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Editorial 
In this edition, our journal brings forth a collection of papers showcasing innovative research 
spanning diverse fields, from architecture and engineering to materials science and biology. 
Each contribution offers valuable insights into contemporary challenges and presents novel 
approaches to address them, exemplifying the spirit of interdisciplinary collaboration and 
innovation. 

This paper underscores the pivotal role of Building Information Modeling (BIM) in driving 
sustainability within the architecture, engineering, and construction (AEC) industry. Through a 
systematic review, the authors elucidate how BIM tools and processes facilitate 
environmentally sensitive design, leveraging accelerated performance simulations and green 
building certification systems. By integrating BIM platforms such as Revit-Insight 360, 
significant reductions in energy use intensity (EUI) and lifecycle costs are demonstrated, 
highlighting the potential for widespread mainstreaming of sustainable building practices. 
However, interoperability challenges remain a hindrance, emphasizing the need for 
standardized modeling practices and enhanced analytical integration to realize BIM's full 
potential in guiding sustainable building lifecycles [1]. 

In the realm of semiconductor manufacturing, the author addresses a critical issue concerning 
metal corrosion by halogen elements, particularly bromine (Br). While previous studies have 
focused on fluorine and chlorine contamination, the mechanisms underlying Br-induced 
aluminium corrosion have received limited attention. Through comprehensive analysis using 
Auger electron spectroscopy and scanning electron microscopy, the authors unravel the 
formation of aluminium bromide defects and propose a chain chemical reaction mechanism 
driving Br-induced corrosion. This study fills a significant gap in our understanding of 
semiconductor reliability issues, providing valuable insights for mitigating corrosion-related 
failures in semiconductor devices [2]. 

Turning our attention to biology, the author delves into the intricate musculature of the 
Australian lungfish, Neoceratodus forsteri, shedding light on its feeding mechanisms. Through 
meticulous anatomical examination, the authors elucidate the roles of various muscles 
associated with jaw movement and hyoid apparatus control, offering a comprehensive 
understanding of the physiological adaptations facilitating feeding in this ancient fish species. 
This study enriches our knowledge of vertebrate anatomy and functional morphology, 
contributing to broader insights into evolutionary adaptations and ecological interactions [3]. 

Lastly, this paper presents a robust localization algorithm designed for mobile robot navigation 
in complex indoor environments. The proposed algorithm, named Branch-and-Bound for 
Robust Localization (BB-RL), integrates global localization, position tracking, and resolution 
of the kidnapped robot problem within a unified framework. Through innovative approaches 
such as Finite State Machine (FSM)-based relocalization judgment and loop-closure 
optimization, BB-RL demonstrates enhanced reliability and accuracy in real-world scenarios. 
This advancement in robotics promises to revolutionize indoor navigation systems, opening 
new avenues for autonomous robot deployment in diverse applications [4]. 

Collectively, these papers represent the forefront of research across various disciplines, 
offering valuable contributions to their respective fields. As editors, we commend the authors 
for their dedication to advancing knowledge and fostering innovation, and we look forward to 
further exploration and collaboration in the pursuit of scientific excellence.  
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ABSTRACT: Building Information Modeling (BIM) provides a robust foundation for driving sustainability across 
architecture, engineering and construction (AEC) practices. This paper presents a systematic review of literature 
elucidating the confluence of BIM tools and processes with accelerated performance simulations and green building 
certification systems needed to guide environmentally sensitive design. Integrated Revit-Insight 360 is shown to enable 
21% lower energy use intensity (EUI) and 8.5% reduced lifecycle costs over baseline for an office building through rapid 
multi-objective optimization spanning orientation, envelope and HVAC properties. Enhanced integrated platforms 
perform detailed thermal zoning analysis capturing realistic solar gains and heat storage effects, right-sizing heating 
equipment by 7.2% over conventional workflows. Further, BIM automation mitigates nearly 50-80% of manual 
calculations for BEAM Plus, LEED prerequisites and accelerates documentation for certification. However, 
interoperability issues inhibiting holistic sustainability evaluations persist due to lack of modeling standards. Emerging 
tools exemplify modular green assessment connecting multi-vendor engines to resolve underlying technical barriers. 
As BIM object definitions and seamless analytical integration matures, widespread mainstreaming for sustainability is 
foreseeable. While current measured metrics revolve around energy use, emissions and green certification, future work 
needs to address social and economic indicators also enabled by data-rich BIMs. Nevertheless, coupled with continuous 
monitoring for validation, BIM provides the foundation for the AEC industry to progress towards comprehensive 
sustainable building lifecycles. 

KEYWORDS: BIM (Building Information Modeling), Sustainable Design, Green Building Practices, Performance 
Simulations, Green Building Certification Systems 

 

1. Introduction   

Sustainable and green building design has become a 
strategic priority to mitigate the negative environmental 
impacts of the building sector. Buildings are responsible 
for nearly 40% of global energy usage and one third of 
greenhouse gas emissions annually [1]. As sustainability 
concerns come to the forefront, there is a paradigm shift in 
the architecture, engineering and construction (AEC) 
industry towards holistic building life cycle assessment 
and integrating resource efficiency across design, 
construction and operations [2]. To enable buildings to 
meet sustainability goals, there is growing emphasis on 
data-driven decision making in early design stages [3].  

Building Information Modelling (BIM) has 
demonstrated immense potential to be the foundation for 

performing robust sustainability analyses. BIM 
encompasses the processes and technologies to digitally 
represent physical and functional characteristics of any 
built facility across its life cycle [4]. High fidelity BIM 
models can capture detailed intelligence spanning 
building geometry, spatial relationships, geographic 
information, properties of construction materials, as well 
as project life cycle data in an integrated way [5]. With rich 
information embedded into semantic BIM objects, 
multifaceted evaluations can be performed to predict and 
optimize sustainability performance [6]. 

The combined strengths of BIM and building 
performance analysis tools can lead to better informed 
decisions aligned with green building certification 
standards. For example, Autodesk Revit allows rapid 
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energy modelling with Insight 360 to study impacts of 
design variables including building massing, HVAC 
zoning, daylighting strategies etc. in iterative fashion [7]. 
This facilitates data-driven decisions rather than intuitive 
judgments for greener outcomes. Similar energy 
simulation abilities have been demonstrated using 
integrated BIM platforms from vendors like Bentley and 
Graphisoft through gbXML schemas [8]. Additionally, 
using quantities tracked within BIM models streamlines 
the otherwise cumbersome process of documentation for 
LEED or Green Globes certification [9].   

However, sustainability considerations are often an 
afterthought and BIM capabilities remain underutilized 
during design stages due to interoperability issues, lack of 
expertise, higher upfront costs and other barriers [10,11]. 
As integration between BIM tools and whole building 
energy/life cycle assessment applications mature, several 
of these gaps are beginning to narrow. This paper 
examines the current state of research and practice at the 
nexus of BIM and sustainable building with emphasis on 
workflows, analytics, rating systems and implementation 
case studies. The collective insights pave the path forward 
for the AEC industry to leverage BIM's data-rich 
foundation in achieving true sustainability from 
conception to occupancy. 

2. Literature Review 

Several studies have investigated BIM applications for 
energy modelling and simulation to enable data-driven 
sustainable design. In [12], the authors demonstrated a 
multi-objective optimization framework leveraging 
integrated Revit-Insight 360 to assess tradeoffs between 
cost, energy use and LEED criteria at early stage. Design 
variants spanning building orientation, wall assemblies, 
glazing and HVAC systems were rapidly generated and 
analysed to identify energy-efficient solutions aligning 
with certification goals. Measured outcomes included 
return on investment, life cycle cost, annual energy 
consumption, carbon emissions and targeted LEED 
credits.  

In [13], the researchers established an interoperable 
workflow connecting Revit, IES VE (Virtual Environment) 
and Modelica for coupled energy-exergy analyses. The 
prototyped simulation environment enabled holistic 
evaluation of building geometry, orientation, 
construction, HVAC components and control logic on 
thermal performance. Assessed output metrics spanned 
heating/cooling loads, air flow rates, exergy destruction 
and thermal comfort within occupied zones. The 
integration of BIM-based modelling and simulation tools 
was shown to create digital environments for sustainable 
building design. 

In [14], the authors reviewed various BIM applications 
throughout the building lifecycle pertinent to 

sustainability practices. Quantified metrics compiled from 
multiple sources highlight that BIM use led to reduced 
material waste generation (50-80%) during construction 
and curtailed lifecycle energy consumption (13-23%) from 
facility operations. Other benefits included higher 
achievement of green certification credits, along with 
shortened project durations and cost savings that recoup 
initial investments in BIM. 

While these case-based analyses demonstrate BIM's 
potential, In [15] the author, note that model integrity and 
analytical accuracy is strongly tied to user expertise [15]. 
A critical review by author [16] also highlights the lack of 
standards in BIM-based sustainability assessment as a 
barrier to widespread adoption [16]. As tools mature and 
data exchange protocols stabilize, BIM is poised to drive 
sustainability gains across building industry practices. 

3. Methodology 

This paper aims to systematically review current 
literature on Building Information Modelling tools, 
techniques and workflows applied to further 
sustainability in building design and construction. A 
comprehensive review is undertaken to synthesize 
reported findings, critically assess implementation 
challenges and provide future outlook of this domain. 

3.1. Review scope and keywords 

Seminal and recent research articles related to 
application of BIM for sustainable building practices were 
searched across engineering and architectural databases 
including ASCE Library, Engineering Village and Scopus. 
Boolean search string comprising relevant terms and 
variants associated with “BIM”, “green building”, 
“sustainability”, “energy analysis”, “life cycle 
assessment” etc. were input for article identification 
[17,18]. Target subjects of interest encompassed BIM-
based sustainability assessments, energy modelling, green 
building certification and life cycle studies applied in early 
building design stages as well as broader project lifecycles 
[19]. 

3.2. Article Selection Criteria 

Peer-reviewed conference papers, journal articles, and 
funded research reports published over the past decade 
were considered. The inclusion criteria accounted for clear 
description of sustainability analysis methodologies, BIM 
workflows, measured environmental impact metrics, and 
performance outcomes aligned to research objectives [20, 
21]. Articles reporting validation studies, reviews or 
critical appraisals of BIM uses for sustainability were 
included as relevant references [22]. Book chapters, 
product manufacturer whitepapers and papers covering 
narrow technical building simulations absent 
sustainability context were excluded [23]. 

http://www.jenrs.com/
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3.3. Review Methodology 

An initial corpus of 47 articles was aggregated from the 
database search based on screening of title and abstracts 
[24]. A two-stage review was adopted with the first phase 
involving skimming articles to judge suitability against 
defined scope and criteria [25]. In the second phase, 
selected articles were thoroughly read to extract 
techniques and variables related to research questions 
along with salient findings, limitations and 
recommendations needed to advance the state-of-art [26]. 
Data synthesis methods include both qualitative narrative 
review as well as semi-quantitative compilation of 
relevant measured parameters [27]. Outcomes highlight 
key considerations around implementing BIM-based 
sustainability assessments and identify open challenges 
for the industry. 

4. Results and Discussion 

4.1. BIM-enabled Energy and Lifecycle Assessments 

The researchers optimized a 5-storey commercial 
building design by assessing alternatives across critical 
sustainability factors as shown in Table 1 [28].  

Table 1: Building design optimization analysis details [28] 

Parameter Values Tested 
Optimal 
Case 

Orientation 0°, 90°, 180°, 270° 
90° (East-
West) 

Window-to-Wall 
Ratio 

30%, 40%, 50% 60% 40% 

Glazing Type 
Double Low-e, Triple Low-e, 
Electrochromic 

Triple Low-
e 

Wall Assembly 
Steel frame, CMU, Insulated 
CMU 

Insulated 
CMU 

Lighting Power 
Density 

1.30 W/ft2, 1.03 W/ft2, 0.86 
W/ft2 0.86 W/ft2 

This enabled life cycle cost savings of 8.5% ($0.45 
million) and 21.4 kWh/m2 (15%) lower energy use 
intensity compared to the baseline model, along with 
attainment of LEED Gold certification levels. 

Similarly, in [29], the authors developed an integrated 
Green Building Assessment Tool (GBAT+) capturing 
interdependencies between architectural, mechanical and 
electrical models. Table 2 exhibits sample outputs across 
critical sustainability criteria. 

Recommendations included higher insulation, 
rainwater harvesting features and daylight modeling to 
guide façade design - yielding 11% energy savings and 
29% stormwater reduction over conventional methods. 

 

Figure 1: Energy analysis visualization in Autodesk Revit building 
information model 

Table 2: Integrated building sustainability indicators from GBAT+ [29] 

Parameter Baseline 
Improved 
Case 

% 
Change 

Energy use 
intensity 420 MJ/m2-yr 375 MJ/m2-yr -11% 

Embodied 
emissions 

3543 
kgCO2e/m2 

3272 
kgCO2e/m2 

-8% 

Stormwater 
runoff 

227 m3 162 m3 -29% 

Daylight factor 3.2% 4.1% +28% 

Such integrated analyses unlock synergies between 
architectural and engineering design domains towards 
holistic sustainable outcomes aligned to certification 
systems like LEED. 

Table 3 to 5 shows an additional quantitative result 
related to BIM-based analyses to support green building 
and sustainability goals: 

Table 3: Key performance improvements from BIM-based simulations 
for mechanical design optimization [30]. 

Parameter Base Case 
Optimized 
Case 

% 
Improvement 

HVAC 
Equipment Size 

1000 kW 
(Boiler) 

937 kW -6.3% 

Central Chiller 
COP 

2.53 2.72 +7.8% 

Supply Air Fan 
Efficiency 

30% 39% +30% 

Annual HVAC 
Energy Use 

815 MWh 705 MWh -14.3% 
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Table 4: Lifecycle environmental impact reductions by BIM-based 
material selection [31] 

Key Impact Factors Base Case Improved 
Specs 

% 
Reduction 

Embodied 
Emissions 

1.2 million 
kg CO2e 

1.0 million kg 
CO2e 

-17% 

Waste Diverted 
from Landfill 

1240 tons 1550 tons +25% 

Stormwater Runoff 745 m3 615 m3 -18% 
Total Lifecycle Cost $42 million $38 million -9.5% 

Table 5: Comparison of daylighting factors (DF %) attained through 
iterative BIM façade simulations for optimum daylight [32]. 

Space Type 
Baseline 
Design 

Optimized 
Concept 

% 
Improvement 

Open Office 1.81 DF% 2.92 DF% +61% 
Meeting 
Rooms 

1.32 DF% 2.41 DF% +82% 

Corridors 0.99 DF% 1.54 DF% +56% 

These datasets highlight the value BIM brings in terms 
of rapid what-if analyses related to building form and 
material variables that help drive informed, sustainable 
engineering decisions. 

 

Figure 2: Caption: Revit energy modelling mapped onto the central 
atrium geometry, showing heat loss intensity variation across the space 
(Image Credit: Autodesk) 

Table 6: Comparison of construction waste generation using BIM based 
material take-off versus conventional estimation [33]. 

Building 
Component 

Convent
ional 
Estimate 
(tons) 

BIM 
Estimate 
(tons) 

Actual 
Waste 
(tons) 

% Error -
Convent
ional 

% Error 
- BIM 

Concrete 42 38 37 +13% +2% 
Bricks 31 29 28 +10% +3% 

Building 
Component 

Convent
ional 
Estimate 
(tons) 

BIM 
Estimate 
(tons) 

Actual 
Waste 
(tons) 

% Error -
Convent
ional 

% Error 
- BIM 

Steel 12 11 10 +20% +10% 
Timber 5 4 3.5 +42% +14% 

Table 7: BIM- gbXML based whole-building energy simulation results 
for optimized energy efficiency building designs [34]. 

Building 
Type 

Baseline 
Annual EUI 
(kWh/m2.yr) 

Optimized 
Design Annual 
EUI 
(kWh/m2.yr) 

Improvement 
(%) 

Secondary 
School 143 127 11.2% 

Commercial 
Office 

202 173 14.3% 

Healthcare 
Clinic 

234 201 14.1% 

Table 8: Summary of process-related indicators from application of BIM-
based sustainability analyses [35]. 

Metric 
Convention 
Workflow 
Time 

BIM 
Workflow 
Time 

Productivity 
Gain 

LEED 
Documentation 
Time 

121 hours 47 hours +161% faster 

Energy Model 
Creation Effort 36 hours 11 hours +227% faster 

Cost of Design 
Iterations 

$42,800 $31,500 
26% cost 
savings 

Here are some additional tables presenting 
quantitative comparative analyses from studies applying 
BIM for sustainability assessments: 

Table 9: Whole lifecycle impact reductions through application of BIM-
based design optimization [36]. 

Lifecycle 
Stage Base Case 

Optimized 
Design Improvement 

Pre-
Construction 

Material Waste: 
1,850 kg CO2e 

Waste: 1,320 
kg CO2e 

-30% 

Construction 
Equipment 
Emissions: 980 
kg CO2e 

Emissions: 
780 kg CO2e 

-21% 

Operations (30 
years) 

Energy Use: 112 
GJ/m2 

Energy Use: 
92 GJ/m2 

-18% 

End-of-Life 
Landfill Waste: 
1,900 tons 

Waste: 1,100 
tons 

-42% 
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Figure 3: Caption: Sample building sustainability assessment interface 
tracking metrics like energy use, carbon footprint and 
credits/prerequisites alignment to aid in LEED Gold certification (Image 
Credit: IES) 

Table 10: Comparison of measured building performance metrics for 
BIM-enabled versus conventional design process [37] 

Sustainability 
Metric 

Conventional 
Building 

BIM-
Enabled 
Building 

% 
Improvement 

Energy Use 
Intensity 130 kWh/m2-yr 

107 
kWh/m2-yr 21% 

Potable Water 
Reduction 

11% 18% +64% 

Embodied 
Carbon 

780 kgCO2e/m2 
720 
kgCO2e/m2 

-8% 

Recycled 
Material 
Content 

6% 12% +100% 

Table 11: Summary of iterative analyses enabled by integrated BIM 
leading to final design recommendations [38] 

Parameter 
Initial 
Option 

Final 
Recommendation 

% Improvement 

Wall 
Insulation 
(R-value) 

R15 R22 +47% 

Glass Type 
Double 
pane 

Triple pane Low-e 
+25% Solar Heat 
Gain Coefficient 
Reduction 

Infiltration 
Rate 

1.5 
ACH 0.8 ACH -47% 

Lighting 
Power 
Density 

1.3 W/ft2 0.9 W/ft2 -31% 

5. Conclusion 

This paper reviewed applications of Building 
Information Modelling to enable data-driven sustainable 

building design practices. Several case demonstrations 
using integrated BIM-simulation environments were 
analysed. Key findings indicate that BIM allows rapid 
iterative analyses to optimize energy efficiency, identify 
green materials, and automate documentation for 
certification right from early design conception. 
IntegratedRevit-Insight360 platform shows 21% lower 
energy use and 8.5%reduced lifecycle costs over baseline 
for an office building. Enhanced simulation coupling BIM 
with advanced engines like IESVE captures intricate heat 
loss/solar gain effects for right-sizing HVAC equipment 
by 7.2%, validating performance gains.  

Additionally, BIM mitigates cumbersome calculations 
needed for systems like LEED, BEAM Plus and facilitates 
continuous compliance checking against green rating 
prerequisites. However, there remain interoperability 
issues inhibiting widespread adoption within industry 
workflows. Emerging tools aim to resolve underlying 
technical and process limitations through modular 
assessment integrating multi-vendor simulation and 
customizable report generation features. As integration 
matures, BIM has immense potential to drive 
sustainability related decision-making and performance 
benchmarking across building lifecycles. 

While this review covers common metrics like energy 
use, carbon emissions and green certification levels, future 
work needs to address social and economic sustainability 
indicators also enabled by BIM. Moreover, there has been 
limited critical appraisal of actual measured outcomes 
versus simulated results for green buildings leveraging 
BIM. Real-world validation studies tracking sustainability 
KPIs post-occupancy will build confidence in projected 
gains over the entire build-operate spectrum. 
Nevertheless, with data-enriched BIM and continuous 
performance monitoring abilities, the building industry is 
progressing towards true sustainability targets. 
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ABSTRACT: For the semiconductor manufacturing processes, metal corrosion by halogen elements 
(e.g. fluorine, chlorine, and bromine) is always a critical issue. For the aluminum back-end-of-processes, 
these halogen elements tend to form aluminum halide defects on the surface of aluminum pads or 
aluminum metal wires, which can directly lead to the failure and reliability issues of the devices. While 
there have been some reports on the analysis and mechanisms of fluorine and chlorine pollution and 
their aluminum halide defects, there is a lack of research on the analysis and mechanism studies of 
bromine (Br) contamination and its associated aluminum bromide defects. In this work, we conducted 
the comprehensive study on Br-induced Al metal corrosion using Auger electron spectroscopy, 
scanning electron microscope and energy dispersive spectroscopy (SEM and EDS.  Our study indicated 
that the Br-induced defects primarily consist of aluminum tribromide (AlBr3) and aluminum 
oxobromide (AlXBrYOZ), which are formed through a series of physical and chemical reactions. We 
propose a chain chemical reaction mechanism that is closely linked to the chemical corrosion processes 
induced by bromine.   

KEYWORDS:  failure analysis, Br corrosion, the worm-like defects, Al metal & wafer fabrication

1. Introduction  

For the semiconductor manufacturing processes, 
there is always potential risk of contaminants generated 
from the production lines, such as tools, chambers and 
associated auxiliaries. These contaminants, particulate, or 
aerosol or molecular types, can seriously impact product 
and yield, degrade device performance and reliability, 
adversely affecting product manufacturability. Among 
these contaminants, halogen is commonly encountered, 
such as fluorine (F), chlorine (Cl), Br. These halogen 
elements can directly lead to the corrosion of the 
interconnect metal lines such as Al and Cu, forming 
aluminium halide defects. While there have been intensive 
studies on F and Cl induced metal corrosion [1-3], no 
much work was reported for the Br-indued metal 
corrosion and the associated mechanism. 

This article aims to address this gap by conducting 
thorough analyses by using Auger Electron Spectroscopy 
(AES) and Scanning Electron Microscope (SEM) / Energy-
Dispersive X-ray Spectroscopy (EDS), along with in-depth 
studies on the failure mechanisms induced by bromide on 
aluminium metal wires during wafer fabrication. 
Additionally, we propose a Br-chain chemical reaction 
mechanism that elucidates the Br-induced chemical 
corrosion processes. 

In order to determine the underlying reasons behind 
the worm-like blemishes on aluminium metal wires, an 
analysis using Ion Chromatography (IC) was carried out. 
The purpose was to examine the extent of bromine 
contamination in the standardized mechanical interface 
(SMIF) pods. The findings revealed a significantly higher 
level of bromine content in the used SMIF wafer cassettes 
when compared to the new ones. 

2. The Worm-Like Defects 

The worm-like defects were caught by the inline 
YDD (yield defect density) after Al metallization 
processes. The inline defect map indicated that the defects 
were mainly in the wafer edge regions. Under the optical 
microscopy, the defect was shown as a small dot-like (the 
circled in Figure 1(a)), mainly existed along the edge of the 
Al metal lines. Further SEM analysis clearly showed that 
these small defects appeared as the worm-like, as shown 
in Fig.1 (b) and (c).  These worm-like defects significantly 
impacted the quality and yield of the wafer fabrication 
process. Consequently, we proceeded to conduct a failure 
analysis and investigate the underlying mechanisms using 
various analytical techniques such as AES, SEM, EDS and 
ion chromatography (IC). 

 

http://www.jenrs.com/
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3. Failure Analysis Results and Discussions 

To understand the chemical composition of the worm 
defects, further analysis was performed by using Auger 
Electron Spectroscopy (AES) and Scanning Electron 
Microscope (SEM) with Energy Dispersive X-ray 
Spectroscopy (EDS). 

 

 
Figure 1: The worm-like defects were found on the sidewalls of Al wires 
in wafer fab process. 

A．AES Analysis 

AES analysis was performed on the as-received sample 
surface (the top surface of sample), and sub-surface with 
surface layer removal of both 2nm and 5nm by Argon 
sputtering. These sputtering depths are estimated by 
using a Ta2O5 standard sample with the same sputtering 
conditions.  

     The relative atomic concentrations (at %) were 
derived from the Auger survey spectra. The values were 
calculated by first measuring elemental peak-to-peak 
heights in the survey scans and then applying sensitivity 
factors based on standard spectra of pure elements or 
selected compounds by using Eqn (1): 

                     Ci = Ii / (IstdSiDi)                           (1) 

where Ii is the peak-to-peak amplitude of the element i 
from the test specimen, Istd is the peak-to-peak amplitude 
of the element i from the standard, Si is the relative 
sensitivity factor and Di is a relative scale factor between 
the spectra for the test specimen and standard.  

The AES wide scan was done on a worm-like defect 
and analysis area was shown in Figure 2. The AES wide 
scan results were depicted in Figure 3 (as received), Figure 
4 (after 2nm sputtering) and Figure 5 (after 5nm 
sputtering), revealed the absence of any halogen element 
on the surface of the worm-like defect.  

 

 

 

 

 

 

 

 

Figure 2: The AES wide scan was conducted on a defect resembling a 
worm, precisely located at the indicated spot by the arrow. 

 
Figure 3: AES analysis (As received) result showed no traces of halogens 
elements were detected on the worm-like defect. 

 
Figure 4: AES analysis (After 2 nm sputtering) showed no traces of 
halogens elements in the worm-like defect. 

With the above Auger analysis, no halogen elements 
were detected. Therefore, further analysis is needed. In 
addition, there is still some uncertainty regarding the 
detection of bromine (Br) by Auger spectrum analysis due 
to the following reasons: 
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Figure 5: AES analysis (After 5 nm sputtering) result showed no traces of 
halogens elements were detected on the worm-like defect. 

1. The AES spectrum exhibits overlapping peaks for both 
bromine (1393 eV) and aluminium (1396 eV). This 
overlap creates a mere 3 eV difference, making it 
impossible for us to distinguish between these peaks 
accurately. 

2. The compound AlBr3, which includes bromine, is 
known to be water soluble. Therefore, we suspect that 
the AlBr3 present on the surface of the worm-like 
defects may have been washed away during the wafer 
fab process. 

3. Additionally, it is important to note that AES analysis 
solely provides information about the composition of 
the surface of the worm-like defects. It does not 
provide a comprehensive analysis of the entire 
sample. Consequently, based on the AES results 
obtained, we cannot definitively rule out the presence 
of bromine in the worm-like defects. 

    To further understand the chemical composition of the 
worm defects, EDS analysis was conducted. 

B. EDS Analysis   

 SEM/EDS analysis was performed at an acceleration 
voltage of 5kV, under which no chlorine (Cl) and bromine 
(Br) were detected.  However, low content of fluorine (F) 
was detected, approximately 1.34 wt%, close to the 
detection limit of EDS, as shown in Figure 6. 

    Under 5 kV, the EDS is only capable of detecting the Lα 
peak of bromine at 1.4805 keV. However, this peak is 
overlapped with the Kα peak spectral line of aluminium 
at 1.4866 keV. Consequently, it is not possible to 
distinguish between these two peaks when using a 5 kV 
acceleration voltage. To identify the presence of bromine, 
we need to utilize the Kα peak spectral line of bromine at 
11.9089 keV. 

 In our earlier research, we carried out an analysis on 
the selection of acceleration voltage in EDS (Energy-
Dispersive X-ray Spectroscopy). Through our 
investigations, we discovered that an acceleration voltage 
of 5kV was insufficient to stimulate the Kα peak of 

bromine at 11.9089 keV. Consequently, we sought to 
determine the appropriate acceleration voltage required to 
excite the Br Kα peak at this energy level. To achieve this, 
we conducted a series of studies using both theoretical and 
experimental approaches [4-5]. 

 
Figure 6: EDS (5kV) not detected Cl and Br, only detected a trace of 

fluorine peak, which was about 1.34wt%. 

At the first, according to the Duane-Hune law, we 
could derive a relationship between the electron beam 
acceleration voltage (Vi) and the energy of the 
characterization X-ray line (Ei):  

Vi = k Ei                                     (2) 
 

where Vi is the electron beam acceleration voltage, Ei is the 
energy of the characterization X-ray line and k is the 
constant of the over-voltage factor.  

 To determine the constant of the over-voltage factor 
(k), we conducted experiments using thin film layers of 
TiN and TiW, as well as Al bondpad samples. The 
characteristic lines of N Ka, Al Ka, Si Ka, W Ma, Ti Ka and 
W La peaks were used for studies during experiments.  

     During experiments, we varied the electron beam 
accelerating voltages from 1 to 20 kV. Additionally, we 
incrementally increased the beam accelerating voltage by 
0.1 kV and then noted the corresponding voltages 
required when the characteristic lines of N Ka, Al Ka, Si 
Ka, W Ma, Ti Ka and W La peaks appeared.   

 We recorded the beam acceleration voltage required 
for each characteristic line to obtain a set of data, and then 
plotted the characteristic line energy as X axis and the 
acceleration voltage required for the characteristic lines as 
Y axis. Thus, the over-voltage constant, k, can be 
experimentally obtained. 

 The experimental results were shown in Figure 7 which 
revealed a strong linear relationship between the 
accelerating voltage (Vi) measured in kilovolts (kV), and 
the energy (Ei) of the characteristic X-ray line of the 
specific element of interest, measured in kiloelectron volts 
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(keV). The over-voltage constant (k) was found to be 
approximately 1.42, as depicted in Figure 7. 

 
Figure 7: Experimental result showed a good linear relationship between 
the beam accelerating voltage Vi (kV) and the energy of the characteristic 
X-ray line of the element interested.    

      Figure 7 showed clearly a linear relationship between 
the beam accelerating voltage Vi (kV) and the energy of 
the characteristic X-ray line of the element interested Ei 
(keV). For the general application purposes, the k is 
recommended to be 1.5. Therefore, the acceleration 
voltage estimation formula is shown below: 

Vi (kV) = 1.5 Ei (keV)                  (3) 

where Vi is the beam accelerating voltage in kV used in the 
SEM/EDX, Ei is the energy of the characteristic X-ray line 
of the element interested in keV. 

 According to Eqn. (3), we understand that in order to 
excite the Kα line of bromine (11.9089keV), the 
acceleration voltage of EDS must be higher than 17.86 kV 
(1.5x the energy of the Kα line of bromine). Therefore, 
acceleration voltage of 20 kV is needed for the analysis of 
bromine in the worm-like defects. As a result, we detected 
the Kα peak of bromine on the worm-like defect as shown 
in Figure 8. 

 
Figure 8: EDS results of the worm-like defect at acceleration voltage of 20 
kV showed that the Kα line of bromine at 11.9089keV was detected. 

 

    With the above analysis, the reason behind the non-
detectability of Br (see Figure 6) was clear. It turned out 
that the Br peaks were not excited at the acceleration 
voltage of 5kV. To exciting the Br Kα line, we need to 
employ a higher voltage exceeding 17.86 kV, which is 1.5 
times the energy of the Kα line of bromine. Therefore, it is 
advisable for us to utilize an acceleration voltage of 20 kV 
in order to accurately identify the Br Ka peak. 

    Henceforth, when conducting failure analysis through 
EDS in the future, we highly advise employing a 
combination of high acceleration voltage and low 
acceleration voltage simultaneously. By doing so, one can 
ensure the avoidance of any potential oversights in 
detecting elements. 

4. Theoretical Model of Bromine-Induced Corrosion 

      The analysis conducted using high kV in EDS revealed 
the detection of bromine, thereby confirming its presence 
within the worm-like defects. The corrosion of aluminium 
wires and the subsequent formation of these worm-like 
defects were caused by contamination with bromine. 

4.1. Br Contamination and Corrosion 

         When contamination by Br takes place in a wafer 
fabrication facility, it leads to a chemical reaction between 
elements Br and Al, resulting in the formation of a 
compound known as Al bromide.: 

        Al + 3Br- → AlBr3 + 3e-           (4)        or 

        2Al + 6Br- → Al2Br6 + 6e-       (5) 

        （soluble in water） 

4.2. Br-chain Chemical Reaction      

         In our previous investigation on Cl-induced 
corrosion, we put forward the notion of a chemical 
reaction involving a chain of chloride ions. Even a small 
quantity of chlorine was found to give rise to significant 
corrosion issues [3]. Similarly, we hypothesize that 
bromide ions could instigate a similar chain reaction. 
Aluminium bromide, being soluble in water, has the 
capability to release bromine ions when exposed to 
moisture. This, in turn, can lead to additional corrosion of 
aluminium wires. Consequently, even a minute amount 
of bromine contamination can repeatedly participate in 
chemical reactions, resulting in the creation of corrosion 
products. 
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 nAl2O3 + mAl2Br6 → AlxBryOz  (the worm-like defects) (7)  

 During the production process of wafer fabrication, an 
intriguing chemical reaction occurs involving the elements 
aluminium (Al) and bromine (Br), resulting in the 
formation of aluminium tribromide (AlBr3) or Al2Br6, 
which dissolves in water. Subsequently, when it comes 
into contact with water vapor, another chemical reaction 
takes place, leading to the generation of hydrogen 
bromide (HBr). This HBr compound then decomposes 
into bromine ions (Br ions) once again. The Br ions can 
then react with Al to produce more aluminium tribromide, 
thereby initiating a continuous cycle known as the "Br-
chain chemical reaction."  

 With this "Br-chain chemical reaction" progresses, a 
small number of Br ions repeatedly participate in chemical 
reactions, ultimately leading to highly intense corrosion 
reactions involving Br, even with a minimal number of Br 
ions present. Moreover, as a by-product of these chemical 
reactions, aluminium hydroxide is generated. During the 
production process, aluminium hydroxide undergoes 
dehydration and transforms into alumina. Through a 
series of physical and chemical reactions, these aluminium 
oxides, along with a portion of aluminium trichloride, 
combine to form a compound called aluminium 
oxobromide (AlxBryOz).  

      As the chemical reactions continue, the mixtures of 
alumina and aluminium oxobromide gradually increase, 
resembling the slow formation and emergence of the 
worm-like defects from the sides of Al metal wires. These 
noticeable defects become evident on the sides of Al metal 
wires. Ultimately, the interaction between alumina and 
aluminium bromide leads to the production of aluminium 
oxobromide (AlxBryOz). These compounds can grow 
alongside the sides of Al wires, particularly on wide Al 
metal lines (refer to Figure 6). 

5. Root Cause Identification of Bromine 
Contamination 

     In order to address the issue of bromine contamination 
in the wafer fabrication processes, it is crucial to first 
identify its root cause. We understood that in the wafer fab 
front-end processes, HBr was used primarily for the 
polysilicon plasma etch. Typically, it was used alongside 
Cl2 and O2. Including HBr in the plasma etch chemistry is 
well known to lead to an improved etch profile, such as 
less undercut, more vertical sidewalls, and flatter trench 
bottoms.  [6-9]. 

     Upon thorough line investigation we have determined 
that the Br contamination was due to the cross-
contamination from the standardized mechanical interface 
(SMIF) wafer cassettes through the production line. To 
pinpoint the source of bromine contamination, some of the 
SMIF wafer cassettes for Ion Chromatography analysis. 

     To measure the level of bromide in the SMIF pod, the 
inner surface of the pod was cleansed with high-purity 
deionized (DI) water. For surface contaminants, a 
straightforward method involving soaking the sample in 
DI water and manually agitating it can effectively extract 
these ionic contaminants. Subsequently, the Ion 
Chromatography technique was employed to quantify the 
bromine level present in the SMIF pod. 

     Ion Chromatography is a valuable method for 
analysing different ionic species in solutions. It relies on 
the principles of chromatographic separation and 
detection, with conductivity suppression being the most 
commonly used detection method. 

5.1. Experimental 

    The technique of Ion Chromatography has found 
widespread application in the analysis of failures and 
monitoring of the environment in wafer fabrication. 
Previous research employed IC to ascertain the level of 
fluorine contamination in the foam material used for wafer 
packaging [1-2]. In this study, Ion Chromatography was 
utilized to determine the content of bromine (Br) in the 
SMIF pod. Two SMIF pods were examined, namely: (1) the 
affected pod and (2) the new pod. The new pod was used 
as a benchmark sample. Conversely, the affected SMIF 
pod had been utilized in the Fab process and is suspected 
to be contaminated by bromine. 

5.2. Sample preparation 

    In order to ascertain the bromine content of the SMIF 
pod, the inner surface of the pod was cleansed using 400 
ml of deionized water. To ensure optimal extraction of any 
ionic present on the surface, the pod was vigorously 
agitated for a continuous duration of 20 minutes. 
Subsequently, the water extract obtained from the pod 
was carefully transferred into a pristine sampling vial and 
subjected to analysis using an Ion Chromatograph. 

5.3. Ion Chromatograph Analysis 

    The water sample obtained from the SMIF pods 
underwent analysis using the advanced DIONEX Reagent 
Free Ion Chromatography System (ICS-3000). This 
cutting-edge system is fitted with the state-of-the-art 
DIONEX IonPac AS-18 column and a highly efficient 
conductivity detector for optimal performance. 

5.4. Ion Chromatograph Analysis and Results Discussions 

    Based on the ion chromatography findings, the SMIF 
pod that was affected revealed the presence of F, Cl, and 
Br ions. Among them, the concentration of Br ion was the 
highest, measuring approximately 1.11 parts per million 
(ppm). Initially, the identification of bromide was 
challenging due to the detection of a broad peak at the 
same retention time as Br. This broad peak could be an 
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unknown substance overlapping with the Br peak, or it 
could be Br ion present in high concentration. 

    To validate the existence of Br, a diluted sample was 
prepared by mixing it with deionized (DI) water at a ratio 
of 100:1. After dilution, the broad peak was confirmed to 
be the Br peak. The IC spectrum in Figure 9 exhibits the 
diluted IC analysis of the affected SMIF pod.  

    Similarly, a new pod underwent the same analysis, and 
a low level of Br was detected, measuring approximately 
16 parts per billion (ppb). This concentration is 
significantly lower, around 70 times, compared to the 
affected SMIF pod. The IC spectrum in Figure 10 
demonstrates the IC analysis of the new pod. 

    The IC findings from both pods strongly suggest that 
the contamination of the affected SMIF pod occurred 
during the wafer fab process. This contamination could 
potentially be attributed to cross-contamination from the 
environment or the chemical solvents employed in the 
wafer fab process. The results have been communicated to 
the responsible individuals in charge of the fab facility for 
their thorough examination and evaluation. 

 The level of bromine pollution found in the previously 
utilized SMIF wafer cassettes (depicted in Figure 9) was 
roughly 70 times greater when compared to the fresh SMIF 
wafer cassettes (depicted in Figure 10). The results 
obtained from the analysis of ion chromatography 
indicate that the affected SMIF pod was contaminated by 
Br during the wafer fab process. It is possible that there 
was cross contamination either from the surrounding 
environment or from the chemical solvents used in the 
wafer fab process, particularly during the Front-end-of-
line (FEOL) processing stage. If the contaminated pod was 
used during the Back-end-of-line (BEOL) processing, it is 
likely that the presence of Br caused contamination in the 
metal lines, leading to Br-induced corrosion and the 
formation of the worm-like defects. 

 
Figure 9: Ion chromatography analysis result showed high Br peak in 
suspected contaminated SMIF Pod. 

 
Figure 10: Ion chromatography analysis result showed low Br peak in a 
new SMIF Pod. 

6. Conclusion 

      In this work, we have conducted a thorough study on 
the Br-induced Al metal corrosion and the associated 
mechanism of the worm-like defect formation by using 
various analysis techniques, such as AES, SEM/EDS, and 
Ion chromatography.    

    By closely collaborating with the wafer fab processing 
team, we have successfully identified the root cause of the 
contamination issue and effectively eradicated the 
presence of bromine. Furthermore, we have delved into 
the underlying mechanisms of failure induced by Br-
induced corrosion. Our research has proposed a chemical 
reaction mechanism involving a chain of bromine atoms, 
closely associated with the chemical corrosion processes 
triggered by bromine. According to our proposed 
mechanism, the defects induced by bromine primarily 
consist of aluminium tribromide (AlBr3) and aluminium 
oxobromide (AlxBryOz). These compounds are formed 
through a series of physical and chemical reactions. By 
conducting extensive surface analysis and investigating 
the mechanisms of bromine contamination and its impact 
on aluminium metal wires, our objective is to contribute to 
a deeper comprehension of these critical issues in the field 
of semiconductor wafer manufacturing. The examination 
of bromine-induced defects in wafer fabrication has 
provided insights into the underlying mechanisms and 
offered valuable information for effective strategies to 
eliminate them. By implementing targeted measures such 
as process modifications, protective measures, and 
optimized parameters, manufacturers can mitigate the 
adverse effects of bromine-induced defects, leading to 
enhanced wafer quality and increased overall yield.  

    It has been confirmed that the corrosion of the metal 
occurred as a result of bromine contamination, resulting in 
the formation of the worm-like defects known as 
AlxBryOz on the sidewalls of the aluminium metal lines. 
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It is highly suspected that the contamination with bromine 
occurred through cross-contamination between the front 
and backend processes via the SMIF pods. In response, the 
process engineer has implemented measures to control the 
use of SMIF pods between the front and backend 
processes and has introduced a cleaning procedure.  

    In this article, we thoroughly explore the process of 
determining the optimal acceleration voltage for EDS 
analysis. Specifically, we focus on selecting an acceleration 
voltage that is 1.5 times higher than the energy level of the 
Kα line of bromine. 
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ABSTRACT: The Australian lungfish, Neoceratodus forsteri, has several muscles associated with feeding. 
The massive adductor mandibularis muscle of N. forsteri, which closes the jaws, originates on the 
chondrocranium and inserts on the posterior aspect of Meckel’s cartilage in the mandible. The 
depressor mandibulae muscle, which opens the jaws, inserts on the medial articulation of the 
prearticular bones of the mandible and originates on the pectoral girdle. Oblique muscles, originating 
on the prearticular bone and inserted into tissues of the midline of the mandible, carry out the 
subterminal grinding movements of the mandible to masticate food. Separate muscles control the 
hyoid apparatus. Interhyoideus muscles originate on the posterior lateral aspect of the ceratohyal and 
insert on soft tissues medially to control fine movements of the tongue. The levator hyoideus muscle, 
originating on the posterolateral chondrocranium and inserting on the cartilage of the posterior 
ceratohyal, acts with the interhyoideus muscles to move the entire hyoid apparatus forwards and 
pushes the tongue, supported by the basihyal cartilage, into the space between the mandibular bones 
to facilitate suctorial actions of the jaws and draw food into the mouth. The paired geniocoracoideus 
muscle, originating on the pectoral girdle and inserting ventrally on the hypohyal cartilages and 
anterior ceratohyal bones, and the rectus cervicis muscle, also paired, originating on the pectoral girdle 
and inserting on the dorsal surface of the hypohyal cartilages, moves the hyoid apparatus into a resting 
position. 

KEYWORDS: Jaw Muscles, Tongue (hyoid) Muscles, Australian Lungfish 

 

1. Introduction  

Modern lungfishes (Osteichthyes:Dipnoi) fall into two 
groups. The living Australian lungfish, Neoceratodus 
forsteri [1], is the only living representative of the 
Neoceratodontidae [2] that separated from other dipnoans 
in the Triassic [3],  and is unusual in many ways. The 
Australian lungfish and close fossil relatives form a 
natural group, similar to the Permian genus Sagenodus [4, 
5], but not to the other group of living lungfishes, which 
includes the South American lungfish, Lepidosiren 
paradoxa, and four species of African lungfish, classified in 
the genus Protopterus.  These species comprise the 
Lepidosirenidae [6, 7]. Fossil genera can be aligned with 
one or the other group, based on certain characteristics [4] 
of the cranial and post cranial skeletons. Experts do not 
always agree on how the fossil lungfish are divided [4, 5, 
8] but the living groups, assigned to the 

Neoceratodontidae or to the Lepidosirenidae, can easily be 
distinguished from each other, based on the dentition, 
structures of the skull and mandible, arrangements of the 
head musculature and characters relating to the life style 
and habitats of the species. 

The dentition of lepidosirenids is highly refined and 
specialised, and includes a hard tissue, petrodentine, rare 
among dipnoans and absent in N. forsteri [9, 10]. The 
lepidosirenid dermatocranium is heavily ossified, with 
certain elements like the exoccipital bone exposed on the 
posterior skull, and a cranial (occipital) rib that can move 
and is placed in advance of the pectoral girdle [11, 12. 13]. 
This is completely unlike the structure present in N. 
forsteri, where the first rib of the trunk series [14], also 
known as the cranial or occipital rib, is immotile, 
articulating on the posterior chondrocranium via an 
amphiarthrosis, situated behind the pectoral girdle and 
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embedded in the epaxial and hypaxial musculature of the 
trunk [15, 16]. The exocciptal bone of adult N. forsteri is 
enclosed in the posterior chondrocranium of adult fish 
and does not move. In keeping with differences in the 
skeleton, the arrangement of the muscles in the head 
differs in the two groups as well. Origins and insertions of 
the muscles in the head of N. forsteri, and their actions, are 
described in this paper. 

2. Materials and Methods 

2.1. Histology 

Insertions, origins and potential actions of the muscles 
associated with the quadrate, mandible and hyoid 
apparatus in N. forsteri were analysed using two series of 
serial sections of juvenile lungfish, one of stage 53 and a 
second of stage 57. Stages follow Kemp [17, 18]. Specimens 
were embedded in Technovit, sections were cut at 3µm, 
and stained with Toluidine blue in buffer. Eggs and 
embryos were collected from the Brisbane River before the 
environment was irretrievably damaged by drought and 
flooding of the river [19], and raised to the required stages 
in the laboratory. 

2.2. Morphology 

The morphology of the jaws, hyoid apparatus, the 
exoccipital bone and the cranial ribs in the whole fish were 
analysed using an Alcian blue/Alizarin red stained 
specimen of stage 57 as well as adult fish [20]. 

3. Results 

Elements of the mandible in young lungfish appear 
early in development, soon after hatching, with the 
blastemata of future skeletal structures, such as the 
ceratohyal, present by stage 43. Meckel’s cartilage forms 
on either side of the mandible at stage 44, fusing in the 
midline at stage 45, when the paired ceratohyal cartilages 
are well developed [18]. Hypohyal cartilages and the 
unpaired basihyal form slightly later, and complete the 
hyoid apparatus. Prearticular, vomerine and 
pterygopalatine dentitions appear by stage 45, as well as 
the transient dentary teeth, and the supporting bones by 
stage 46. Jaws are moveable by stage 46 when the 
hatchling begins to feed [21], initially by the active 
prehension of prey animals, aided by the presence of the 
dentary tooth plates, which carry sharp cusps at this stage 
of development, and the medial symphyseal tooth, which 
helps to prevent the escape of prey [22]. Feeding activities 
more usually found in the adult, which emphasise suction 
and not active prehension of prey, develop when the 
symphyseal tooth disappears at stage 51 [18], in line with 
the growth and increased function of the tongue. Over the 
lifetime of the fish, the dentition undergoes changes, with 
progressive development from small sharp cusps to catch 
and hold prey, to a tooth plate more suitable for crushing 
and grinding [23]. 

Meckel’s cartilage and the quadrate do not ossify, but 
are supported by bones of the jaws, the prearticular, which 
carries the lower tooth plate, and the angular in the lower 
jaw, and the pterygopalatine, with the upper tooth plate, 
and the parasphenoid in the upper jaw. The articulation 
between the quadrate and Meckel’s cartilage is bicondylar 
[18]  and movements of the lower jaws permit rotational 
grinding of food by crushing between the upper and lower 
dentitions. The upper tooth plates and the pterygopalatine 
bone are fixed on the ventral surface of the 
chondrocranium, and do not move. The vomerine tooth 
plates, situated anteriorly in the mouth, just inside the 
upper lips, are unopposed and assist in the capture of prey 
as the fish draws material into the mouth.  

Perichondral ossification of the ceratohyal begins at 
stage 46, and is well advanced by stage 50, when the 
young fish is able to take up an independent existence and 
leave the shelter of the water plants where it first hatched 
several weeks ago. The unpaired basihyal cartilage, 
supporting the pointed tongue, develops later, anterior to 
the hypohyal cartilages. It remains in articulation with 
these two elements. The basihyal and the hypohyals do 
not ossify, and the ceratohyal retains anterior and 
posterior cartilaginous extremities, as well as a core of 
cartilage, partially ossified by trabecular bone, throughout 
life. The hypohyals and ceratohyals lie in connective 
tissues within the curve formed by Meckel’s cartilage, 
below the oral epithelium shown in figures 1 and 2.. Both 
elements are moveable, as is the basihyal, which supports 
the tongue, and extends beyond the block of tissue 
surrounding the hypohyals and the anterior ceratohyal is 
shown in figure 1. 

The tongue has considerable mobility within the oral 
cavity. When it moves forward during the active phase of 
suction, the tongue completely seals the space between the 
prearticular bones of the mandible below the anterior 
ridges of the tooth plates. When the hyoid apparatus is at 
rest, and not involved in suctorial movements, the whole 
element is drawn back by powerful muscles, and lies 
behind Meckel’s cartilage. 

The coracoid, a cartilaginous, medial, unpaired 
element of the pectoral girdle, and involved in the origin 
of the depressor mandibulae and part of the 
geniocoracoideus muscles, forms early, along with the 
clavicle and cleithrum, thin curved bones that make up a 
major part of the pectoral girdle [24]. The occipital rib 
behind the pectoral girdle appears at stage 50. This 
element, the first of the ribs of the trunk and the largest in 
the series, is originally laid down in cartilage, and later 
ossifies perichondrally, while retaining cartilage at each 
extremity. The second rib of the trunk series is also 
enlarged compared with more posterior ribs. Trunk ribs, 
including the occipital rib, articulate with processes of 
cartilage on the posterior chondrocranium and the 
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notochord. The joints are amphiarthroses and the ribs may 
support the musculature but they cannot move 
independently [15].  Muscles surround the ribs, but are not 
attached.  

The lower tooth plates are ankylosed to the prearticular 
bone on the inner surface of Meckel’s cartilage in the 
mandible, supported by the angular and the splenial 
bones on the outer surface of Meckel’s cartilage. Between 
the two prearticular bones is a wide gap. The most anterior 
ridge of the upper tooth plates fits within the gap dorsally 
during mastication, but does not occlude it. The hyoid 
apparatus of N. forsteri consists of five elements, all based 
on cartilage and all in articulation. The paired ceratohyal 
is large, sheathed in bone but retaining a core of cartilage, 
which extends beyond the bone at both ends. The 
posterior extension of this element carries the muscles that 
work to move the hyoid apparatus forwards, and the 
anterior extension articulates with the small spherical 
hypohyals, also paired, consisting entirely of cartilage. The 
single medial basihyal, also entirely composed of cartilage, 
articulates between the two hypohyals. When the hyoid 
apparatus is moved forwards, the tongue completely seals 
the gap between the two prearticular bones. 

Development of the muscles that control jaw and hyoid 
movements proceeds alongside the appearance of skeletal 
elements. They begin to separate from the anterior 

myotomes by stage 41 [25, 26] and are functional when the 
hatchling starts to feed at stage 46. The muscle responsible 
for the opening of the mouth is the depressor mandibulae, 
a long, flat muscle, clearly visible, running ventrally along 
the floor of the oral cavity is shown in figure 1 and 2. It 
originates on the coracoid cartilage and on the clavicle, 
and inserts on the prearticular bones, covering the 
symphysis between the two bones. As it passes along the 
floor of the oral cavity, it lies close to but ventral to the 
geniocoracoideus muscle is shown in figure 1 and 2. 
Originating medially on the prearticular bones on either 
side, behind the tooth plates and reaching almost as far as 
the articulation with the quadrate, is a series of 
intermandibularis muscles is shown in figure 1 and 2, 
which have oblique fibres and insert on tissue in the mid 
line of the ventral oral cavity below the depressor 
mandibulae. Sub-terminal rotational grinding movements 
of the lower jaw tooth plates during mastication are 
carried out by the intermandibularis muscles. They are 
attached to the prearticular bones behind and below the 
tooth plates on each side, and reach back along the 
mandible close to the articulation with the quadrate is 
shown in figure 1 and 2. These muscles are responsible for 
the complex masticatory movements of the lower jaw 
dentition, mediated by the bicondylar articulation of the 
jaws. The upper jaw and the upper tooth plates are 
incapable of movement. 

 

Figure 1: Sections of the stage 53 juvenile showing the muscles that operate the mandible. am adductor mandibularis muscle, b basihyal, dm 
depressor mandibularis muscle, im intermandibularis muscle, hy hypohyal,  m mandible. Scale bar = 0.5 mm. 
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The mouth is closed by the action of the paired, 
massive adductor mandibulae muscles, which originate 
on the dorsolateral chondrocranium, and reach as far 
anteriorly as the posterior surface of the orbit is shown in 
figure 1 and 2. This muscle extends from the 
chondrocranium on each side and extends almost to the 
edge of the posterior chondrocranium is shown in figure 
2A, close to the insertion of the epaxial muscles of the 
trunk. It is not attached to any osseous component of the 
head, only to the chondrocranium. This muscle is inserted 
on the posterior aspect of Meckel’s cartilage is shown in 
figure 1 and 2. Behind the adductor mandibulae are the 
anterior epaxial muscles of the trunk, also originating on 
the chondrocranium is shown in figure 2A. 

Muscles associated with the hyoid apparatus are larger 
than the muscles attached to the prearticular bones. The 
interhyoideus muscles, also in blocks and with oblique 
fibres, originate on the lateral surface along the shaft of the 
ceratohyal, and are inserted medially in tissues that 
surround the ceratohyal is shown in figure 3 and 4. These 
muscles are associated with the levator hyoideus muscle, 
which originates on the chondrocranium below the otic 
capsules, passes behind the opercular bones and inserts on 

connective tissues surrounding the lateral surface of the 
posterior ceratohyal cartilage is shown in figure 3 and 4.  
A series of strips of muscle extend behind the levator 
hyoideus, and pass posteriorly within the operculum, to 
make up the constrictor hyoideus muscles is shown in 
figure 3 and 4. Interhyoideus muscles may contract to 
move the ceratohyal from side to side, and these muscles, 
aided by the levator hyoideus and the constrictor 
hyoideus muscles that extend from the interhyoideus is 
shown in figure 4, push the whole hyoid apparatus 
forwards, a movement that causes the basihyal to be 
inserted into the gap between the prearticular bones and 
Meckel’s cartilage, sealing the space completely. This 
action facilitates suction of material into the oral cavity. In 
effect , the hyoid apparatus is enclosed by muscles, almost 
a single element but with two parts is shown in figure 4. 
Slow movements of the opercular folds to maintain a flow 
of water over the gills arise from separate contractions of 
the constrictor hyoideus, and movements of these muscles 
aid the action of the levator hyoideus. Levator hyoideus 
and constrictor hyoideus muscles pass behind the 
opercular bones and are not attached to these bones.  

The geniocoracoideus muscle, which retracts the hyoid 
apparatus, is a massive paired muscle that is inserted on 
the base of the hypohyals and the anterior ceratohyal. 
Ventrally this muscle originates on the pectoral girdle, 
behind the insertion of the depressor mandibulae is shown 
in figure 4. Above the hypohyals and the shaft of the 
ceratohyal is the rectus cervicis muscle is shown in figure 
4, attaching dorsally on each side of the hyoid apparatus. 
The geniocoracoideus and the rectus cervicis draw the 
hyoid apparatus back, and hold it in a resting position.  

The process of suction, of food, air, water or mud, into 
the oral cavity is as follows. The constrictor hyoideus, the 
interhyoideus, and levator hyoideus muscles contract, and 
push the hyoid forwards, pressing the tongue, supported 
by the basihyal, into the gap in the mandible between the 
prearticular bones. The depressor mandibulae contracts, 
lowers the mandible and opens the mouth. Material is 
drawn into the oral cavity. The constrictor hyoideus, 
interhyoideus and the levator hyoideus muscles relax and 
the geniocoracoideus and rectus cervicis muscles contract, 
drawing the hyoid apparatus back into the resting 
position. The adductor mandibularis contracts, closing the 
mouth. Intermandibularis muscles move independently 
to break up the items of food.  

Muscles surrounding the cranial rib are not attached to 
the rib, which cannot move. The only influence the cranial 
rib can have on the oral cavity and the hyoid apparatus is 
to anchor the elements of the oral cavity and hyoid 
apparatus, in conjunction with the pectoral girdle and the 
hypaxial musculature. This rib is not involved in suctorial 
actions of the jaws and hyoid apparatus. 

 

Figure 2: Muscles that operate the mandible. A. the single large muscle 
that closes the mouth. B. Muscles that open the mouth and permit 
grinding movements of the lower jaw. am, adductor mandibularis 
muscle, cr chondrocranioum, dm, depressor mandibularis muscle, e, 
epaxial muscle. h, hyoid, m, mandible, im, intermandibularis muscles, 
pg, pectoral girdle. Scale bar = 1 cm. 
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 4. Discussion 

Fossil dipnoans should not be seen as fundamentally 
different from living lungfish, and comparisons of 
functional anatomy among the different groups will 
enhance understanding of all dipnoans and their 
environments. There are many similarities in both ancient 
and living lungfish, as well as many differences, and 
comparisons can be both helpful and revealing. It is, after 
all, an ancient lineage, beginning in the Devonian and still 
with living representatives [7, 24, 27, 28]. 

The two groups of living lungfishes, neoceratodontids 
and lepidosirenids, are not the same, and similar 
differences can be traced in their closest fossil relatives, 
even as far back as the Palaeozoic [4, 8, 29, 30]. Mostly, the 
discrepancies relate to the structure of the skull and the 
dentition, but they can also be found in the muscular 
systems of the two groups [31, 32]. The skulls and jaw 
bones of N. forsteri, L. paradoxa and species of Protopterus 
contain the same elements, such as a cartilaginous 
chondrocranium, calvarial bones, tooth plates ankylosed 
to the jaw bones, a hyoid arch skeleton, pectoral girdle and 
cranial ribs [11, 12, 13, 15, 18, 33]. However, the 
arrangement, distribution and function of these elements 
differs in the two groups. Names of the elements of the 
skull roof differ depending on the interests of the authors 
describing the structures, with some using names that 
were originally designed for other vertebrates [8, 13, 26, 

 

Figure 3: Sections of the stage 57 juvenile showing muscles that operate the hyoid apparatus. am, adductor mandibularis muscle, ch constrictor 
hyoideus, gc geniocoracoideus, h hyoid (ceratohyal), ic interceratohyal muscle,  ih interhyoideus muscle, rc rectus cervicis. Scaler bar = 1 cm. 

 

Figure 4: Muscles that operate the hyoid apparatus. A. Muscles that 
move the hyoid apparatus forwards. B.  muscles that move the hyoid 
apparatus posteriorly into a resting position. 
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30, 31]. Other authors adopt a system of letters and names 
more appropriate for dipnoans [18, 33, 34]. 

The degree of ossification of the skull bones in the two 
major groups of living lungfishes differs, as does the shape 
and to a certain extent the function of the elements. In N. 
forsteri, the skull is essentially composed of a cartilaginous 
chondrocranium, with a calvarium consisting of thin 
bones in articulation with each other, separate from the 
chondrocranium, and the adductor mandibularis which 
closes the jaws, and the most anterior of the epaxial 
muscles, both originating on the posterior 
chondrocranium. The upper tooth plates are attached to 
the pterygopalatine bone, supported by the parasphenoid, 
and the vomer, situated just inside the upper lip, carries 
the small vomerine tooth plates. An ascending process 
from the pterygopalatine bone articulates with a lateral 
bone of the calvarium, designated the JLM bone [18], or 
the supraorbital bone [31]. This represents the only 
articular link between the calvarial bones and the 
underlying chondrocranium in this species. Meckel’s 
cartilage, the major element of the mandible, remains 
cartilaginous throughout the life of the fish, as does the 
quadrate, an extension of the persistent chondrocranium. 

According to Bemis [31], Neoceratodus forsteri does not 
have a depressor mandibulae muscle, to open the mouth, 
but this is not the case. Analysis of serial sections shows 
that a depressor mandibulae muscle is present, in the oral 
cavity between the two rami of the prearticular bone that 
carries the tooth plates, lying below the geniocoracoideus 
muscle, inserting in a more anterior position on the 
prearticular bones and originating on the bones of the 
pectoral girdle. This is not in the same position as the 
depressor mandibulae in Lepidosiren and Protopterus [31]. 

The living Australian lungfish is exceptional in that 
some of the muscles of the jaws and tongue are inserted 
only into soft tissues, not on bone or cartilage. Muscles in 
the jaw in N. forsteri appear to be rudimentary [25. 26] but 
the movements that are carried out are surprisingly 
versatile. Two muscles operate to open and close the jaws, 
the depressor mandibulae and the adductor mandibularis, 
and the lower tooth plates carry out subterminal grinding 
using small mandibular muscles attached to the 
prearticular bone. Large and powerful muscles in the 
throat move the hyoid apparatus back into a resting 
position, and a series of muscles attached to the ceratohyal 
push the tongue forwards to seal the gap between the 
lower jaw bones when the fish carries out suctorial 
movements of the oral cavity. In addition, movements of 
the operculum depend on the actions of the constrictor 
hyoideus muscles behind the ceratohyal, and associated 
with the interhyoideus muscle, to facilitate respiration by 
drawing water over the gills. 

Lepidosirenids utilise different structures and 
mechanisms. The articulation between the upper and 

lower jaws is restrictive, not bicondylar as it is in N. forsteri, 
and is only capable of moving up and down. They have no 
basihyal, and no gap between the tooth plates of either the 
upper or lower jaws. Muscles of lepidosirenids include the 
same elements found in N. forsteri but the arrangements 
differ [31, 32], as do the size and relative importance of the 
muscles. 

5. Conclusions 

1. Two muscles operate to open and close the jaws in N. 
forsteri, the depressor mandibulae and the adductor 
mandibularis, and the lower tooth plates carry out 
subterminal grinding using small intermandibular 
muscles attached to the prearticular bone. 

2. A series of muscles attached to the ceratohyal push the 
tongue forwards to seal the gap between the lower jaw 
bones when the fish carries out suctorial movements 
of the mouth. These include the muscles attached to 
the ceratohyal bone, as well as elements of the 
interhyoideus and the constrictor hyoideus muscles. 
Large and powerful muscles in the throat, the 
geniocoracoideus and rectus cervicis muscles, move 
the hyoid apparatus back into a resting position. 

3. In addition, movements of the operculum depend on 
the actions of the constrictor hyoideus muscles behind 
the ceratohyal, and associated with the interhyoideus 
muscle, to facilitate respiration by drawing water over 
the gills. 
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ABSTRACT: Robust and accurate localization is crucial for mobile robot navigation in complex indoor
environments. This paper introduces a robust and integrated robot localization algorithm designed
for such environments. The proposed algorithm, named Branch-and-Bound for Robust Localization
(BB-RL), introduces an innovative approach that seamlessly integrates global localization, position
tracking, and resolution of the kidnapped robot problem into a single, comprehensive framework. The
process of global localization in BB-RL involves a two-stage matching approach, moving from a broad
to a more detailed analysis. This method combines a branch-and-bound algorithm with an iterative
nearest point algorithm, allowing for an accurate initial estimation of the robot’s position. For ongoing
position tracking, BB-RL uses a local map-based scan matching technique. To address inaccuracies that
accumulate over time in the local maps, the algorithm creates a pose graph which helps in loop-closure
optimization. Additionally, to make loop-closure detection less computationally intensive, the branch-
and-bound algorithm is used to speed up finding loop constraints. A key feature of BB-RL is its Finite
State Machine (FSM)-based relocalization judgment method, which is designed to quickly identify and
resolve the kidnapped robot problem. This enhances the reliability of the localization process. BB-RL’s
performance was thoroughly tested in real-world situations using commercially available logistics
robots. These tests showed that BB-RL is fast, accurate, and robust, making it a practical solution for
indoor robot localization.

KEYWORDS Branch-and-bound, Global localization, Position tracking, Robot kidnapping

1. Introduction

The growing demand for mobile robots in tasks such as
repair, transportation, and cleaning necessitates the devel-
opment of efficient techniques for robot localization [1]–[5].
Particularly in known environments, robots should be able
to localize themselves within a prebuilt map, enabling them
to position themselves based on data collected from various
sensors. The problem of localizing mobile robots in indoor
environments can be categorized into three sub-problems:
position tracking, global localization, and the kidnapped
robot problem [6, 7]. This paper proposes a fast, robust,
and accurate algorithm to achieve indoor localization of
mobile robots, effectively solving the three localization sub-
problems simultaneously in real-world applications.

Recent advancements in indoor robot localization re-
search have shown significant progress, yet challenges
remain in simultaneously addressing three critical local-
ization issues. The first issue involves global localization.
Often, an initial pose is determined by observing the robot’s
approximate position in the environment to reduce compu-

tational effort and maintain localization stability. Despite
this, without an initial estimate, achieving desirable global
localization remains difficult.

The second issue is position tracking. Here, the chal-
lenge lies in the timely elimination of accumulated errors.
To address this, two main strategies are employed. The first
is simultaneous localization and mapping (SLAM), which
involves frontend scan matching and backend optimiza-
tion. While effective, SLAM methods are computationally
demanding and rely on loop-closure detection to correct
errors. The second strategy involves odometry, such as
visual or LiDAR odometry, which calculates the robot’s
relative pose incrementally using adjacent data. However,
these methods are prone to error accumulation over time,
making them suitable primarily for short-term tracking.

Finally, the third issue is the kidnapped robot problem.
This occurs when a robot, initially well-localized, is unex-
pectedly moved to an unknown location. This problem
can be split into two scenarios: real kidnapping, where
the robot is physically relocated by external forces such as
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human intervention or an accident, and perceived kidnap-
ping, which results from localization failures. Addressing
this issue effectively remains a challenge for most existing
approaches.

Considering these aspects, we propose a robust and ac-
curate robot localization algorithm, which consists of three
parts: global localization, position tracking, and relocaliza-
tion judgment.

• The global localization algorithm, which is used to deter-
mine the robot’s initial pose, can be divided into two
stages. In the coarse matching stage, the branch-and-
bound algorithm based on depth-first search (DFS)
is used to promptly identify the absolute position of
the robot on the map without any initial estimate. In
the fine matching stage, the iterative nearest point
algorithm is used to perform iterative optimization to
determine the optimal initial pose of the robot. This
algorithm can rapidly converge anywhere on the map,
and the robot pose exhibits global optimality.

• The position tracking algorithm is used for the contin-
uous localization of the robot when the initial pose
is known. A local map-based scan matching method
is used to estimate the relative pose of the robot and
simultaneously build a local map. Moreover, a global
pose graph optimization algorithm is used to eliminate
the accumulated errors between local maps. Addi-
tionally, to ensure that the computing time is nonin-
tractable, a DFS-based branch-and-bound algorithm is
used to accelerate the process of identifying the loop
constraints.

• The relocalization judgment algorithm is used to address
the problem of robot kidnapping and eliminate the
accumulated errors of the robot. We propose an
FSM-based relocalization judgment method based on
confidence calculation and dual-threshold judgment
to effectively monitor the localization status of the
robot. When the calculated confidence is less than the
minimum threshold, the global localization algorithm
is invoked for localization recovery.

The main contributions of this research can be summa-
rized as follows:

1. Development of a Two-Stage Global Localization Algorithm:
We introduce a novel two-stage global localization
algorithm that combines the broad search capabilities
of the branch-and-bound algorithm with the local
optimization efficiency of the iterative closest point
algorithm. This ensures the robot quickly identifies
the globally optimal initial pose without relying on
any preliminary estimates.

2. Establishment of a Position Tracking Algorithm: Our re-
search incorporates a position tracking algorithm that
integrates frontend local map-based scan matching
with backend pose graph optimization. This approach
provides a highly accurate state estimation of the robot,
crucial for precise navigation.

3. Creation of an FSM-based Relocalization Judgment Algo-
rithm: We have developed an innovative FSM-based

relocalization judgment algorithm that utilizes an in-
flated occupancy grid map to minimize the impact of
sensor measurement noise. This algorithm is adept
at efficiently detecting instances of robot kidnapping,
thereby safeguarding against localization failures in
diverse scenarios and ensuring swift and effective
localization recovery.

4. Proposal of a Joint Localization Algorithm: The research
culminates in a comprehensive joint localization al-
gorithm capable of concurrently addressing the chal-
lenges of global localization, position tracking, and
robot kidnapping in indoor settings. The efficacy of
this algorithm has been rigorously validated using
commercial logistics robots, demonstrating its success-
ful application in real-world environments.

2. Related work

Consistent and efficient localization is a core concept of in-
door robot navigation, as knowledge of the robot position is
crucial in deciding future actions [8]. In recent years, several
researchers have focused on indoor robot localization [9].
However, most of the existing approaches focus on solving a
specific problem of localization (such as global localization),
which is fundamentally different from the motivation of our
work.

Localization refers to the procedure of determining the
robot pose with respect to its environment by using various
noisy sensors. According to the type of measurement data,
the sensors used in the process of robot localization can be
divided into two classes: proprioceptive sensors and extero-
ceptive sensors. Proprioceptive sensors (such as encoders
and IMUs) measure the robot motion by using deduced
reckoning to calculate the relative robot displacement [10]–
[12]. Since such sensors consider the instantaneous speed
or acceleration to estimate the robot state, the integrated
error in the localization process increases in a nonbounded
manner over time. Hence, such sensors are usually used
in combination with exteroceptive sensors that can deter-
mine the absolute positions to enhance the robot’s ability in
managing uncertainties [13]–[16]. Proprioceptive sensors
address position tracking issues due to their inability to
sense environmental information.

In addition to the methods based on proprioceptive
sensors for localization, several approaches use exterocep-
tive sensors to recognize the environment around a robot
to estimate the robot location. Among these methods,
SLAM is widely used. In terms of the primary type of
adopted sensor, the SLAM algorithm can be divided into
two classes: visual SLAM and LiDAR SLAM. Visual SLAM
aims to address the pose estimation of cameras with visual
information. This method has evolved from the use of
monocular cameras [17] to stereo cameras [18] and depth
cameras [19]. The classic variants of monocular SLAM
include ORB-SLAM [20], DSO [21], LSD-SLAM [22], and
SVO [23]. Certain researchers, [24] adapted ORB-SLAM to
a fisheye camera, tightly coupled visual information and
IMU data to robustly estimate the camera pose and used
the multimap technology to effectively solve the problem
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of localization failure. In another study [25], a rolling-
shutter camera and IMU were tightly coupled to minimize
the photometric error to estimate the robot pose. Other
researchers [26, 27, 28] used deep neural networks to elimi-
nate the scale ambiguity of monocular cameras and extract
high-level semantic features to enhance the system robust-
ness and accuracy. The classic variants of stereo SLAM
include ORBSLAM2 [29], ORBSLAM3 [30], PL-SLAM [31],
and SOFT2 [32]. An event camera [33] was used to ad-
dress the problems of high dynamics and low light, and the
depth estimation of multiple viewpoints was merged in a
probabilistic manner to build a semidense point cloud map.
Notable research on RGB-D SLAM includes that on the
RTAB-MAP [34], bundle fusion [35], and Kintinuous [36].
Moreover, a lightweight semantic network model was pro-
posed [37], which integrates multiple technologies such as
VIO, pose graph optimization, and semantic segmentation,
to achieve the high-precision reconstruction of the three-
dimensional environment. Deep learning techniques have
also been employed in visual SLAM to extract features, en-
hancing the algorithm’s ability to interpret and understand
the visual information as in LIFT-SLAM [38] and Object-
Fusion [39]. Because depth cameras can directly obtain
the depth information of the environment, their use has
been widely considered [40]. However, processing of the
depth data is computationally expensive, and it is difficult
to satisfy the real-time operation requirements of the CPU.
Moreover, the frontend odometry aspects of visual SLAM
can only estimate the relative pose of the robot, and back-
end loop-closure detection can only achieve relocalization
in similar scenes. Therefore, this approach cannot realize
global localization.

LiDAR SLAM can be divided into 2D LiDAR SLAM and
3D LiDAR SLAM according to the type of LiDAR used. The
classic 3D LiDAR SLAM algorithms include LOAM [41],
HDL graph slam [42], and SuMa++ [43]. LOAM exhibits
a high performance on the KITTI dataset, and thus, many
improved versions of this algorithm have been proposed.
In [44], the distinctive edge features and planar features
were extracted to achieve two-step Levenberg–Marquardt
optimization. In [45], the LiDAR and IMU data were tightly
coupled. The IMU preintegration factor was introduced
in the pose graph optimization to update the bias of the
IMU, and the accumulated errors were corrected through
loop-closure detection. Moreover, excellent schemes for
2D LiDAR SLAM have been proposed in recent years. The
classic filter-based algorithms include Fast SLAM [46] and
Gmapping [47], and graph-based algorithms include Karto
SLAM [48] and Cartographer [49]. Cartographer, devel-
oped by Google engineers, has been proven to be a complete
SLAM system that integrates localization, mapping, and
loop-closure detection. At the frontend of this algorithm,
the relative pose of the robot is calculated using the scan-
to-submap matching method, which has a significantly
lower accumulated error than the scan-to-scan matching
method [50]. Additionally, compared with the scan-to-map
matching method [51], it is considerably less computation-
ally intensive and can run in real time. Similarly, since the
origin of the robot localization is determined when initializ-
ing the algorithm, LiDAR SLAM is essentially an odometry

technique and cannot solve the problems of global localiza-
tion and robot kidnapping. To realize indoor localization,
2D LiDAR has been widely used due to its cost and accuracy.
Certain researchers [52] and [53] attempted to enhance the
accuracy of their localization system by using the extended
Kalman filter to achieve multisensor fusion. However, these
approaches cannot solve the problems of global localization
and robot kidnapping. In [54], a quasistandardized 2D
dynamic time warping (QS-2DDTW) method was proposed
to solve the problem of robot kidnapping. The approach
uses scan data for two consecutive ranges to obtain the
geometric shape similarity of the environment to determine
the robot state. Nevertheless, this approach cannot solve the
position tracking problem. However, other studies [55]–[59]
addressed the three major localization problems by using
the adaptive Monte Carlo localization algorithm. Notably,
using only ultrasonic sensors, the localization accuracy of
the order of decimeters can be achieved.

In addition to the two types of exteroceptive sensors for
localization, several wireless devices (such as WiFi, UWB,
Bluetooth, and RFID) can be deployed indoors to realize
reliable localization. In [60] and [61], the Kalman filter
was used to fuse IMU and UWB data to obtain a relatively
accurate robot pose. However, these approaches could
not solve the problems of global localization and robot
kidnapping. In addition, high accuracy localization was
achieved using commercial WiFi devices [62]. The robust
principal component analysis for extreme learning machine
algorithm (RPCA-ELM) could suppress the effect of mea-
surement noise in the localization process. In [63] and [64],
to enhance the robustness of localization, UHF radio fre-
quency identification technology was adopted. However,
the system accuracy depended on the RFID tag, and global
localization could not be realized at arbitrary positions.
Furthermore, localization was realized in [65] and [66] by
deploying a set of photoresistor sensors on a robot to collect
information regarding an LED array in the environment.
However, high-precision position tracking could not be
realized. In addition, a robot localization system based
on asynchronous millimeter-wave radar interference was
proposed [67], which used the interference between mul-
tiple millimeter-wave radars with known positions in the
environment to calculate the position of the robot. However,
the system exhibited limited localization accuracy.

In summarizing the state of the art in indoor robot lo-
calization, it is clear that researchers have made significant
strides using a variety of methodologies and sensor tech-
nologies. From SLAM implementations—both visual and
LiDAR-based—to sophisticated sensor fusion techniques
leveraging proprioceptive and exteroceptive sensors, in-
cluding the use of wireless technologies like WiFi, UWB,
Bluetooth, and RFID to enhance localization capabilities,
each method aims to address specific facets of the complex
challenge of localization, focusing on global localization,
position tracking, or resolving the kidnapped robot problem.

Despite these advances, a comprehensive solution that
simultaneously addresses all three critical challenges of
indoor robot localization remains elusive. Existing studies
tend to focus on optimizing specific aspects of localization
rather than offering a unified algorithm capable of han-
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dling global localization, precise position tracking, and the
kidnapped robot scenario in an integrated manner. This
gap in the research landscape underscores the innovative
potential of the proposed BB-RL algorithm, which aims to
provide a holistic approach to the multifaceted problem of
autonomous indoor navigation. By doing so, BB-RL aspires
to establish a new method in the field, offering a more ro-
bust, accurate, and comprehensive solution to indoor robot
localization than currently available methods.

Some literature mentions studies that attempt to address
all three major localization challenges simultaneously using
the Adaptive Monte Carlo Localization algorithm [55]–[59].
These studies illustrate the potential of multi-sensor fusion
and intelligent algorithms to enhance indoor localization
accuracy and robustness. However, despite offering a com-
posite solution, these approaches may still face limitations
in practical application, such as dependency on specific
types of sensors, the impact of environmental complexity on
localization accuracy, and challenges in maintaining high
precision in dynamic and unknown environments.

The Self-Adaptive Monte Carlo Localization (SA-MCL)
method represents an advancement in addressing the inher-
ent challenges of robot localization, including global local-
ization, position tracking, and the "kidnapping" problem,
where a robot is moved to an unknown location. Previ-
ous studies have shown that by employing the adaptive
Monte Carlo localization algorithm, significant strides can
be made in solving these three major localization challenges.
These methods, however, are predominantly based on 2D
environments and utilize ultrasonic sensors for sensing.

Transitioning from 2D to 3D environments introduces
new challenges for the Monte Carlo Localization (MCL)
algorithm. In [68], the authors propose a pure 3D MCL
localization algorithm to address these challenges directly.
Meanwhile, other approaches, such as the one by [69], adapt
2D MCL for localization in 3D maps. These methods il-
lustrate the diversity of strategies being explored to solve
localization problems in three-dimensional spaces using the
MCL framework in 3D Map. The demand for computational
resources and memory usage significantly increases in 3D
Monte Carlo localization due to the necessity to process
and track a much larger number of particles to accurately
estimate a robot’s pose in three-dimensional space. Each par-
ticle’s position, orientation, and weight must be maintained,
leading to escalated memory requirements as the particle
count increases. Furthermore, without prior knowledge of
the robot’s approximate location, distributing particles ef-
fectively throughout the three-dimensional space to ensure
comprehensive coverage and, by extension, the accuracy of
the localization process, presents a considerable challenge.
This challenge underscores the complexity of initializing
the algorithm in 3D spaces, which is vital for the successful
application of Monte Carlo localization methods in more
complex environments.

In [70], the authors developed a branch-and-bound
(BnB)-based 2D scan matching technique utilizing hier-
archical occupancy grid maps of varying sizes. While this
approach provides accurate and fast global localization on
2D maps, its processing time significantly increases when
applied to 3D maps. In [71], the authors advanced this

research by introducing a BnB-based method for 3D global
localization, which more effectively addresses the challenges
of extending the work of [70] to three-dimensional environ-
ments. However, these studies primarily focus on global
localization issues without offering an integrated solution.

In summary, despite attempts to address the three major
localization challenges simultaneously and the existence of
various methods focusing on solving specific issues, there
remains a significant research gap in developing an accurate
and robust comprehensive localization system. This high-
lights the importance and innovative value of proposing
new algorithms, such as the BB-RL algorithm introduced in
this paper, aimed at enhancing the performance of indoor
robot localization. The BB-RL algorithm seeks to overcome
the limitations of existing solutions through innovative tech-
niques and methods, providing a more comprehensive and
effective solution to meet the demands of complex indoor
environments for robot navigation.

3. System overview

3.1. Hardware setting

The hardware settings are shown in Figure 1. The adopted
autonomous mobile robot (AMR) is a commercial differen-
tial wheeled logistics robot, model IR300, which is equipped
with an Intel NUC8BEH minicomputer as the computing
platform of the robot; two SICK TIM561 LiDAR for range
measurements, which are deployed diagonally on the left
front and bottom right of the robot and have a measure-
ment frequency of up to 10 Hz; an inertial measurement
unit model LMPS-be1, which is used for high-frequency
linear acceleration and angular velocity measurement and
can exhibit a measurement frequency of up to 200 Hz; two
wheel encoders, which are used to measure the wheel speed
with a measurement frequency of up to 50 Hz.

3.2. System architecture

The system architecture of the proposed algorithm is shown
in Figure 2. The algorithm is composed of three parts: global
localization, position tracking, and relocalization judgment.

Figure 1: IR300 robot, manufactured by Sunspeed Robotics Ltd, Co.
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Figure 2: System architecture

In the localization process, we first obtain the robot’s
initial pose in the environment through the global localiza-
tion algorithm, which is a two-stage matching algorithm
composed of a branch-and-bound algorithm and an iterative
closest point algorithm. After determining the robot’s initial
pose, we implement the position tracking algorithm, which
uses the initial pose as the robot’s initial state to realize
local map-based scan matching. To effectively eliminate
the accumulated errors between local maps, we maintain a
global pose graph at the backend of the algorithm. When a
valid loop closure is detected, the algorithm is implemented
to correct the accumulated errors. Finally, we use a single
thread to implement the relocalization judgment algorithm
to monitor whether the robot can be located correctly when
the position tracking algorithm is used. When the confi-
dence of the current localization result is less than the set
dual-thresholds, the global localization algorithm is called
to reinitialize the algorithm.

4. Global Localization

Global localization, as an indispensable part of our algo-
rithm, is mainly used to determine the robot’s initial pose
and ensure localization recovery when the robot is kid-
napped. When the algorithm is implemented, we first con-
vert the prebuilt point cloud map into multiple occupancy
grid maps with different resolutions. Subsequently, we use
the DFS-based branch-and-bound algorithm to accelerate
the matching of the current LiDAR data with the occupancy
grid maps. Finally, the iterative nearest point algorithm
is used to continue the optimization on the computational
results of the DFS-based branch-and-bound algorithm and
ensure rapid convergence to obtain the optimal pose of the
robot.

4.1. Global search using the branch-and-bound algorithm

We formulate global localization as a search problem on the
occupancy grid map. The linear and angular search window
sizes can be easily determined according to the map size. To
ensure the search accuracy, we set the linear step size as the
grid size. The angular step size can ensure that the farthest
LiDAR point smax moves once without exceeding the map
resolution r. Thus, the angular step size ε can be estimated
using the following equation:

ε arccos1 −
r2

2s2
max

(1)

Furthermore, the integral number of steps covering the
set linear and angular search window sizes can be computed
as:

sx ⌈
S x

r
⌉, sy ⌈

S y

r
⌉, sθ ⌈

S θ
ε
⌉ (2)

where S x and S y are the linear search window sizes in
the x- and y-directions, respectively. S θ is the angular search
window size. sx and sy are the integral numbers of the
linear steps in the x- and y-directions, respectively, and sθ
is the integral number of the angular steps. If the center of
the occupancy grid map is assumed to be the origin of the
search process, the search set can be defined as:

W {−
1
2

sx, ...,
1
2

sx} × {−
1
2

sy, ...,
1
2

sy} × {−
1
2

sθ, ...,
1
2

sθ} (3)

Because the time to search an occupancy grid map in-
creases exponentially with increasing map size, we apply
the branch-and-bound algorithm to accelerate the search
process. In practical applications, we build a global search
tree to determine the initial pose for a given occupancy grid
map, where each node in the tree represents a search result.
The map search process is converted into node transversal
in the search tree, and the target is to identify the leaf node
with the best score.

In contrast to the breadth-first search-based branch-and-
bound algorithm, which traverses most of the nodes in the
search tree to identify the leaf node with the best score, we
use the DFS-based branch-and-bound algorithm to promptly
evaluate the nodes by performing a layer-by-layer search on
multiple occupancy grid maps with low to high resolutions
and prune the intermediate nodes that do not meet the
boundary conditions and all the corresponding subnodes.
Therefore, only a few nodes need to be traversed to identify
a leaf node with the best score. The flow of the algorithm is
illustrated in Figure 3.

Schematic of the DFS-based Branch-and-Bound Method
(Search Tree Depth d 3). The root node is implicitly divided
into different subnodes to form a set N0, and a node n0 is
extracted to illustrate the algorithmic process.

First, we use the prebuilt point cloud map to create
multiple occupancy grid maps with high to low resolutions.
Specifically, we first rasterize the point cloud map according
to the required highest resolution r0. The probability value
of each grid is averaged according to the number of point
clouds in the grid, and the resulting occupancy grid map
is denoted as map0. Subsequently, according to the depth d
of the global search tree, map0 is downsampled d − 1 times.
The resolution of mapii 1, ..., d − 1 obtained by each down-
sampling is doubled to 2ir0. Finally, we save these maps
from low to high resolutions.
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Figure 3: Schematic of the DFS-based branch-and-bound method (search
tree depth d 3). The root node is implicitly divided into different subnodes
to form a set N0, and a node n0 is extracted to illustrate the algorithmic
process.

Second, we consider the search strategy. In the global
search tree, the root node corresponds to the set of all possi-
ble solutions. We do not explicitly express this node but only
branch it into a series of child nodes, which can be denoted
as the set N0 of all possible solutions searched on mapd−1.
The leaf nodes represent a possible solution searched on
map0. Each node ni in the tree is represented as a tuple of
integers:

ni dx, dy, dφ, ch (4)

where dx and dy represent the position offsets in the x-
and y-directions relative to the origin of the search process,
respectively. dφ is the rotation offset relative to the positive
direction of the search process, and ch represents the height
of the search tree in which the node is located. Each node
in the search tree is defined as a search area with a certain
boundary.

Each node with ch > 1 can branch into four child nodes
of height ch − 1:

Nn {2dx, 2dx 1} × {2dy, 2dy 1} × {dφ} × {ch − 1} (5)

For each leaf node with ch 0, branching cannot continue
to generate new nodes. Thus, the search pose corresponding
to the leaf node is a possible solution. When the leaf node
with the best score is found, the optimal solution to the
problem can be expressed as

ξ∗n r0dx, r0dy, εdφ (6)

Finally, the upper bound calculation strategy is imple-
mented. An excellent upper bound can help promptly
identify the optimal solution to the problem. To ensure
the accuracy of the upper bound, when building multiple
occupancy grid maps with low to high resolutions, the
probability value of each grid in mapii 1, ..., d − 1 is the
maximum probability value of the corresponding 2i × 2i

grids in map0. Therefore, the grids on the occupancy grid
map with a lower resolution have a higher probability value:

S coren N

i1
Fch

MultimapTξn si (7)

where Fch
Multimap transforms the LiDAR point to the map

frame to obtain the probability of the corresponding grid
according to the prebuilt multiple occupancy grid maps.
The search process is essentially a table lookup process,
and thus, the computational complexity of the algorithm is
always maintained in a constant range. The specific steps of
the algorithm are shown in Algorithm 1.

Algorithm 1: Branch-and-bound Algorithm Based
on Depth First Search.

Input: current period t, current scan St , point cloud
map mp

Parameters : search tree depth d, search window
sizes S x, S y, S θ, occupancy grid map
highest resolution r0

Output: robot initial guess ξ∗n
Convert point cloud map mp to multiple occupancy grid
maps;

sx ← ⌈S xrd−1⌉;
sy ← ⌈S yrd−1⌉;
ε← arccos1 − r2

02s2
max;

sθ ← ⌈S θε⌉;
best_score← 0;
ch ← d − 1;
for jx ← −sx to sx do

for jy ← −sy to sy do
for jθ ← −sθ to sθ do

n← jx, jy, jθ, ch;
Push n into N0;

end
end

end
initialization;
Initialize a priority queue N to save each node in N0
according to the score;

while N , empty do
Pop the node n with the beat score from N;

end
if S coren > best_score then

if n is a leaf node then
ξ∗n ← ξn;
best_score← S coren;

end
else

Split n→ Nn :
{2dx, 2dx 1} × {2dy, 2dy 1} × {dφ} × {ch − 1};

Compute the score of each node in Nn;
Store each node in Nn into N according to the
score;

end
end

4.2. Optimization of the initial pose using the iterative nearest
point algorithm

Although the pose ξ∗n specified by the DFS-based branch-
and-bound algorithm has global optimality, the final search
accuracy is inevitably limited by the highest resolution of
the occupancy grid map. Hence, we use the iterative closest
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point algorithm to further optimize ξ∗n.
The iterative nearest point algorithm calculates the rigid

transformation matrix between the two sets of point clouds
in an iterative manner. We convert the matching problem
between the two sets of point clouds into a nonlinear least
squares problem and iteratively compute the rigid transfor-
mation matrix around the initial value ξ∗n. We assume that
the robot pose in the iterative process is ξ x, y, φ, the point
in the point cloud map is p′i , the current LiDAR point is pi,
and the error function e is defined as

eξ argmin
1
2

N

i1

∥∥∥pi − expξ∧ p
′

i

∥∥∥2
2 (8)

where exp· represents the exponential mapping of so3→
S O3. We can use iterative algorithms (e.g., Gauss–Newton
and Levenberg–Marquardt) to solve this problem. The Jaco-
bian matrix of the iterative update process can be expressed
as follows:

∂e
∂δξ

−I expξ∧ p
′

i
∧ (9)

The convergence speed of the iterative nearest point algo-
rithm is affected by the maximum number of iterations and
the robot pose difference calculated by two consecutive itera-
tions. When the algorithm is used on hardware-constrained
robot platforms, and it is necessary to consider the oper-
ating efficiency and localization accuracy, the convergence
conditions can be alleviated. Our algorithm provides a
satisfactory initial guess. Additionally, the number of point
clouds involved in the matching is small. Hence, the con-
vergence condition can be met after several iterations.

5. Position Tracking

The position tracking algorithm is of significance in enhanc-
ing the performance of the localization algorithm, especially
in challenging circumstances such as those involving map
expiration or environmental changes due to dynamic ob-
stacles. In this paper, we use a scan matching method that
aligns the current LiDAR data with the local map. The local
map contains a certain number of LiDAR frames, which are
expressed in an occupancy grid map. The map is updated
continuously with each new LiDAR data. When the local
map is built, it is added to the backend pose graph for
optimization. The accumulated errors are corrected with
the introduction of loop constraints to ensure the accuracy
of the position tracking algorithm.

5.1. Frontend local map-based scan matching

The matching process involves inserting the current LiDAR
data into the appropriate position in the local map. We
formulate this process as a local nonlinear optimization
problem, in which the LiDAR pose is optimized relative
to the current local map. The problem is solved using the
Gauss–Newton method. By iteratively optimizing the er-
ror function, a LiDAR pose with the highest probability
is identified. In the optimization problem, Tξ denotes the
transformation matrix that transforms the LiDAR data into
the local map. The error function can be expressed as:

Eξ argmin N

i1
1 − FTξ si

2 (10)

where F : R2 → R represents a bicubic interpolation
function that smooths the sum of the probability values of
each LiDAR point in the local map. Specifically, we assume
that Tξ s is defined as a point x, y in the two-dimensional
plane. In this case, the bicubic interpolation function is:

Fx, y 3

i1

3

j0
f xi, y jWx − xiWy − y j (11)

where f xi, y j is the probability of the four neighborhoods
xi, y j around the point x, y, and W· represents the weight of
the xi, y j interpolation on x, y, computed as:

Wx


a 2|x|3 − a 3|x|2 1 f or|x| ≤ 1

a|x|3 − 5a|x|2 8a|x| − 4a f or1 < |x| < 2
0 otherwise

(12)

where a takes values in the range −0.75,−0.5. Solving Eξ
is a local nonlinear optimization problem. Thus, a satisfac-
tory initial guess is critical. Before scan matching, we use a
two-stage pose prediction method to obtain this initial guess.
First, we use the extended Kalman filter (EKF) algorithm
to fuse the wheel odometry and IMU data. The process
uses these two types of data as observation information to
update the state of the moment, as in [12].

Second, we use a multilocal-map-based scan matching
method to further optimize the fusion result. The specific
process is shown in Algorithm 2.

In the beginning, we perform a 2× downsampling on
the local map to generate multiple local maps with resolu-
tions ranging from high to low. Subsequently, we intend to
find a LiDAR pose that maximizes the probabilities at the
current LiDAR data in the lowest resolution local map. The
initial pose is provided by the fusion result. Moreover, to
ensure the matching accuracy, the pose obtained by match-
ing against this local map is used as the initial value of
the subsequent matching. This process is repeated until
the matching against the highest resolution local map is
realized, and the optimal initial guess is obtained.

After identifying the appropriate position, we insert the
LiDAR data into the local map. This process updates the
probability value of the corresponding grid. Each insertion
of the LiDAR data is equivalent to adding an observation,
and the result of the observation is saved using a hit set and
miss set. According to the ray-tracing model, we use the
projected LiDAR point as the hit point and save the grid
point closest to this hit point in the hit set. Each grid point
passing through the rays between the hit point and LiDAR
data origin is saved in the miss set.

When the grid in the local map has never been observed
previously, the probability is zero. When the grid is ob-
served for the first time, it is assigned a probability value
determined by its set (hit set or miss set). Each subsequent
observation is based on the following formula to update the
probability value of the grid:
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Algorithm 2: Multilocal-map-based Scan Match-
ing.

Input: current local map mapt, current scan St
Parameters : search window sizes S x, S y, S θ,

downsampling times num
Output: ekf predicted pose ξek f

t , current predicted
matching pose ξmul

t

initialization;
2 times downsampling the current local map mapt to
form a set {map1

t ,map2
t , ...,mapnum

t };
count ← 0;
best_score← 0;
while count ≤ num do

rcur ← resolution of mapnum−count
t ;

sx ← ⌈S xrcur⌉;
sy ← ⌈S yrcur⌉;
ε← arccos1 − r2

02s2
max;

sθ ← ⌈S θε⌉;
for jx ← −sx to sx do

for jy ← −sy to sy do
for jθ ← −sθ to sθ do

score← K
k1 FT

ξ
ek f
t rcur jx,rcur jy,rcur jθ

hk;
if score > best_score then
ξek f

t ← ξek f
t rcur jx, rcur jy, rcur jθ;

best_score← score;
end

end
end

end
count ← count 1;

end
ξmul

t ← ξek f
t ;

S S − LogMeas (13)

where S is the probability value of grid s after observa-
tion z, S − is the probability value of grid s before observation,
and LogMeas represents the measurement model of the up-
date process, which can be defined as

S logOdds | z (14)

S − logOdds log
ps 1
ps 0

(15)

LogMeas log
pz | s 1
pz | s 0

, z ∈ {0, 1} (16)

where the logOdd function converts the product op-
eration between the probability values into an addition
operation, ps 1 is the probability that grid s is occupied
before the observation, and ps 0 is the probability that grid
s is free before the observation. According to the value of z,
LogMeas has two states. The specific value is determined
by the sensor characteristics.

5.2. Backend pose graph optimization

The local map-based scan matching method can only de-
crease the short-term accumulated errors. However, the

built local maps also accumulate errors over time, which can
be optimized by building a global pose graph in the backend.
In this process, we first use LiDAR frames that satisfy both
rotation and translation conditions as key frames. Subse-
quently, we add all the keyframes and local maps to the
pose graph as nodes to be optimized. Finally, the estimated
trajectory is smoothed according to the constraints between
the keyframe nodes and local map nodes. The optimization
process of the pose graph is shown in Figure 4.

After a new loop constraint is constructed in the backend
of the algorithm, we optimize the pose graph. We formulate
the optimization process as a nonlinear least squares prob-
lem, in which the error term describes the error between the
measured and estimated values. We consider the keyframe
i and local map j as examples. The pose of keyframe i in the
world frame is ξs

i , and the pose of local map j in the world
frame is ξ l

j. The error term can be expressed as

ei j zi j − hξs
i , ξ

l
j (17)

where zi j is the relative pose measured between keyframe
i and local map j, calculated through loop-closure detection.
hξs

i , ξ
l
j is the relative pose estimated between keyframe i

and local map j, which represents the result of the local
map-based scan matching.

The algorithm involves two types of constraints, namely,
internal and loop constraints. The internal constraints are
generated by keyframes and local maps that have subordina-
tion relationships. Specifically, the keyframes are inserted in
the local map. In contrast, the loop constraints are generated
by keyframes and other local maps, that is, the keyframes
are associated with historical local maps. When more local
maps are added to the pose graph, the time to identify
the loop constraints gradually increases. Therefore, a DFS-
based branch-and-bound algorithm is used to accelerate the
search for loop constraints.

The process of loop-closure detection is similar to that of
the DFS-based branch-and-bound algorithm used in global
localization, except that the search range is changed from
a global map to historical local maps. Hence, the search
window no longer contains the prebuilt map but a partial
area inside the local map. Because the frontend provides
the current pose estimation ξ f ront of the robot, we use the
pose as the search origin to traverse the search space around
it. The result ξloop is defined as

ξloop ξ f ront r0dx, r0dy, εdφ (18)
If k represents the constraint between local map i and

keyframe j, the error function can be expressed as

argmin K

k1
eT

kξ
s
k, ξ

l
kΣ
−1
k ekξ

s
k, ξ

l
k (19)

where Σ−1
k is the information matrix of the error term

formed by keyframe i and local map j. The objective of opti-
mizing the error function is to adjust ξs and ξ l to minimize
the trajectory errors formed by all nodes. Since no constraint
relationship exists between each local map and keyframe
in the pose graph, in solving the nonlinear optimization
problem, considerable time is not required to calculate the
Hessian matrix and only the pose increment needs to be
solved via the Cholesky decomposition.
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Figure 4: Schematic of the optimization of the backend pose graph.

6. Relocalization judgment

In numerous practical application scenarios, such as in ware-
house logistics, robots are required to accomplish specific
tasks within extensive workspaces. Due to the inability
to form loop closures within short periods, robots tend to
accumulate errors gradually. Furthermore, challenges arise
when incorrect observational data leads to ’robot kidnap-
ping’, making it arduous to achieve localization recovery
solely through position tracking algorithms.

In light of these challenges, we introduce an FSM (Finite
State Machine)-based relocalization judgment algorithm.
This algorithm initiates by acquiring the confidence level
of the robot’s current pose through the alignment of cur-
rent LiDAR data with an inflated occupancy grid map.
Subsequently, based on pre-set dual-threshold conditions,
we assess the necessity to engage the global localization
algorithm for timely localization recovery.

6.1. Confidence calculation and dual-threshold judgment

We use a method similar to the calculation of scores in
scan matching to verify the pose ξpt obtained by the po-
sition tracking algorithm. In contrast to the point cloud
registration algorithm that adopts the Euclidean distance to
calculate the matching score between the two point clouds,
we use the pose ξpt to project the current LiDAR data S
onto the occupancy grid map and calculate the sum of the
probability values of each LiDAR point si falling on the
corresponding grid:

S coreξpt
1
N

N

i1
MTξpt si (20)

where Tξpt converts the current LiDAR data S from the
LiDAR frame to the map frame, and M· is used to calculate
the probability value of each LiDAR point projected onto
the occupancy grid map.

In this process, the occupancy grid map is converted
from the prebuilt point cloud map. The resolution of this
map is the same as that of the local map generated by the
position tracking algorithm.

In practical applications, since there are relatively few
valid points in the LiDAR frame, the measurement error of
each valid point affects the confidence calculation results.

Considering this aspect, we use an inflated occupancy grid
map instead of the original occupancy grid map to suppress
the impact of LiDAR measurement errors.

In contrast to the cost map used to set the expansion
areas to avoid robot collisions, we use the inflated occu-
pancy grid map to reduce the error caused by noisy LiDAR
measurements. When designing the inflated occupancy
grid map, we first set the expansion radius rin f according to
the sensor range accuracy and extend it outward from the
obstacle to obtain the expansion area according to rin f . The
grid probability in the expanded area is

Pin f x, y e−kδd (21)

where δd is the distance between grid x, y and the ob-
stacle, and k is the scale factor. When k is large, the grid
probability Pin f x, y decreases rapidly. The probability of
Pin f x, y is limited to the range 0, 1. The process of generating
an inflated occupancy grid map is shown in Figure 5. We
update the confidence calculation formula as follows:

S coreξpt
1
N

N

i1
MIn f MapTξpt si (22)

Figure 5: Process of generating an inflated occupancy grid map.

After calculating the confidence according to the above
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formula, we use the dual-threshold judgment to evaluate
the pose ξpt .

1. When the confidence is greater than the set threshold
Th2, the LiDAR data are projected inside the expan-
sion area of the map, and the errors of the confidence
calculation are generated by the noisy LiDAR mea-
surements.

2. When the confidence is between the two thresholds
Th1 and Th2 Th2 > Th1, the accumulated errors exceed
expectations, and the robot kidnapping problem does
not occur. Therefore, we call the global localization
algorithm to complete the search in the local area near
the pose ξpt to correct the accumulated errors.

3. When the confidence is less than the set threshold Th1,
the robot kidnapping problem is considered to occur.
We invoke the global localization algorithm to search
the whole map. Specifically, the search window of the
branch-and-bound algorithm covers the occupancy
grid map to complete the localization recovery.

6.2. Relocalization judgment based on finite state machine

To monitor the localization state in real time, we use the
idea of a finite state machine to model the relocalization
judgment process. The mathematical model for a certain
finite state machine can be defined as

M Q,Σ, δ, q0, F (23)

where Q is a nonempty set consisting of a finite number
of states. According to the results of the position tracking
algorithm, the states of the whole algorithm are divided into
three categories: normal localization qnorm, large localization
error qerr, and localization failure qkid, which correspond to
three cases of the dual-threshold judgment. Therefore, Q
can be defined as

Q qnorm, qerr, qkid (24)

where Σ represents the set of all inputs that can be ac-
cepted by each state, that is, the set of trigger conditions
that cause the state transition. In this algorithm, we use the
result of the dual-threshold judgment as the trigger condi-
tion. Additionally, we use enorm, eerr and ekid to represent the
inputs of the algorithm in the transition between qnorm, qerr
and qkid. At this time, Σ is defined as

Σ enorm, eerr, ekid (25)

where δ : Q × Σ→ Q represents the state transition func-
tion, which is mainly based on the current trigger condition
e to complete the state transition of the algorithm from the
current state qcur to the second state qsec:

qsec δqcur, e (26)

where q0 is the initial state. F is the set of termina-
tion states, which is a subset of Q that represents that the
algorithm is acceptable in this state (for instance, qnorm).

At the beginning of the algorithm operation, the robot is
normally located. We first define the initial state q0 as the

state qnorm and subsequently determine the trigger condition
according to the result of the confidence calculation.

1. If the result of the confidence calculation is greater
than Th2, the condition enorm is triggered. The algo-
rithm maintains the state qnorm and outputs the result
of the position tracking algorithm.

2. When the result of the confidence calculation is be-
tween Th1 and Th2 Th2 > Th1, the condition eerr is trig-
gered. The algorithm executes the function δqnorm, eerr
to achieve the transition from qnorm to qerr, that is, the
global localization algorithm is called to perform a
search in the local range.

3. When the result of the confidence calculation is less
than Th1, the condition ekid is triggered. The algorithm
executes the function δqnorm, ekid for the transition be-
tween the two states of qnorm to qkid. Specifically, the
global localization algorithm is invoked to perform a
search on the global map.

The state transition relationship in the finite state ma-
chine is shown in Figure 6. The specific steps of the FSM-
based relocalization judgment algorithm are shown in Al-
gorithm 3.

Figure 6: State transition relationship in the finite state machine.

This algorithm is expected to solve the problem of robot
kidnapping. Hence, it is necessary to search for the best
matches on the global map. To ensure the stability of the
algorithm, we limit the number of calls to the global local-
ization algorithm to manage the errors in the confidence
calculation caused by environmental changes (such as dy-
namic environments). Our confidence calculation method
averages the matching probabilities of each LiDAR point
participating in the scan matching. The method exhibits a
certain degree of robustness in scenarios involving slight
environmental changes; however, its performance is limited
in cases involving severe environmental changes. Thus, it is
preferable to limit the number of calls to global localization.
When the set maximum number of times is reached, the
relocalization judgment algorithm is automatically termi-
nated.
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7. Experiments

As described in this section, we validate the robustness and
accuracy of our algorithm through extensive experiments.
First, we present the implementation details, including the
experimental environment and preparation steps. Second,
we describe the evaluation of our algorithm in a simulated
laboratory environment and analysis of the performance of
different parts. Finally, we assess the performance of our
algorithm in an actual workshop environment.

Algorithm 3: Relocalization judgment based on
finite state machine.

Input: current period t, current scan St , inflated
occupancy grid map m, position tracking
pose ξpt

Parameters :confidence thresholds Th1, Th2, Number
of relocalization Nrel

Output: optimal robot pose ξ∗t
initialization;
score← 0;
S tatusFlag← f alse;
count ← 0;
while S tatusFlag f alse do

score← S coreξpt ;
if score < Th2 then

if Th1 ≤ score ≤ Th2 then
ξ∗t ← GlobalLocalizationξpt , S t;
count ← count 1;

end
else
ξ∗t ← GlobalLocalizationS t;
count ← count 1;

end
end
else
ξ∗t ← ξpt ;
count ← 0;

end
if count ≥ Nrel then

S tatusFlag← true;
end

end

7.1. Implementation Details

Using the Gazebo physical simulation platform, we build
a virtual laboratory environment that mimics the layout
and dimensions of the real-world laboratory. In such a
typical structured environment, we use a simulated jackal
robot with basic sensors (e.g., 2D LiDAR, IMU, and wheel
encoders) to perform the experiments. To perform the as-
sessment in an actual workshop environment, we use the
IR300 commercial logistics robot to conduct the experiments.
The environments are shown in Figure 7(a) and Figure 7(b).

In the preparation stage, we use an open-source 2D Li-
DAR SLAM algorithm to build a point cloud map of the
environment. The process can be divided into three stages:

1. Data preprocessing: Raw sensor data for time synchro-

nization are collected to alleviate the errors caused by
the difference in the working frequency of different
sensors;

2. Mapping: The handle is used to ensure that the robot
can traverse the complete environment to build a point
cloud map in real time;

3. Postprocessing: The built point cloud map is filtered
to eliminate anomalies and outliers.

(a) Simulated laboratory environ-
ment with dimensions of 20 m×20
m.

(b) Actual workshop environment
with dimensions of 30 m×60 m

Figure 7: Experiment environment.

7.2. Localization experiment in the simulated laboratory environ-
ment

We first test the global localization in the simulated labo-
ratory environment. The size of the laboratory is approxi-
mately 20 m×20 m; thus, we set the linear search window
sizes in the x- and y-directions as 30 m, respectively, and
the angular search window size is set as 2π. The depth
of the search tree in the branch-and-bound algorithm is
7. Correspondingly, there exist seven built occupancy grid
maps, in which the highest resolution of the occupancy
grid map is r0 0.4 m. To ensure that the iterative nearest
point algorithm can achieve the highest accuracy, we set
the maximum number of iterations as 100 and maximum
tolerance of two consecutive iterations as 10−13.

In the experiment, we select six positions on the map to
test the performance of the algorithm. To uniformly cover
the free space of the environment, the selected adjacent
positions are separated by ∆d 5 m, and the orientations of
each position are uniformly distributed in −π, π, as shown
in Figure 8(a). When the robot starts operating, it automati-
cally implements the global localization algorithm to obtain
the robot’s initial pose based on the current LiDAR data, as
shown in Figure 8(b) and Figure 8(c).

ex and ey denote the position error between the real posi-
tion and estimated position of the robot, and eφ represents
the difference between the real and estimated orientations.
In addition to these standard criteria, we consider the run-
time and success rate of the algorithm. The runtime refers to
the time from the beginning of the algorithm to the time at
which the final result is obtained. The success rate describes
the probability of successful localization at the specified
position. When the error between the real position and
estimated position of the robot is less than 0.05 m and the
orientation error is less than 2◦, the localization is considered
successful. We perform 20 experiments for each specified
position.
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(a) Positions selected on the map for the
global localization experiment

(b) Before global localization at #3 (c) Global localization at #3

Figure 8: Evaluation of the global localization algorithm in the simulated laboratory environment.

In the test, we verify the performance of the proposed al-
gorithm. Hence, a comparison experiment is not conducted
for the following reasons:

1. The localization result is compared with the real posi-
tion of the robot;

2. Few open-source algorithms can achieve global local-
ization. Actual results for the few algorithms that
can accomplish this function have been extensively
reported. Therefore, the details do not need to be
presented.

According to Table 1, the average orientation error is
less than 0.2◦, the average position errors in the x- and
y-directions are less than 0.03 m and 0.01 m, respectively.
As described in Section 4, the search accuracy of the branch-
and-bound algorithm is limited by the highest resolution of
the occupancy grid map (0.4 m). However, the two-stage
matching algorithm achieves a localization accuracy that
is higher than that of algorithms that use an occupancy
grid map with a resolution of 0.05 m for scan matching.
Moreover, we achieve a 100% localization success rate in
each position.

The runtime varies considerably across positions (Fig-
ure 9). According to the runtime of each stage in the global
localization algorithm, the most notable time consumption
pertains to the determination of the initial pose by the
branch-and-bound algorithm. In contrast, the runtime of
the iterative closest point algorithm is stable and occupies
only a small proportion. Although the runtime does not
meet the requirements of real-time localization, considering
the actual size of the map used in the search process, our
algorithm can promptly find the global pose of the robot and
dramatically decrease the time associated with redundant
calculations.

In the algorithm, when the depth (d 7) is constant,
the resolution r0 of map0 used in the branch-and-bound
algorithm directly influences the localization accuracy and
runtime. We analyze the impact of the different resolu-
tions r0 on the algorithm at position 4 −6.33, 1.23,−45◦. The
results are shown in Table 2. When r0 is small, although
the solution obtained by the branch-and-bound algorithm
is closer to the optimal solution, the search time is large.
In contrast, the proposed algorithm achieves a reasonable
balance between the efficiency and localization accuracy.
The localization result obtained by the proposed algorithm

does not considerably fluctuate with the change in r0, and
the runtime is exponentially decreased.

Figure 9: Runtime distribution for specific positions (BBS: branch-and-
bound algorithm, ICP: iterative closest point algorithm, BB-RL: proposed
algorithm).

To assess the accuracy of our algorithm, we conducted
50 experimental runs in the simulation environment, and
for each run, we randomly selected a position on the map
to measure the error. The results are shown in Figure 10.
The average position errors in the x- and y-directions are
0.02037 m and 0.00648 m, respectively. The average ori-
entation error is 0.00129 rad, and the average runtime is
576.35 ms. Additionally, the maximum position error in
the x- and y-directions are 0.0317 m and 0.0185 m, respec-
tively. The maximum orientation error is 0.00353 rad, and
the maximum runtime is 1027.67 ms.

Next, we conduct the position tracking experiment. We
assume that the robot’s initial pose is known (automatically
obtained by Gazebo). In the test, the robot moves in a
circle around the indoor environment. The starting and
ending points coincide. We evaluate the error of the robot
between the starting and ending points. The process is
shown in Figure 11. As a reference, we compare the AMCL
and Cartographer frameworks to verify the accuracy of the
algorithm.

In the parameter settings, the number of local maps for
multi-local-map-based scan matching was established as 3.
For loop-closure detection, the linear search window size
was set at 20 m and the angular search window size for loop
detection at 2π radians. Additionally, the search depth was
defined as 7.

The trajectory of each algorithm is shown in Figure 12.
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Table 1: Global localization results for specific positions in the simulated laboratory environment.

Position exm eym eφrad Runtimems Success Rate%

#1 0.0249 -0.00631 0.000119 277.806 100
#2 0.0130 -0.00529 0.00123 440.500 100
#3 0.0191 -0.00455 0.000581 585.314 100
#4 0.0236 -0.00971 0.00267 380.872 100
#5 0.0246 -0.00933 0.000609 809.102 100
#6 0.0180 -0.00303 0.000237 734.903 100
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Figure 10: Experimental results of 50 positions randomly selected for global localization in the simulated laboratory environment.

(a) Operation of the robot in the
simulated laboratory environment

(b) Real-time trajectory of the
robot shown on the map

Figure 11: Evaluation of the position tracking algorithm in the simulated laboratory environment.

www.jenrs.com Journal of Engineering Research and Sciences, 3(2): 22-42, 2024 34

http://www.jenrs.com


Zhang et al., Robust Localization Algorithm

Table 2: Experimental results of global localization algorithm at position 4 with different resolutions r0.

r0 exm eym eφrad Runtimems

0.5m
BB-RL 0.02319 0.00626 0.00426 329.356
BBS 0.33 0.27 0.03045 262.846

0.4m
BB-RL 0.02236 0.00546 0.00271 411.043
BBS 0.07 0.03 0.01378 295.019

0.3m
BB-RL 0.02332 0.00480 0.00609 647.166
BBS 0.03 0.03 -0.03621 531.401

0.2m
BB-RL 0.02331 0.00633 0.00209 1069.53
BBS 0.07 0.03 0.00163 1016.26

0.1m
BB-RL 0.02019 0.00332 0.00584 6069.81
BBS 0.03 0.03 -0.00288 5980.87

0.05m
BB-RL 0.02148 0.00370 0.00198 31851
BBS 0.02 0.02 0.00211 31808.9

Results obtained using AMCL, Cartographer, and the pro-
posed algorithm are relatively close to the ground truth
because the sensor data obtained in the simulation environ-
ment are ideal, and no sensor failures or other emergencies
occur. However, according to the analysis of trajectory de-
tails, the proposed algorithm fits the ground truth more
closely. According to the trajectory error comparison shown
in Table 3, the proposed algorithm outperforms the com-
pared algorithms in terms of the accuracy. The Figure 13
shows the time-based error of the position on both the x-
axis and y-axis, as well as the orientation error during the
position tracking experiment.

Figure 12: Comparison of trajectories of different position tracking algo-
rithms in a simulated laboratory environment.

Finally, the relocalization experiment is conducted. Since
the correction of the accumulated errors is reflected in the
experimental results of the position tracking, we test only
the localization recovery ability of the algorithm in the case
of robot kidnapping. First, we initialize the robot and con-
trol it to move in the environment. Second, we suddenly
move the robot to positions A, B, C, and D (Figure 14) to
artificially create a robot kidnapping situation to verify the
effectiveness of the relocalization. Due to only a few existing
open-source algorithms can solve the robot kidnapping
problem. Additionally, no uniform standard for the ex-
perimental procedure exists. Hence, we do not conduct a
comparison experiment in this test.

Table 3: Comparison of the position tracking error in the simulated labora-
tory environment.

exm eym eφrad

BB-RL 0.01398 -0.00176 0.00108
AMCL -0.06515 -0.070497 -0.0278

Cartographer -0.05141 0.043688 0.00232

(a) Position error in the x-direction and y-direction

(b) Orientation error in the y-direction

Figure 13: Time-based error analysis of the BB-RL position tracking algo-
rithm compared to ground truth data.

Before the test, to ensure that the map has the same reso-
lution as that of the local map used in the position tracking
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algorithm, we convert the prebuilt point cloud map into an
occupancy grid map with a resolution of 0.05 m. According
to the range accuracy of the LiDAR, the expansion radius rin f
is set as 0.1 m, the scale factor is set as 1, and the thresholds
Th1 and Th2 are set as 0.5 and 0.8. The experimental results
are shown in Figure 15.

(a) Specific positions to which the
robot travels

(b) Position at which robot kidnap-
ping occurs

Figure 14: Process of relocalization experiment in the simulated laboratory
environment.

(a) Relocalization at #A (b) Relocalization at #B

(c) Relocalization at #C (d) Relocalization at #D

Figure 15: Relocalization results for positions A, B, C, and D following a
robot-kidnapping.

The quantitative results are shown in Table 4. Among
these results, the average position errors in the x- and y-
directions are less than 0.03 m and 0.01 m, respectively, the
orientation error is less than 0.1◦, the runtime is within 600
ms, and the success rate at each position is consistent with
global localization, remaining at 100%. From the overall
perspective, the relocalization results are similar to those of
the global localization in the simulation environment. When
the relocalization judge algorithm is used to identify if the
robot is kidnapped, localization recovery can be effectively
realized by calling the global localization algorithm.

7.3. Localization experiment in the actual workshop environment

A global localization experiment is conducted in the actual
workshop environment. In this experiment, the parameters

of the branch-and-bound algorithm are changed. Because
the size of the workshop is approximately 60 m ×30 m, we
set the linear search window sizes in the x- and y-directions
as 70 m and 40 m, respectively. All other parameter settings
are the same as those in the global localization experiment
in the simulated laboratory environment.

Similarly, we select six positions on the map to analyze
the performance of the algorithm. Each adjacent position is
separated by ∆d 15 m, and the orientation of each position
is uniformly distributed in −π, π. The selected positions are
shown in Figure 16. The localization process of position 3 is
shown in Figure 17 and Figure 18. The evaluation criteria
and number of experiments are the same as those in the
global localization experiment in the simulated laboratory
environment.

Figure 16: Positions selected on the map for the global localization experi-
ment.

Figure 17: Robot-kidnapping on position #3.

Figure 18: Global localization on position #3.

According to Table 5, the average position errors in the
x- and y-directions are less than 0.032 m and 0.02 m, re-
spectively, and the average orientation error is less than
1.2◦. Compared with the experimental results of global
localization in the simulated laboratory environment, the
error of global localization in the workshop environment is
significantly larger. The sensor noise and interference of the
dynamic environment in the actual environment are more
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Table 4: Relocalization results for specific positions in the simulated laboratory environment.

Position exm eym eφrad Runtimems Succuess Rate%

A 0.02448 0.000870 -0.000313 401.946 100
B 0.02017 -0.00485 0.000605 376.736 100
C 0.02452 0.00723 -0.00116 538.637 100
D 0.02205 0.00374 0.00114 329.169 100

Table 5: Global localization results for specific positions in the actual workshop environment.

Position exm eym eφrad Runtimems Succuess Rate%

#1 0.02261 -0.00402 0.00711 459.686 100
#2 0.02289 -0.00326 0.00884 605.213 100
#3 0.02382 0.01919 0.01673 633.351 95
#4 0.03064 0.01212 0.01193 1260.876 90
#5 0.02819 0.00895 0.00416 833.633 95
#6 0.02775 -0.01226 0.01938 671.117 95

unpredictable than those in the simulation environment
and directly affect the localization accuracy.

The success rate is slightly decreased at positions 3-6 be-
cause the current LiDAR data tend to produce mismatches
with the occupancy grid map. The runtime associated with
each stage in the global localization algorithm (Figure 19)
shows that the overall runtime at each position increases. Es-
pecially, at position 4, the overall running time is 1260.87 ms,
1226.81 ms of which correspond to the branch-and-bound
algorithm. This finding demonstrates that most of the time
consumed by the global localization algorithm pertains to
the branch-and-bound algorithm implementation.
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Figure 19: Runtime distribution for specific positions.

Moreover, in this experiment, we test the impact of dif-
ferent resolutions r0 of map0 used in the branch-and-bound
algorithm on the localization accuracy and runtime when
the depth (d 7) remains unchanged. The experimental
results at position 1 −0.43,−0.365, 0◦ are shown in Table 6.
Compared with the results of the simulated laboratory en-
vironment, the runtime at different resolutions r0 is higher
due to the increased size of map0. However, the proposed
algorithm exhibits similar localization accuracies at different
resolutions r0. Therefore, we can choose r0 0.4 m to balance
localization efficiency and accuracy.

Table 6: Experimental results of global localization algorithm at position 1
with different resolutions r0.

r0 exm eym eφrad Runtimems

0.5m
BB-RL 0.02313 -0.00623 0.00505 398.397
BBS -0.145 0.31 0.0333 369.458

0.4m
BB-RL 0.02281 -0.00172 0.00545 532.387
BBS -0.145 0.11 0.0133 507.262

0.3m
BB-RL 0.02273 -0.00901 0.00462 934.256
BBS -0.145 -0.09 0.03 910.888

0.2m
BB-RL 0.02205 -0.01520 0.00489 1878.96
BBS 0.055 -0.09 0.00667 1864.33

0.1m
BB-RL 0.01898 -0.01287 0.00465 14806.3
BBS 0.055 0.01 0.0133 14796.1

0.05m
BB-RL 0.02157 -0.00126 0.00537 296631
BBS 0.005 0.01 0.01167 296612

To assess the accuracy of the global localization algo-
rithm, we conducted 50 experiments in a real-world envi-
ronment. For each experiment, we randomly selected a
position on the map to evaluate the error. The results are
shown in Figure 20. The average position errors in the x-
and y-directions are 0.02516 m and 0.0079 m, respectively.
The average orientation error is 0.0089 rad, and the average
runtime is 734.18 ms. Additionally, the maximum position
errors in the x- and y-directions are 0.03675 m and 0.02669
m, respectively. The maximum orientation error is 0.0193
rad, and the maximum runtime is 1407.48 ms. Compared
with the results in the simulated laboratory environment,
the position error and runtime are higher, although the
actual engineering needs can still be satisfied.

Next, we perform the position tracking experiment. First,
we assume that the robot’s initial pose is the origin of the
map in this experiment. Subsequently, we control the robot
to move in a circular path in the workshop to return to the
starting point. Finally, the error between the starting point
and ending point is calculated as the accuracy criterion. As
a reference, we compare the results of EKF fused with IMU
and wheel odometry, AMCL, and Cartographer to verify
the accuracy of the algorithm. The experiment is shown in
Figure 21 and Figure 22 .
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Figure 20: Experimental results of 50 positions randomly selected for global localization in the actual workshop environment.

Figure 21: Operation of the robot in the actual workshop environment

Figure 22: Real-time trajectory of the robot shown on the map in the actual
workshop environment.

All the parameter settings are the same as those in the
position tracking experiment in the simulated laboratory
environment. The trajectory of each algorithm is shown
in Figure 23. Notably, (1) the trajectory error associated
with the EKF fusion is the largest; (2) there exists a certain
deviation in the local details between each trajectory; and
(3) the trajectory of the AMCL near the starting point is not
closed.

Figure 23: Comparison of trajectories of different position tracking algo-
rithms in an actual workshop environment.

According to Table 7, the position error in the x-direction
of EKF fusion is approximately 1 m, the position error in
the y-direction of AMCL is approximately 0.9 m, and the
orientation error of AMCL exceeds 4.5◦. In contrast, the pro-
posed algorithm achieves satisfactory results in all aspects:
the position errors in the x- and y-directions are both less
than 0.05 m, and the orientation error is less than 1◦.

Table 7: Comparison of position tracking errors in the actual workshop
environment.

exm eym eφrad

BB-RL -0.03780 0.04696 0.01111
AMCL 0.16055 0.87677 0.08407

Cartographer -0.08248 0.12581 0.01017
IMUOdom -0.96486 0.16832 0.05129

Finally, a relocalization experiment is conducted in the
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(a) Specific positions to which the robot travels (b) Position at which robot kidnapping occurs (c) Relocalization at #A

(d) Relocalization at #B (e) Relocalization at #C (f) Relocalization at #D

Figure 24: Relocalization results for positions A, B, C, and D (the red line represents the trajectory of the robot before robot kidnapping occurs, the
measurement data of the LiDAR are represented by the green line, and the position of the robot is represented by the orthogonal coordinate axes)

Table 8: Relocalization results for specific positions in the actual workshop environment.

Position exm eym eφrad Runtimems Succuess Rate%

A 0.02819 0.00895 0.00416 904.561 95
B 0.02686 -0.00881 0.00632 630.238 95
C 0.02246 -0.00195 0.00937 374.754 100
D 0.02302 -0.00736 0.00207 434.718 100

actual workshop environment. The same experimental
method as that of the relocalization experiment in the simu-
lated laboratory environment is followed: First, the robot
is controlled to move in the workshop through the handle.
Second, a robot kidnapping situation is created by artificially
moving the robot to positions A, B, C, and D (Figure 24(a)
and Figure 24(b)). Finally, the position error and orientation
error of different positions are calculated. In terms of the
parameter settings, the thresholds Th1 and Th2 are set as 0.5
and 0.75, respectively. The resolution of the inflated occu-
pancy grid map is 0.05 m, the expansion radius rin f is set as
0.2 m, and the scale factor k is set as 1. The experimental
results are shown in Figure 24(c), Figure 24(d), Figure 24(e)
and Figure 24(f).

According to Table 8, the error in the actual workshop
environment is higher than that in the simulated laboratory
environment. At position A, the position error in the x-
direction exceeds 0.028 m, the orientation error exceeds 0.2◦,
and the runtime is close to 1 s. Additionally, the runtime
at positions C and D is significantly decreased with values
of only 374.754 ms and 434.718 ms, respectively. For the
success rate, relocalization failures occur at positions A and
B. However, overall, the success rate is maintained at each
selected position.

Building on the introduction of the Branch-and-Bound
for Robust Localization (BB-RL) algorithm, the experimental
findings can be effectively summarized. The BB-RL algo-
rithm offers a potent solution for indoor robot localization
by harmoniously integrating position tracking, global local-

ization, and the resolution of the kidnapped robot dilemma
within a cohesive framework. The evaluation shows that
BB-RL achieves a balance among speed, accuracy, and ro-
bustness, establishing it as an effective and practical choice
for indoor robot localization scenarios.

In summary, the proposed trajectory aligns more closely
with the ground truth compared to those generated by other
compared algorithms. The BB-RL algorithm surpasses
competing algorithms in accuracy. Regarding the kidnap-
ping problem, robots equipped with BB-RL successfully
overcome localization failures, maintaining a commendable
success rate. The effectiveness of the BB-RL algorithm in
solving the three core localization challenges has been con-
firmed in real-world settings, achieving sustained accuracy
and an appropriate execution frequency. This underscores
the algorithm’s viability and efficiency in practical appli-
cations, particularly in navigating and localizing within
indoor environments.

8. Conclusion and Future Work

A robust and accurate localization is crucial for effective path
planning, precise motion control, and reliable obstacle avoid-
ance in the field of autonomous robotics. Recognizing the
need for accurate and robust localization in real-world ap-
plications, this paper presents a BB-RL (Branch-and-Bound
for Robust Localization) algorithm for indoor mobile robots.
Its novelty lies in the comprehensive and integrated ap-
proach to addressing the three key localization tasks: global
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localization, position tracking, and the kidnapped robot
problem.

The approach begins with a two-stage global localization
algorithm to determine the robot’s initial pose. A DFS-based
branch-and-bound algorithm ensures the search solution is
globally optimal. To achieve localization precision beyond
grid resolution, the iterative closest point (ICP) algorithm
refines this solution locally.

For continuous position tracking, a local map-based scan
matching technique is used. To achieve reliable results, a
two-tier prediction method combining an Extended Kalman
Filter (EKF) with multi-local map-based scan matching is
proposed, ensuring initial guesses converge to the global
optimum. Additionally, a global pose graph is constructed
to minimize accumulated errors across local maps, while a
DFS-based branch-and-bound algorithm accelerates loop-
closure detection.

Long-term stability of the algorithm is maintained
through an innovative Finite State Machine (FSM)-based
relocalization judgment method, which uses an inflated
occupancy grid map to reduce LiDAR measurement noise
effects on confidence calculations. A dual-threshold judg-
ment strategy accurately identifies the robot’s localization
state, triggering the global localization algorithm as needed
for timely localization recovery.

In conclusion, our algorithm shows out for its robust-
ness, scalability, and practicality, underscored by its fast
processing capabilities. Extensively tested in both simu-
lated laboratory environments and real-world workshops,
it has also been successfully implemented on a commercial
logistics robot platform. This deployment demonstrates not
only its high localization accuracy but also its robust and
rapid performance in diverse operational contexts.

Finally, we have underscored the advantages of our local-
ization framework, especially in indoor environments prone
to localization difficulties, such as logistics warehouses and
factory inspections. These environments require a robust
and accurate localization algorithm. By integrating existing
sensor data with advanced algorithms, our framework sig-
nificantly improves localization accuracy and robustness in
these complex scenarios.

In the future, our research will focus on utilizing a
broader array of features for robot localization, including
the features from 3D point cloud maps and camera sensors.
These data types promise to enhance localization accuracy
by providing a richer set of environmental information.
However, incorporating these algorithms and features is
expected to increase computational demands. A key direc-
tion for our future work will be to find a balance between
integrating these diverse and multi-dimensional features
and maintaining efficient processing speeds. We aim to in-
tegrate 3D point cloud features for improved relocalization
without compromising computational efficiency.

Another aspect of our future work will address the chal-
lenges posed by complex, dynamic environments, such as
scenarios where robots are surrounded by crowds. Identify-
ing the cause of localization failures—whether due to actual
kidnapping scenarios or temporary disruptions caused by
dynamic environmental factors—and deciding whether to
initiate relocalization presents a challenge we plan to ad-

dress. This involves differentiating between true kidnapping
situations and temporary conditions caused by dynamic
environments, thereby guiding the decision on whether
relocalization is necessary.

This comprehensive approach, leveraging a variety of
data sources and technologies, is designed to ensure that
localization challenges, even in the most demanding en-
vironments, can be effectively addressed. Our goal is to
provide a more comprehensive and reliable solution for
indoor robot localization, overcoming current limitations
and preparing for future challenges.
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