. The
selection of any table row shows triggers the sub-graph rendering in which the edge is located on the top windows for a visual examination. The table
data set can also be exported in CSV format by the Export button.

Figure 9: The Topological Issues tab provides users a comprehensive view of any topological issue in the current graph. The view is implemented as a
table where each row shows the node which triggered some kind of error and a verbose description of the error itself. The table data set can also be
exported in CSV format by the Export button.
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Figure 10: By first choosing a node using the combo-box widget on the left, the Banda Node History tab allows users to visualize the bandwidth availability
for any node of the network over time.

features improve our monitoring and planning capabilities.
We briefly summarize them in the following lines.

By exploiting the health monitoring features, operators
can understand (c) in advance which parts of the (sub)graph
might need un upgrade before it is too late (e.g., unable to
provide any bandwidth). In addition, anything which is
suspected of being a topological graph issue (d) is reported
in a table and it is open to inspection. Also the graph visu-
alization has been fine tuned and we adopted an in-house
developed algorithm (e) that can be triggered when dealing
with large graphs. Finally, in order to integrate Banda Cal-
culus into our company processes and to allow automatic
interactions between systems, we provided an API (f).

Our near future plans are actually focused on integration
in order to automate and integrate as much as possible our
business processes.
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ABSTRACT: An advanced load-line analysis software is devised for nonlinear circuit design and 
simulation of microwave low-distortion, high-efficiency and high-power GaN HEMT amplifiers. A 
single software package can incorporate DC, small- and large-signal performances of GaN HEMT 
devices, and then analyze nonlinear performance of amplitude-to-amplitude (AM-AM) and 
amplitude-to-phase (AM-PM) modulations, and finally evaluate intermodulation distortion (IMD) and 
error vector measurement (EVM). High speed and high accurate simulation become available with the 
use of behavioral modeling for representing nonlinear performance of GaN HEMT devices. In addition, 
the software employs a time-domain analysis using time-varying electrical waveform and thus give 
clear and deep insight into the nonlinear behavior of GaN HEMT devices as well as the nonlinear circuit 
design technique of low-distortion and high-efficiency amplifiers. In comparison with the harmonic-
balance (HB) method, comparable performances have been successfully achieved for an L-band 10W 
GaN HEMT amplifier. 

KEYWORDS: Load-Line Analysis, Low-Distortion, High-Efficiency, Power Amplifier, Microwave, 
Nonlinear Circuit Analysis, GaN HEMT 
 

1. Introduction  

In recent years, low-distortion and high-efficiency of 
microwave high-power amplifiers represent one of the 
most crucial design issues in order to meet the stringent 
requirements of reduced cost and excellent thermal 
treatment of the modern wireless transmitting systems. As 
a starting point of power amplifier (PA) designs, the 
Cripps load-line theory [1] is widely used to know 
available output power and efficiency as well as load 
conditions. The Cripps load-line theory, however, has 
adopted the simplified device description and thus strong 
nonlinearity including hard saturation, large leakage 
current and low-frequency dispersion effects of GaN 
HEMT devices cannot be accurately described [2-3]. 
Therefore, the PA designs utilize the active and/or passive 
load-pull measurements as a following step to know the 
optimum load impedances under the actual operating 
conditions [4]. The load-pull measurements are, however, 
limited by frequency, power, impedance range, number of 
harmonics and stability [5]. Therefore, most of the PA 

designs move to the nonlinear circuit simulations using 
harmonic-balance method [6]. The harmonic-balance 
method requires the accurate nonlinear device models. 
Indeed, the load-pull measurement and the harmonic-
balance simulation are actually a powerful tool for PA 
designs but only a few information on the PA designs 
related to low-distortion and high-efficiency can be 
derived. On the other hand, the load-line theory is based 
on time-domain waveform analysis and thus provides 
much useful information on load and bias conditions for 
low-distortion and high-efficiency.  

The author has presented the nonlinear load-line 
analysis method to demonstrate AM-AM and AM-PM 
characteristics of GaAs MESFET devices in 1995 [7] and in 
2001 [8]. The method, however, cannot deal with strong 
nonlinearity such as hard saturation and large leakage 
currents. Moreover, the method is based on the measured 
data and thus time-consuming and inaccurate simulations 
were crucial design issues. In order to address these 
design issues, behavioral modeling is utilized to represent 
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nonlinearity of GaN HEMT devices. Moreover, the 
calculated AM-AM and AM-PM characteristics are 
represented by behavioral modeling. It makes available 
the 2-tone power series and envelope analyses including 
IP and IMD as well as EVM [9] evaluation of the modern 
wireless transmitting systems with high speed and high 
accuracy. The load-line analysis method presented here 
can be performed to run software written by MATLAB 
R2021b [10]. This is the first nonlinear load-line analysis 
software package ever reported. An L-band 10W GaN 
HEMT amplifier has been designed by using this software 
and compared with the harmonic-balance method [6] to 
make sure the validity of the software. 

2. Advanced Techniques in Load-Line Analysis 

2.1. Time-Varying Electrical Waveform Analysis 

Principles of the load-line analysis is shown in Figure 1 
[7]. Drain current Id(t) and drain voltage Vd(t) swing on the 
load-line having a resistive slope of -gl within the area 
surrounded by Vk (Knee voltage), Vbr (breakdown 
voltage),  Vbr+Vp (Vp is a pinchoff voltage) and zero. As a 
magnitude of Id(t), denoted as A(J), increases with input 
power, the upper or the lower-half of Id(t) is clipped by Idss 
or zero. That is, DC component of Id(t) expanded by 
Fourier series increases or decreases. It means that the 
initial bias point a (Vdo, Ido) moves to a different bias point. 
For example, under class-AB or B operation, the lower half 
of Id(t) is clipped first. DC component increases and the 
bias point moves upward in conjunction with the load-
line. Next the upper-half of Id(t) is clipped. DC component 
decreases and the bias point moves downward in 
conjunction with the load-line. This procedure is repeated 
until the bias point converges to some quiescent bias point 
b (Vdo, Idav). 

 
Figure 1: Principles of the load-line analysis. Drain current Id(t) and drain 
voltage Vd(t) swing on the load-line having a resistive slope of -gl within 
the area surrounded by Vk (Knee voltage), Vbr (breakdown voltage), 
Vbr+Vp (Vp is a pinchoff voltage) and zero. Point a is an initial bias 
condition (Vdo, Ido). Point b is a final bias condition (Vdo, Idav). 

Id(t), Vd(t), a dynamic load-line are calculated by this 
load-line analysis software for GaN HEMT devices with 

Vk of 2V, Vbr of 100V, Vp of -2V and Idss of 2.14A, which is 
shown in Figure 2(a). As A(J) increases from 0.2 to 2.2A, 
Id(t) and Vd(t) also increase and the bias point moves 
upward from the initial point (10V, 0.214A) in conjunction 
with the load-line. The slope of -gl can be varied as a 
dynamic load-line but keep constant in this case. Output 
power (Pout), drain efficiency (ηd), DC consumption power 
(Pdc) and Vd x Id can be calculated for a variation of A(J) 
and plotted in Figure 2(b). As A(J) increases, Pout goes up 
to 10W and ηd also increases. 

 
Figure 2: (a) Calculated Id(t), Vd(t) and dynamic load-line. (b) Calculated 
Pout, ηd, Pdc and Vd x Id for GaN HEMT devices with Vk of 2V, Vbr of 100V, 
Vp of -2V and Idss of 2.14A 

2.2. Large-Signal GaN HEMT Model Used in the Analysis 

A large-signal GaN HEMT model is employed in the 
analysis, which is shown in Figure 3. Nonlinear circuit 
elements are transconductance (gm), drain-to-source 
resistance (Rds), gate-to-source capacitance (Cgs) and gate-
to-drain capacitance (Cdg), which are obtained from I-V 
curves as a function of the gate voltage (Vg) and the drain 
voltage (Vd). A forward gate current (Igs) and a backward 
gate leakage current (Idg) are also included in the analysis 
for hard saturation and large leakage conditions. The 
nonlinear circuit elements (gm, Rds, Cgs, Cdg) and the gate 
current (Ids and Idg) are basically represented by behavioral 
modeling [11]. 

 
Figure 3: Large-signal GaN HEMT model. Lg, Rg, Ls, Rs, Ld and Rd are 
an extrinsic element, which are linear and thus keep a constant value. 
On the other hand, Ri, Cds, CRF and Rc are an intrinsic element, which 
are also linear and thus keep a fixed value. Rds is used to represent DC 
characteristics. Therefore, RF characteristics are represented by 1/(1/Rds 
+1/Rc) for a large value of CRF. 

Nonlinear circuit elements of gm, Rds, Cgs and Cdg are 
obtained from I-V curves as a function of Vg and Vd, which 
is shown in Figure 4. Since Id(t) moves on the load-line 
with A(J), gm and gds (=1/Rds) defined by (1) and (2) varies 
with A(J). Under large-signal operation, therefore, gm and 
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gds are represented as an averaged value for one period, 
which are given as gmave and gdsave by (3) and (4) [8]. Id (Vg, 
Vd) is represented by behavioral modeling in place of the 
measured data for high speed and high accurate 
calculation. The Curtice Cubic Model [12] is used here. 

                  (1)  

   (2) 

     (3) 

   (4) 
 

Cgs and Cdg defined by (5) and (6) also varies with A(J) 
on the load-line. Under large-signal operation, therefore, 
Cgs and Cdg are represented as an averaged value for one 
period, which are given as Cgsave and Cdgave by (7) and (8) 
[9-10]. In (5) and (6), Cgs and Cds utilize the Statz model 
[13].  

 

                  (5) 
             

                                  (6) 
                                        

      (7) 
        

 (8) 

 
Figure 4: Nonlinear circuit elements of gm, Rds, Cgs and Cdg 
obtained from I-V curves as a function of Vg and Vd 

 
DC, small-signal, large-signal circuit elements as well 

as nonlinear capacitances consisting of Figure 3 can be 
read from Microsoft Excel sheet, which are shown in 

Tables 1(a), 1(b), 1(c) and 1(d), respectively. With the use 
of these data, gmave, gdsave Cgsave and Cdgave are calculated 
and plotted in Figure 5. It is clearly shown that nonlinear 
elements are drastically change with A(J). 

Table 1: DC, small-signal, large-signal circuit elements as well as 
nonlinear capacitances consisting of Figure 3 

 
 

 
Figure 5: Calculated gmave, gdsave Cgsave and Cdgave. Under class-B 
operation with a tuned load, Id(t) moves partly on the load-line with zero 
gm. Thus, the averaged gm sometimes decreases with A(J). However, 
the bias point moves upward and the averaged current also increases 
with A(J). Then gm drastically increases. 
 

 
 
Figure 6: Large-signal S-parameters of GaN HEMT devices for A(J) from 
0.2 to 2.2A at 1GHz. 
 

Since gmave, gdsave, Cgsave and Cdgave are obtained for each 
A(J), S-parameters of Figure 3 can be calculated, which is 
shown in Figure 6. A calculation was done for A(J) from 
0.2 to 2.2A at 1GHz. Amid these parameters, S22 changes 
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remarkably. A variation of Mag(S21) and Ang(S21) leads to 
AM-AM and AM-PM performances. In conjunction with 
the data in Figure 2(b), the output power (Pout), power 
gain (Gp), drain efficiency (ηd), power-added efficiency 
(ηadd) and insertion phase variation (∆φ) are calculated 
and plotted in Figure 7. 

 

 
Figure 7: Calculated output power (Pout), power gain (Gp), drain 
efficiency (ηd), power-added efficiency (ηadd) and insertion phase 
variation (∆φ)  
 
2.3. Behavioral Modeling 

Once AM-AM and AM-PM performance are known, 
the distortion analyses including 2-tone power series 
analysis, 2-tone envelope analysis and EVM evaluation 
become available. Before the distortion analysis, AM-AM 
and AM-PM performances have to be represented by 
behavioral modeling for high speed and high accurate 
calculation. Behavioral modeling is listed in Table 2 [11]. 
The traditional distortion analysis of microwave power 
amplifiers deals with polynomial regression such as 
power series or Volterra series [1] because harmonic 
contents are easily handled. Thus , polynomial regression 
is employed here as behavioral modeling for representing 
AM-AM (Pout vs Pin) and AM-PM (∆φ vs Pin) performances 
shown in Figure 8. 

Table 2: List of behavioral modeling: Behavioral modeling includes 
regression analysis and curve-fitting technique 

 

 
Figure 8: AM-AM and AM-PM performances of microwave power 
amplifiers. ∆G is a compressed gain and ∆φ is an insertion phase 
variation, that is, a phase distortion 

Based on the AM-AM (Pout vs Pin) and AM-PM (∆φ vs 
Pin) performances of Figure 7, the 3rd polynomial 
equations are calculated, which are shown in (9) and (10). 
Pin and Pout are denoted as antilog value. ∆φ is given as 
degree.  

 
         (9) 

 
                                  

    (10) 

                
 

The calculated AM-AM and AM-PM performances 
shown in Figure 7 are also demonstrated in Figure 9 in 
conjunction with behavioral modeling. A good agreement 
has been achieved between the calculated and modeled 
data. 

 

 
Figure 9: Calculated AM-AM and AM-PM performances combined with 
behavioral modeling. (a) AM-AM performance at 1GHz. (b) AM-PM 
performance at 1GHz. Pout and Pin are antilog number. ∆φ is represented 
as degree 

2.4. Distortion Analysis (2-tone Analysis) 

This load-line analysis software prepares two types of 
2-tone analyses: 2-tone power series analysis for weak 
nonlinearity and 2-tone envelope analysis for strong 
nonlinearity [1]. For example, in the 3rd-order 2-tone 
power series analysis, 2-tone signal described in (11) and 
(12) is inserted into (9). Then the 2nd-degree term of (9) 
produces the 2nd-order product at 2ω1, 2ω2, ω1+ω2. The 3rd-
degree term provides the 1st- and 3rd-order products at ω1, 
ω2, 3ω1, 3ω2, 2ω1−ω2, 2ω2−ω1. The 1st-, 2nd- and 3rd -order 
products are calculated and plotted as Pin-Pout in Figure 10. 
IIP3 can be easily obtained from the intersection point of 
an extended linear part of ω1 and an extended linear part 
of ω3.                                                                                        

                  (11) 

                                                 (12) 

The 2-tone envelope analysis is shown in Figure 11 [1]. 
An envelope of the input 2-tone signal is modulated by a 
difference frequency of ω1-ω2 (ω1> ω2). The amplified 
output signal is distorted in both magnitude and phase 
through AM-AM and AM-PM performances of PAs, 
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which produces a serious intermodulation distortion. 
Input and output signals are given by (13) and (14). The 
input time-domain signal g(m) can be transformed from 
the frequency-domain signal G(k) by the inverse Fourier 
transformation as (15). The input signal is amplified and 
then the time-domain output signal g’(m) is given by (16). 
Finally, the frequency-domain output signal G’(k) is 
transformed by Fourier transformation as (17). 

 
Figure 10: The 1st-, 2nd- and 3rd -order products. Red curve is the 3rd-order 
product (2ω1-ω2 or 2ω2-ω1), which appear in close to carrier frequencies 
of ω1 and ω2.  

 

                         (13) 
 (14) 

                        (15) 
    (16) 

                          (17) 
 

 
Figure 11: 2-tone envelope analysis. An envelope of input signal has a 
sinusoidal waveform beat by a difference frequency. An envelope of the 
amplified output signal is distorted in both amplitude and phase. 
 

Time- and frequency-domain output signals are 
calculated with the use of 2-tone envelope analysis shown 
in Figure 11 and behavioral modeling of Figure 9 for 2-
tone signal (f1=0.9GHz, f2=1.1GHz, v=0.02V) in (11) and 
(12), which are displayed in Figure 12. Figure 12(a) shows 
a time-domain output signal and Figure 12(b) displays a 

frequency-domain output signal (spectrum). IMD3 signals 
(2f1- f2 and 2f2- f1) appear adjacent to carrier signals (f1 and 
f2). In addition, a difference signal (f2- f1), a sum signal (f1+ 
f2), 2nd-harmonic signals (2f1 and 2f2) are also clearly shown. 
Due to the maximum limit of memory size of the 
computer, the resolution of spectrum becomes poor.  

 

 
Figure 12: 2-tone envelope analysis: Time- and frequency-domain 
output signals are calculated for 2-tone signal (f1=0.9GHz, f2=1.1GHz, 
v=0.02V)  

 

2.5. EVM Evaluation 

Error vector magnitude (EVM) evaluation can provide 
a great deal of insight into the performances of digital 
communications transmitters and receivers [14]. The error 
vector is defined as a vector difference at a given time 
between the ideal reference signal and the measured 
signal, which is shown in Figure 13. AM-AM performance 
having ∆G and AM-PM performance having ∆φ in Figure 
13(a) produce a serious vector error in Figure 13(b). 

 

 
Figure 13: Error vector magnitude. (a) AM-AM and AM-PM data for use 
in the analysis. (b) Description on EVM schemes.  
 

Now EVM is evaluated for GaN HEMT amplifiers 
having AM-AM and AM-PM performance shown in 
Figures 7, 9 and 13(a). EVM can be obtained by using 
MATLAB Simulink of EVM and MER measurement [15]. 
The explore model is used with an amplitude imbalance 
of 1 dB, a phase imbalance of 15 degrees and the DC offset 
of zero. Since the calculated AM-AM and AM-PM 
performances shown in Figures 7 and 9 cannot be used in 
the present form, the AM-AM and AM-PM data shown in 
Figure 9 are converted to a lookup table form. In the EVM 
analysis, 16-QAM modulated signal is used. S/N is 
assumed to be 40dB. EVM is evaluated at Pin of 5dBm for 
linear operation and 20dBm for nonlinear operation. Gain 
is 20dB at Pin of 5dBm and 17dB at Pin of 20dBm. The root-
mean-square, maximum and peak values of EVM are 
listed in Table 3 and the constellation is demonstrated in 
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Figure 14. RMS value of EVM at Pin of 5dBm is much 
smaller than that of Pin of 20dBm, which means that a 
communication quality is higher because of low 
distortion conditions. 

Table 3. Calculated root-mean-square (rmsEVM), maximum 
(maxEVM) and peak (pctEVM) values of EVM 

 

 

 
Figure 14: Constellation diagram of 16-QAM modulated signal. Red and 
blue dots are ideal and distorted signals at Pin of 20dBm. Red and yellow 
dots are ideal and distorted signals at Pin of 5dBm. It can be clearly 
shown that the constellation is seriously distorted at Pin of 20dBm (blue 
dots). 

 
 

Figure 15: Comparison of the simulated power performances using the 
harmonic-balance simulator (ADS2021) and this load-line analysis 
software 
 
3. Comparison with Harmonic Balance Method 

An L-Band 10W GaN HEMT amplifier using Cree 
GaN HEMT CGH40010 [16] has been designed. Power 
performances are compared by using the harmonic-
balance simulator (ADS2022 Keysight Technology) [17] 
and this load-line analysis software, which is shown in 
Figure 15. Output power and gain are in good agreement. 
Power-added efficiency and insertion phase variation are 
slightly different. These results demonstrate that the load-
line analysis software introduced here is a candidate for 
the nonlinear analysis of GaN HEMT amplifiers. To verify 
the validity of the load-line software, the L-band 10W 
GaN HEMT amplifier is due to be actually fabricated and 
measured hereafter. 

 

4. Comparative Analysis 

A comparative analysis of the load-line method used 
in the microwave power amplifier is summarized in Table 
4. A low-frequency I-V load-line measurement setup is 
shown in [2] and [3] to analyze low-frequency dispersion 
phenomena of GaN HEMT devices. The Cripps load-line 
theory is slightly modified to meet with low-voltage 
devices such as CMOS in [18] and [19]. That is, a slope of 
the load-line is adjusted for high efficiency in accordance 
with the knee voltage. By tilting a slope of the load-line 
for each cell of the distributed amplifier, high power and 
high efficiency over several octaves have been obtained 
[20] and [21]. The load-line is carefully chosen to achieve 
low-distortion and high-efficiency for both carrier and 
peaking amplifiers of the Doherty amplifier [22] and [23]. 
It must be noted that not only the load-line is carefully 
investigated but also time-varying waveform is checked 
in these load-line analyses. Similar to [2] and [3], a low- 
frequency I-V load-line is used to evaluate performance 
degradation of microwave transistor [24]. In addition, 
dynamic load-line is used in the design of narrowband 
and broadband amplifier designs [25] and [26]. This work 
presented here is based on a load-line analysis software, 
which can provide linear/nonlinear power and distortion 
performances. Therefore, this software can be considered 
to be useful to analyze various nonlinear power 
performance described in these References. 

Table 4: Comparative analysis of the load-line method for use in the 
power amplifier design 

 

5. Conclusion 

An advanced load-line analysis software for nonlinear 
circuit design and simulation of microwave low-
distortion, high-efficiency and high-power GaN HEMT 
amplifiers has been presented. A single software package 
can incorporate DC, small-signal and large-signal 
performances of GaN HEMT devices, and then analyze 
nonlinear performance of AM-AM and AM-PM 
characteristics, and finally evaluate IMD and EVM. With 
the use of behavioral modeling, high speed and high 
accurate simulation become available. In addition, the 
software is based on a time-domain analysis using time-
varying electrical waveform and thus can provide clear 

Pin 5dBm 20dBm

rmsEVM[%] 2.9152 26.7234
maxEVM[%] 6.1943 40.2859
pctEVM[%] 22.8583 38.1610

Ref. No. Year Device Load-line Method Objective Model

[2] 2009
800µm GaN
HEMT

Low-frequency I-V load-line
measurement

Analysis of low-frequency dispersion
(i.e., traps and thermal effects)

Generic nonlinear equivalent-
circuit model

[3] 2014
0.25 600 m
GaN HEMT

Low-frequency I-V load-line
measurement (2MHz)

Analysis of low-frequency dispersion
Behavioral Modeling of
current generator

[18] 2018
GaN HEMT
CGH160015D

Pedro load-line method
Impact of knee voltage effect and soft
turn-on characteristic on the design of
Class-B/J power amplifiers

Not described

[19] 2013
sub-micron
CMOS

Extension of the load line theory
to higher knee voltage value

Investigating the impact of the Knee-
voltage on output-power and efficiency

Not described

[20] 2014
0.25 μm Al-
GaN/GaN

Tilting load-lines
Design of uniform distributed power
amplifiers having broadband high power

Not described

[21] 1987
200 μm GaAs
FET

Emplying different load-line for
each cell of distributed amplifier

Broadband high power distributed
amplifier

Small--signal model

[22] 2008
Eudyna
EGN010MK
GaN HEMTs

Modulated load-line analysis
Analysis of saturated Doherty amplifier
based on class-F amplifiers to maximize
efficiency

OKI 0.1-W KGF1284
MESFET model

[23] 2008
Filtronic
GaAs HEMT
FPD750

Intrinsic load line of carrier and
peak amplifier

WiMAX at 3.5 GHz is realized
using a class AB amplifier

In-house Angelov non-linear
model.

[24] 2021
Microwave
Transistor

Low-frequency I-V and time-
domain load-line measurement

Evaluation of microwave transistor
degradation

Not described

[25] 2022
140nm GaN
HEMT

Time-domain waveform analysis
and dynamic load-line simulation

Accurate simulation of load-line  and
harmonic-balance methods

ASM-HEMT model

[26] 2023
GaN HEMT
CGH40025F

Load-line analysis based on the
series of continuum modes
operation

Broadband amplifier design using class
BJF-1

Not described

This
Work

2023
Cree GaN HEMT
CGH40010

Advanced load-line analysis for
hard saturation large leakage
current

Development of nonlinear load-line
analysis software

Behavioral modeling
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and deep insight into the nonlinear behavior of GaN 
HEMTs as well as the nonlinear circuit design of low-
distortion and high-efficiency GaN HEMT amplifiers. 
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ABSTRACT: It has been demonstrated that 3D Convolutional Neural Networks (CNN) are an effective 
technique for classifying hyperspectral images (HSI). Conventional 3D CNNs produce too many 
parameters to extract the spectral-spatial properties of HSIs. A channel service module and a spatial 
service module are utilized to optimize characteristic maps and enhance sorting performance in order 
to further study discriminating characteristics. In this article, evaluate CNN's methods for 
hyperspectral image categorization (HSI). Examined the replacement of traditional 3D CNN with 
mixed feature maps by frequency to lessen spatial redundancy and expand the receptive field. 
Evaluates several CNN stories that use image classification algorithms, elaborating on the efficacy of 
these approaches or any remaining holes in methods. How do improve those gaps for better image 
classification? 

KEYWORDS: Hyperspectral, Image classification, Deep learning, Convolutional neural network, 
Feature extraction, Spectral-spatial features, Machine Learning 

 

1. Introduction 

Due to the rapid advancement of optics and photonics, 
hyperspectral sensor nodes have been placed on 
numerous spacecraft. Pollution prevention, disaster 
prevention and control, and mineral deposit identification 
[1-3] are just a few of the fields where HSI categorization 
has gotten a lot of attention. HSI classification jobs, 
however, face numerous obstacles due to the huge 
number of spectral bands. In addition to significantly 
improved data and high computational cost, the Hughes 
phenomenon is the most remarkable challenge. One of the 
most effective solutions to these issues is feature 
extraction. However, problems like spectral variability [4] 
make the feature extraction operation extremely difficult. 
The challenge of labelling each pixel in a hyperspectral 
image is a vital but difficult undertaking. It allows to 
distinguish between distinct things of interest in a picture 
using the rich spatial–spectral information contained in 
hyperspectral photographs. Precision agriculture, 
environmental monitoring, and astronomy are just a few 
of the sectors where they've been extensively used [5]. For 
example, they suggested a linear mixture model for 

determining the mineralogy of Mars' surface by 
integrating multiple absorption band approaches on 
CRISM. 

A growing body of research is being done on the 
categorization of hyperspectral images. Because they 
account for the broad spectrum of information [6] 
acquired in hyperspectral images [7] and reduce the 
dimensionality of hyperspectral images using the Locality 
Adaptive Discriminant Analysis (LADA) algorithm, 
traditional image classification methods like support 
vector machine (SVM) [7], [8] and K-nearest neighbour 
(KNN) classifier have achieved respectable performance 
for this task. There are other additional methods for 
addressing this issue. For instance, [9] offered a 
dimensionality reduction approach for classification of 
hyperspectral images using the manifold ranking 
algorithm as the band selection method. Additionally, 
they created a special dual clustering-based band selection 
method for classifying hyperspectral images. Although it 
has been demonstrated that these techniques are more 
successful at classification, they are unable to categories 
hyperspectral pictures in complicated situations. 
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Convolutional neural networks (CNNs) [10–12]-based 
algorithms have lately exhibited extraordinary 
performance for various tasks related to image analysis, 
such as picture categorization and object identification, 
thanks to the enormous success of deep learning. When 
categorizing hyperspectral images, it is important to take 
both the spectral and spatial perspectives into account. A 
hyperspectral picture, also known as the spectral 
perspective, is conceptually made up of hundreds of 
"images," each of which represents a very narrow 
wavelength band of the electromagnetic spectrum (visible 
or invisible). The 2-dimensional spatial data in the 
hyperspectral images of the objects, on the other hand, is 
covered by the spatial perspective. As a result, 
hyperspectral pictures are frequently represented using 
3D spectral-spatial data. 

1.1 Convolutional Neural Network 

The ability of conventional machine-learning 
algorithms to assess natural data in its raw state has been 
constrained. It took years of careful planning and 
extensive domain knowledge to create a classifier that 
transformed raw data (such as image pixel values) into an 
appropriate internal representation or extracted features 
from which the learning new module, frequently a 
classifier, could identify or classify patterns in the input. 
Deep-learning methods are demonstrative techniques that 
shift recognition from a lower, more fundamental level 
(beginning with the raw input) to a higher, more complex 
one using straightforward but non-linear modules. By 
integrating enough of these adjustments, very 
complicated functions may be learnt. Higher layers of 
representation in classification tasks highlight 
characteristics of the input that are crucial for 
differentiating while suppressing inconsequential 
variations.  A picture is composed of a matrix of image 
pixels, and the first layer of representation's learned 
characteristics are generally the presence or absence of 
boundaries in the image at specified orientations and 
locations. The second layer detects motifs by looking for 
certain patterns in data edges, independent of slight edge 
location discrepancies. The third layer may aggregate 
motifs into larger groupings that correlate to components 
of detection and measurement, with subsequent layers 
identifying items as a mixture of these pieces. Because 
multiple layers of features are acquired from information 
using a broad learning process rather than being created 
by people, deep learning is differentiated from other types 
of learning [13]. Convolutional neural networks have 
made achievements in a variety of pattern recognition 
fields during the previous decade, from image analysis to 
speech recognition. CNNs have the largest benefit in that 
they decrease the number of parameters in an ANN. This 
success has inspired researchers and doctors to consider 

larger models to address challenging issues that were 
previously unsolvable with conventional ANNs. 

The fundamental presumption about the issues that 
CNN addresses is that they shouldn't have spatially 
dependent aspects. To put it another way, don't have to 
worry about where the faces are in the photographs in a 
facial recognition program. It doesn't matter where they 
are in the surroundings; their discovery is the only thing 
that matters. Another crucial property of CNN is its ability 
to extract abstract properties when fed into advanced 
stages or deeper levels. For instance, in the first layer of 
picture classification, the edge may be detected, then 
simpler forms in the second layer, and finally higher-level 
characteristics [14]. Figure 1 provides an explanation of 
convolutional neural networks. A popular form of neural 
network is the CNN [15]. A CNN is similar to a multilayer 
perceptron (MLP) in concept. The activation function of 
every neuron in the MLP labeled with input and output 
weights. When add extra hidden layers after 1st layer to 
MLP, then it is called deep MLP. Similarly, CNN is 
regarded as an MLP with a unique structure. The 
architecture of the model permits CNN to be both 
translation and rotation invariant because of this 
particular structure [16]. In a CNN design, a convolutional 
layer, a pooling layer, and a comprehensively layer with a 
corrected activation function [17] are the three essential 
layers.  

There are other methods for hyperspectral image 
classification that are competing in the literature. Some of 
these include: 

1. Support vector machine (SVM) 
2. Random forest (RF) 
3. Principal Component Analysis (PCA) 
4. Independent Component Analysis (ICA) 
5. Deep Belief Networks (DBN) 
6. Convolutional Auto encoder (CAE) 
7. Generative Adversarial Networks (GANs) 

The reason why Convolutional Neural Networks 
(CNNs), 2D and 3D CNNs, and hyperspectral imaging are 
encouraged in the literature is due to their ability to 
effectively capture the spectral and spatial information in 
hyperspectral images, leading to improved classification 
accuracy. In a variety of computer vision applications, 
such as picture classification, object recognition, and 
semantic segmentation, CNNs have demonstrated 
exceptional performance., among others. Additionally, 2D 
and 3D CNNs have been designed to take into account the 
spatial and spectral dimensions of hyperspectral images, 
leading to improved performance in hyperspectral image 
classification tasks. In comparison, traditional methods 
such as SVMs, RF, PCA, ICA, DBN, CAE, and GANs may 
not be as effective in capturing the complex relationships 
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between the spectral and spatial information in 
hyperspectral images, leading to lower classification 
accuracy. However, these methods still have their own 
advantages and are often used in combination with CNNs 
to address specific limitations and improve performance 
in hyperspectral image classification tasks. 

CNN is a deep learning architecture that uses layers to 
classify things. It also included layers labelled as one input 
layer, numerous hidden layers, and one output layer. 
CNN works in the same way that DNN does, in that it 
takes input from a dataset, applies functions to it in the 
hidden layers, and then finds the result and displays it in 
the output layer. Max pooling, convolution, and fully 
linked layers are the most commonly employed CNN 
layers. The filter is convolved with input information in 
the layer of convolution.  

 
Figure 2: A 2D CNN Architecture for proposed Dataset to classify the images 

into different classes classification. 

The input is down sampled by the max pooling layer, 
and the input is fully connected by the fully connected 
layer, which connects all neurons from the previous layer 

to each other [18]. Now discuss the models of CNN that 
are in the form of 2D, 3D, and many more, but the focus 
will be on some major ones that are used for some 
classifications. By raising the number of layers, CNN is 
able to learn high-level hierarchical features. When the 
number of layers is increased, however, the input data or 
gradient starts to disappear. A more value-showing 
model, known as a dense convolutional network, was 
developed to overcome this problem (DenseNet). They 
devised a feed-forward algorithm that can interconnect 
each layer with every layer. Now expanded the feature set 
after being inspired by the thought that dense connections 
can boost feature utilization. For gesture recognition, 2-
dimensional DenseNet to 3-dimensional DenseNet is used 
[19]. 

The spatial perspective, on the other hand, refers to the 
2D spatial data about the objects that is present in 
hyperspectral images. As a result, hyperspectral pictures 
are frequently represented using 3D spectral-spatial data. 
As a result, the literature has provided a variety of 
approaches. Contrarily, current CNN-based algorithms 
[20] that only pay attention to spectral or spatial 
information are forced to ignore the connections between 
the spatial and spectral viewpoints of objects captured in 
hyperspectral pictures [21, 22]. 

To extract features from these planes using three 2D 
CNNs, and then integrate three 2D network architectures 
in parallel, resulting in the multichannel 2D CNN. The 2D 
CNN model is made up of three elements of the 2D CNN 
architecture running in parallel, as well as a fully 
connected hidden unit that integrates multichannel data. 
Each 2D CNN takes only one sort of multichannel 2D 
image as an input and performs convolution computing 
on its own. The outputs from three 2D CNN sections are 
flattened, concatenated, and then fed into a fully 
connected neural network for learning. Finally, 2D CNN 
produces the categorization outcome. Given that the 
concatenation characteristics include features obtained 
from three orthogonal planes, 2D CNN considers 3D. As 
above figure 2 shows the architecture of 2D convolutional 

Figure 1: Understanding Convolutional Neural Network (CNN) 
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neural network for image classification by using proposed 
dataset with the function of feature extraction. Given that 
they may be used with either a series of 2D frames or a 3D 
volume as input, 3D CNNs are a complicated model for 
computational approaches for volumetric data (e.g. slices 
in a CT scan). Using 3D convolution kernels and 3D 
pooling, methods that may be applied to volumetric data 
such as computed tomography (CT) images have been 
developed. The addition of 3D convolution kernels to the 
architecture increases the number of parameters, training 
time, and data requirements.  

Training 3D CNNs on data from multiple methods is 
not always simple due to the limited size of medical 
picture datasets. Some pioneering attempts have been 
made along this line [23-28] to describe spectral and spatial 
information concurrently. 3D CNN models execute 
stacked convolution operations in a layer-by-layer way 
over spatial and spectral feature space. The generated rich 
feature maps are clearly the advantage of this type of 3D 
CNN model. These approaches, on the other hand, have 
three major drawbacks. To begin with, creating a more 
detailed 3D CNN model is tricky. 

The reason for this is that as the number of 3D 
convolution processes rises, the solution space expands 
exponentially, limiting the model's depth and 
interpretability. Second, if a significant number of 3D 
convolution operations are performed, the memory cost 
becomes prohibitive. Third, the small size of the public 
hyperspectral image datasets makes it impractical to train 
a deeper 3D CNN model, which requires extra training 
instances. To address the aforementioned issues, this work 
proposes a unique 3D CNN model that requires only a few 
3D convolution operations but produces richer feature 
maps [29]. Figure 3 represents the 3D convolutional neural 
network architecture for image classification by using 
proposed dataset after extracting features from that 
proposed dataset. 

1.2. Hyperspectral imaging 

Hyperspectral images (HSIs), which contain hundreds 
of spectral bands, are created using a network of 
hyperspectral imaging sensors. Since there is a very tiny 
wavelength gap between every two nearby bands, HSIs 
have a very high spectral resolution [30]. (usually 10 nm). 
The use of HSI analysis is widespread in a variety of 
industries, including materials analysis, precision 
agriculture, environmental monitoring, and surveillance 
[31–33]. The hyperspectral community's most active area 
of study is HSIs classification, which aims to categories 
every pixel in an image [34]. 

 
Figure 4: Hyperspectral imaging concept for classification 

In figure 4 show the concept of hyperspectral imaging. 
The categorization of HSIs is challenging, nevertheless, 
due to the heavily duplicated spectral band information 
and few training samples [35]. In an HS image 
classification system, image restoration (e.g., de-noising, 
incomplete data restoration) [36,37], feature vectors [38], 
spectral un-mixing, and feature extraction [39] are all 
general sequential processes. Feature extraction is one of 
them, and it's a vital stage in HS image categorization 
that's been getting a lot of attention lately. A vast range of 

Figure 3: A 3D CNN Architecture for proposed Dataset to classify the images into different classes classification 
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powerful hand-crafted and machine learning-based 
feature extraction techniques for HS image classification 
have been presented over the last decade [40]. These 
algorithms are capable of handling small-sample 
classification issues well. When the training size 
progressively expands and the training images become 
more complicated, they are likely to hit a performance 
bottleneck. This could be owing to the traditional 
approaches' restricted data fitting and representation 
abilities. 

 
Figure 5: FROC curve for the 3D CNN 

2. Related Work review 

In this article they used a three-dimensional 
convolutional neural network to classify lung nodules in 
chest CT images. In this proposed method they used two 
techniques one is screening stage and second is 
discrimination stage. A CAD system's scanning stage is a 
standard feature. This stage narrows the initial search 
space and indicates a selection of the most likely 
candidates who should be investigated further. The 
screening CNN in our system is initially trained to classify 
3D patches derived from each CT case using 3D 
convolution kernels [41]. The negative samples were 
chosen arbitrarily by extracting VOIs of the same size as 
the tested cases from a random location within the CT 
scan, whereas the specimens for this CNN were created by 
trying to extract VOIs of the same size as the tested cases 
from a random location inside the CT scan (in both the 
inside and outside of the lungs) (including both the  inside 
and outside of the lungs). The selection of the negative 
patches ensured that none of the  nodules would be 
overlapped by them. The number of negative samples 
obtained in this way may be nearly as big as required 
because the majority of the region within a chest CT is 
nodule-free. On the other hand, there are only a certain 
number of positive samples. The positive samples are 
reinforced by inserting flipped and rotated copies of each 
extracted positive patch in the training set to increase the 
system's invariance to small variations in nodule 

appearance and to decrease the aforementioned class 
imbalance problem. The previous section's screening stage 
still produces a significant percentage of false positives. 
The goal of the discriminating stage is to lower this 
number so that the clinician receives an output with high 
sensitivity for  nodule detection and a tolerable number of 
false positives per case. They trained their models using a 
subset of 509 cases from the LIDC dataset, with slice 
thicknesses ranging from 1.5 mm to 3 mm, as well as an 
extra 25 examples for testing. One to four radiologists 
indicate the location of each module in the LIDC dataset, 
and the radiologist provides a segmentation for each 
newly discovered 3 mm nodule. 

Only screening candidate points that pass the 
previously described criterion are used to evaluate the 
discriminatory CNN. The FROC curve for the 
discrimination stage is shown in Figure 4. At 15.28 FPs per 
case, this model achieves an 80% sensitivity. it suggests 
that this is accuracy is not much good as compare to other 
implementations of CNN, it can be improved by using 
other proposed methods for that we discussed is 
discussion session. 

 
Figure 6: A convolution kernel shown graphically. The multivariate array of 
weights is the first section. 2D detail of a 3 × 3 kernels with stride 1 and no 

padding is presented in the second part. 

They suggested an approach for hyperspectral image 
categorization that employs an adaptive convolutional 
neural network. Their great performance is based on the 
spatial linkages being exploited by convolution kernels. 
As a result, filter design is critical for model performance. 
However, there are objects of various form and 
orientations in hyperspectral data, prohibiting filters from 
seeing "all imaginable" when making decisions [42]. The 
deeper neurons in the visual cortex are activated by 
several, more complicated inputs in a hierarchical manner, 
whereas the output neurons are triggered by some input 
visual stimulus that is within their RF. On the other hand, 
CNNs have changed their function to mirror this 
behaviour. The CNN employs a single deep stack of 
convolutional layers, each of which defines a filter bank, 
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or a group of shareable, teachable, and locally connected 
weights that collectively form a linear n-dimensional 
kernel. A collection of data-fitted filters that sequentially 
traverse through the input data, overlap, and then apply 
themselves to the data make up the kernel. 

The inputs that are included within the app's region 
and the filter weights are combined to create a weight 
value for each application. Additionally, a non-linear 
activation function is added to reflect the convolution 
layer's reaction to the search features in order to show if 
the features that were filtered by them are present (such as 
edges and forms).  Following equation defines this 
behaviour mathematically. 

𝑋𝑋𝑗𝑗
(′) =  𝐻𝐻 ��𝑋𝑋𝑗𝑗+𝑘𝑘𝑙𝑙−1𝑊𝑊𝑘𝑘

(𝑙𝑙)

𝐾𝐾€₭

�                      (1) 

 Mathematical formula for a neural network operation 
in the forward propagation step. Where the superscript l 
indicates the Lth layer of a CNN, and in above equation H 
is usually implemented with ReLU and it denotes the 
activation function. Figure 2 illustrates this graphically. In 
particular, Figure 2b shows a 6 x 6 feature maps 
implemented with a 3 x 3 kernel with taking zero padding. 
In this case, k will test the input feature’s locations from (2, 
4) to (4, 6) (some parts of padding provided to the border 
of map is included) that is based on K = [1, 1] according to 
grid for the end coordinate j = (3, 5, z). As can be seen, the 
output unit only depends on the kernel's "seeing" of a 
small fraction of the input feature map. Any information 
contained in the input feature map that is outside of the 
RF has no bearing on the value of the output unit since this 
area has been designated as the RF for that unit [43]. 

By tracing the hierarchy back from the output feature 
under consideration to the input image, an effective 
receptive field (ERF) is established. The input data 
components that influence and modify the output 
activations are identified by the ERF. In this way, CNN's 
ERF resembles a Gaussian distribution, designating an 

area to "look at" but also exponentially concentrating 
attention on the centre of the feature map. The soft 
attention map is really based on Gaussian distributions 
[44,45]. One of DL's major achievements is the creation and 
use of the same neural architecture for the categorization 
of diverse pictures. The tests looked at the model's 
complexity, accuracy, and generalizability by counting the 
number of parameters. identifying and categorizing the 
scenes from (i)the University of Pavia and (ii) the 
University of Houston, two authentic, well-known HSI 
sceneries with a variety of spectral-spatial properties. The 
information is given below. 

• The University of Pavia dataset [46] is an HSI picture 
that was taken over the university's campus in Pavia, 
northern Italy, in July 2002 using the ROSIS-3 airborne 
reflecting optics system imaging spectrometer. The 
picture consists of 113 wavelength channels with a 
frequency range of 430 to 860 nm and 610 × 340 pixels 
with a resolution of 1.3 m. The 42,776 tagged samples 
that make up the ground truth are separated into nine 
different land-cover classes, which include, among 
other urban features, asphalt, meadows, gravel, trees, 
steel plate, bare soil, bitumen, brickwork, and 
shadows. 

• The lightweight tiny aerial spectrographic imager 
captured an HSI scene above the Houston University 
region for the University of Houston dataset [47] 
(CASI). It features 144 channels in the 380 nm to 1050 
nm spectral range and 349 1905 pixels with a spatial 
resolution of 2.5 m. 15,029 tagged samples from 5 
different courses in an urban setting are also part of 
the ground truth. 

An innovative deep convolution-based neural network 
for the HSI classification process is presented in this study. 
The CNN classifier's effective receptive field is 
automatically modified by the model's deformable kernels 
and deformed convolutions to account for spatial 
deformations in HSI data from remote sensing. Instead of 

Figure 7: An overview of the proposed spectral–spatial convolutional network, which is alternatively updated from end to end (AUSSC). The 
convolution operation is referred known as "conv." 
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just being able to change the convolution, the adaptive 
classification network accomplishes this automatically by 
utilizing the distortion of the kernel itself applied to each 
perceptron on the input feature volume (i.e., adding an 
offset to the feature positions). 

An upgraded spectral-spatial convolutional network 
has been offered as an alternate method for HSI 
classification. Figure 7 depicts the recommended method 
in broad strokes. A spatial size of S X S was selected from 
the raw HSI data in order to input HSI data with L 
channels and a size of H X W into the AUSSC network. 
The AUSSC picks up the spectral and spatial 
characteristics of an initial HSI patch using three separate 
convolutional kernels. The deep spectral and spatial 
features are modified by the alternately updated spectral 
and spatial blocks via recurrent feedback. The model 
parameters are enhanced by using the cross-entropy loss 
and center-loss loss functions [48]. The three 3D CNN 
algorithms—3D CNN, SSRN, and FDSSC—all show that a 
3-dimensional edge framework outperforms 2D-CNN-
based techniques and other deep learning-based 
approaches. This is due, among other things, to the fact 
that an end-to-end framework may reduce the amount of 
time it takes to complete a project. Reduce pre- and post-
processing to ensure that the final output and original 
input have the closest possible relationships. Then, to 
increase the degree of fitness, the model is enlarged to 
include additional area that can be altered automatically 
by the data. additionally, when used with HSIs with a 
three-dimensional structure. In contrast to current CNN-
based techniques, we offer an end-to-end CNN-based 
system that makes use of smaller convolutional kernels. 
The AUSSC employs kernels and disregards other 
architectures for categorizing HSI. The key distinction 
between the a m1 and a m2 convolutional kernels used in 
the 3D CNN technique is the spectral dimension. To learn 
spectral and spatial representations, SSRN uses spectral 
kernels of size 1 m and spatial kernels of size 1D, 
respectively. Convolutional kernels set the parameters for 
the model and govern which features the CNN learns. In 
InceptionV3, we introduce the idea of factorization into 
smaller convolutions [48]. 

 
Figure 8: overall accuracy curve of above proposed methods on Houston 

dataset 

To illustrate that the suggested strategy may decrease 
data reliance, they employed a very small number of 
training samples (200). Insufficiently labelled data is 
unavoidable in remote sensing applications. Furthermore, 
remote sensing data collection and labelling is time-
consuming and costly. Therefore, creating huge, high-
quality label sets is really challenging. The number of 
labelled samples used for learning is the most crucial 
variable in deep-learning supervised techniques since 
data dependency is one of the most critical difficulties in 
deep learning. 

In contrast to conventional machine-learning 
techniques, deep learning largely depends on extensive 
training data to recognized possible patterns. 200 training 
samples are required for semi-supervised 3D-GANs as 
well, although their classification performance is 
substantially lower. [49]. Revised spectral and spatial 
features in HSIs were used as the fundamental building 
blocks to develop an end-to-end CNN-based framework 
for HSI classification. To learn HIS qualities and combine 
them into advanced features, our concurrently updated 
convolutional spectral-spatial network uses spatial and 
spectral blocks that have been modified in the opposite 
direction. Our technique outperforms previous deep 
learning-based methods by learning deeply refined 
spectral and spatial characteristics via alternatively 
updated blocks, allowing it to attain high classification 
accuracy. 

They said that the CNN is a multilayer neural network 
where the convolution layer, max - pooling, and fully - 
connected layers are all components. The CNN model's 
convolution, which is the top layer, performs the 
convolution operation on the input data. Convolution 
involves performing an inner product operation on the 
kernel and receptive field of two matrices (learnable 
parameters). The feature map is constructed based on the 
input information and accessible features, and the kernel 
is often smaller than the original data and situated in the 
receptive field. The feature map's dimension may be 
effectively decreased thanks to the pooling layer. The 
perceptron-like convolution layer, which is composed of 
neurons, is multilayered, has all of the neurons linked to 
one another, and the output characteristics are employed 
in the mapping. The features are mapped into the output 
using this layer. Researchers found that inter band 
correlation has a high level of redundancy in HSI analysis. 
Without suffering a considerable loss of information that 
may be used later, the data structure of the spectral 
dimension can be scaled down. Contrarily, an HSI consists 
of hundreds of spectral bands, which makes it more 
difficult for the network model to handle data while also 
using a large amount of processing power. In recent years, 
PCA has been widely employed in HSI classification 
studies to prepare the data. 
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In accordance with HSI classifications, the two-
dimensional complexity action takes into account the 
input data in the spatial dimension while the three-
dimensional pre-processing phase analyses the input data 
concurrently in the spatial and spectral dimensions. For 
HSIs with rich spectral information, the capacity to 
maintain the spectrum information of the incoming HSI 
data via 3-D convolution is crucial. However, whether 
two-dimensional convolution procedures are performed 
on two-dimensional or three-dimensional data, the end 
output is always two-dimensional, regardless of whether 
two-dimensional convolution techniques are employed on 
the HSI or not.  The suggested method effectively recovers 
high-quality spectral and spatial feature maps from the 
HSI by merging the 3-D CNN and 2-D CNN. A 
diminishing dimension block (a Conv3-D + reshaping 
operation + a Conv3-D), a 3-D stacked convolution layer (a 
Conv3-D - fast learning layer), and ultimately a 3-D 
stacked convolution layer (a Conv3-D) are all used in the 
proposed model 

From which the output feature maps are then reshaped 
and supplied to a Conv2-D to learn more spatial 
information. The output of the Conv2-layer is flattened 
before it is sent to the top fully connected layer.  A dropout 
layer comes after the last fully linked layer. The proposed 
model's 3-D fast learning CNN block is significantly less 
computationally expensive and faster than the ordinary 
block due to the inclusion of depth-wise separable 
convolution and the fast convolution block in the fast 
learning block. To employ image classification algorithms, 
hyperspectral data cubes for input are split into tiny 3-D 
patches called PRSB, whose center pixel determines the 
class labels. Initially, the size of the right N m labels 
matched the quantity of input data patches. Although the 
correct labels contain a background, we transmit the data 
to the network as input after removing the background 
from the labels and patches. The convolution layer in the 
input image is composed of a sliding kernel. To extract 
important feature maps from the input, this kernel has 
weights that change throughout training. These qualities 
are used in the categorization process. The number of HSIs 
available is insufficient, and data is scarce. Designing a 
model that matches the environment is one of the hurdles 
in categorizing HSIs. This research provides a hybrid 

model of 3-D and 2-D convolution for HSI classification. 
To improve classification performance, spatial and 
spectral characteristics might be employed. In the hybrid 
model, the spatial-spectral information and spatial 
information obtained via 3-D and 2-D convolution, 
respectively, are integrated. 

Figure 9 depicts the suggested method's design. As 
opposed to employing 3-D-CNN alone, combining 3-D-
CNN with 2-D-CNN reduces the number of learning 
parameters while also using less processing power. The 
Adam optimizer does a better job at network optimization 
and cuts down on training time. In comparison to other 
models, the hybrid model has the best performance in 
terms of limiting the number of training samples and 
noise. We may increase the number of layers in the model 
and deepen the network after we have a sufficient amount 
of training data. Although all models have good accuracy 
Due to the hybrid structure's capability to exploit all of the 
spectral and spatial information in HSI data, the hybrid 
model has fewer parameters and takes less training time 
than the 3-D-CNN model and the 2-D-CNN model when 
sufficient training instances are available. Because of this, 
utilizing a hybrid model for HSI categorization is 
economical. [50] proposed a system that is implemented 
Artificial Neural Network for classification of FPGA cart 
Flower.  The recommended method's superiority in the 
face of a short training sample and noise was confirmed 
by experiments on three datasets using three classification 
algorithms that  were compared. 

3. Material and Methods 

The material and methods that are discussed and used 
in the assessed articles are based on 2D and 3D 
hyperspectral images and methods are mainly based on 
CNN. The data is collected from various sources, such as 
airborne or satellite sensors, and pre-processing the data 
to remove noise, correct atmospheric effects, and extract 
relevant features. Then extract relevant features from the 
hyperspectral data to represent the spectral-spatial 
information, such as using principal component analysis 
(PCA), independent component analysis (ICA), or texture 
features. The select and implement the model, in this 
article the main focus is on the implementation of 
convolutional neural network model that is mostly used 

Figure 9: Hybrid convolutional neural network is used in the HSI classification architecture 
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for the image classification. Then train the selected deep 
learning model using annotated hyperspectral data, some 
of papers are in a supervised and some are unsupervised 
manner. After training evaluate the performance of the 
trained model using metrics such as accuracy, F1-score, 
precision, recall, and confusion matrix. Then implement 
the fine-tuning the parameters of the trained model to 
improve its performance, such as adjusting the 
regularization strength, changing the kernel function, or 
adding more hidden layers. The materials required for 
hyperspectral image classification include a computer 
with sufficient computational power, deep learning 
libraries such as Tensor-Flow or Py-Torch, and annotated 
hyperspectral data. Additionally, a software tool such as 
MATLAB or Python can be used to implement the 
algorithms and evaluate the performance of the models.  

A systematic approach to using Convolutional Neural 
Networks (CNNs) would include the following steps: 

• Define the problem: Determine the task you want to 
solve and the type of data you have available. 

• Preprocess the data: Clean, normalize, and prepare 
the data for use in the CNN. This may include 
converting images to grayscale, resizing, and splitting 
the data into training, validation, and testing sets. 

• Choose a CNN architecture: Select an appropriate 
CNN architecture based on the type of data you have 
and the task you want to solve. Common CNN 
architectures include Le-Net, Alex-Net, VGG-Net, 
Res-Net, and Inception-Net. 

• Train the model: Train the model on the training data, 
using an optimization algorithm such as stochastic 
gradient descent (SGD) or Adam, and a loss function 
such as mean squared error (MSE) or cross-entropy. 

• Validate the model: Evaluate the performance of the 
model on the validation data. This is used to tune the 
hyper-parameters of the model, such as the learning 
rate and batch size. 

• Test the model: Evaluate the performance of the 
model on the test data. This provides an estimate of 
how well the model will perform on unseen data. 

• Deploy the model: Deploy the trained model in a 
production environment, using a framework such as 
Tensor-Flow or Py-Torch. 

• Monitor performance: Regularly monitor the 
performance of the deployed model and make 
improvements as necessary. 

4. Results and Discussion 

In this paper, we have reviewed and critically 
compared many supervised hyperspectral classification 
approaches from multiple perspectives, with a focus on 
the setup, speed, and automation capabilities of various 
algorithms. Popular approaches such as SVMs, neural 
networks (2D and 3D convolutional neural network), and 
deep approaches are among the techniques compared, 
which have been widely employed in the hyperspectral 
analysis field but have never been comprehensively 
investigated using a quantitative and comparative 
methodology. The article lies in its focus on the recent 
advancements in the classification of hyperspectral images 
using 2D and 3D convolutional neural networks (CNNs)  
with channel and spatial attention mechanisms. The 
review summarizes the current state-of-the-art methods 
and provides insights into the latest developments in the 
field, highlighting the strengths and limitations of 
different approaches. The key conclusion that can be 
drawn from this research is that no classifier consistently 
gives the greatest performance among the criteria under 
consideration (particularly from the viewpoint of 
classification accuracy). Different solutions, on the other 
hand, are dependent on the complexity of the analysis 
scenario (for example, the availability of training samples, 
processing needs, tuning parameters, and algorithm 
speed) as well as the application domain in question. The 
informative analysis of all the reviewed papers given in 
below table. 

Table 1: Comparison of different methods for Hyperspectral Image classification 

Paper Reference Methodology Dataset Analysis 

[42] MCA and MLR Hyperspectral and LIDAR 
data 

The implementation of MCA and MLR on the mentioned data and 
obtained that these methods work good for LIDAR. 

[43] AUSSC and CNN HSI datasets Implemented the AUSSC and CNN on the mentioned datasets and 
observed that the Hyperspectral image classification is based on the 
size of convolution and size of layers in CNN. 

[45] GAN and CNN Salinas, Indiana pines, 
Kennedy Space Center data 

The proposed method is still need to enhance its functionality by 
changing the size of convolutional layers and max pooling. 

[46] mRMR and 2D-CNN  HSI datasets The proposed method improves some major functionality of CNN 
that were not good in simple CNN, 2D-CNN enhance the classifier 
functionality of CNN. 

[47] Deep and Dense 
CNN 

Indiana pines, Kennedy 
Space Center data, 
university of Pavia datasets 

Deep and dense CNN implemented on all mentioned datasets, and 
found that it works with 15% labeled data but not produce efficient 
results. 

[48] CNN and MFL HSI datasets Proposed methods implemented on given datasets and elaborate that 
CNN works better as compare to MFL. 
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5.  Conclusion 

To advance the field of classification of hyperspectral 
images using 2D and 3D CNNs with channel and spatial 
attention, the following open research challenges and 
future research directions can be considered: 

Finding more effective ways to exploit the rich 
spectral-spatial information in hyperspectral images to 
improve classification accuracy. Generalization to real-
world scenarios: Improving the generalization of CNN 
models to real-world hyperspectral data, which can often 
be noisy and have complex background variations. 
Combining multiple sources of information:  

Exploring the integration of other sources of 
information, such as elevation data or textual annotations, 
to improve hyperspectral image classification 
performance. Computational efficiency:  

Developing more efficient algorithms to reduce the 
computational burden of hyperspectral image 
classification, especially for large-scale datasets. 
Robustness to atmospheric and illumination conditions: 

Improving the robustness of CNN models to variations 
in atmospheric conditions and illumination, which can 
significantly impact the performance of hyperspectral 
image classification.  

Semi-supervised and unsupervised learning: 
Investigating the potential of semi-supervised and 
unsupervised learning methods for hyperspectral image 
classification to reduce the need for large annotated 
datasets. Exploring the use of multi-scale information to 
improve the classification of hyperspectral images, such as 
using multi-scale convolutional filters or combining 
multiple CNNs with different receptive field size. This 
work will be enhanced by the use of other suitable 
methodologies for the categorization of hyperspectral 
pictures, such as Transformers, which will be dependent 
on his/her expectations and/or exploitation aims. 
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