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Editorial 
In the dynamic fields of renewable energy, electrical safety, network simulation, and vehicular 
ad-hoc networks (VANETs), groundbreaking research is paving the way for technological 
advancements and practical applications. These editorial reviews four impactful papers that 
contribute to these diverse yet interconnected domains, highlighting their innovative 
approaches and significant findings. 

The first paper focuses on the Taïba Ndiaye wind farm in Senegal, which plays a crucial role 
in balancing the national grid by offsetting electricity shortfalls with its 158.7 MW installed 
capacity. Given the intermittent nature of wind power, the study emphasizes the need for 
accurate forecasting methods to predict wind generation and optimize the transition between 
renewable and fossil energy sources. By employing machine learning models—specifically 
decision tree and random forest—the authors achieve high coefficients of determination (0.92 
and 0.938, respectively), demonstrating the reliability of their forecasting approach using 
production data. These findings promise substantial improvements in resource management 
and energy planning, facilitating a smoother transition to renewable energy [1]. 

The second paper addresses the critical issue of electrical safety in household appliances, 
specifically focusing on bathing water heaters. Traditional heaters pose a significant risk of 
electrocution if the copper tube covering the heating element corrodes and allows water to 
contact live electricity. The study proposes an innovative solution using a microcontroller to 
control water flow into a glass container heated by a microwave oven. This method eliminates 
the risk of electrocution, as there is no direct electrical contact with the water. This research 
offers a safer alternative for heating bathing water, highlighting the importance of safety 
innovations in everyday appliances [2]. 

The third paper explores the educational applications of network simulation tools, essential for 
teaching computer networks and communication protocols. The study evaluates five 
prominent network simulators—Cisco Packet Tracer, Riverbed Modeler Academic Edition, 
GNS3, NS-3, and Mininet—assessing their functionality, user-friendliness, and suitability for 
educational purposes. By comparing their operational capabilities and effectiveness, the 
authors provide valuable insights into each simulator’s strengths and weaknesses. This 
comprehensive analysis helps educators choose the most appropriate tools for enhancing 
students' learning experiences in networking education [3]. 

This paper delves into the realm of Vehicular Ad-hoc Networks (VANETs), focusing on the 
development of realistic simulation tools to study vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) interactions. The authors introduce Simulator Bridger, which integrates 
IoTSim-OsmosisRES with the SUMO traffic simulator to create a realistic VANET environment. 
Their analysis reveals a near-perfect correlation between communication dataflows and 
vehicle battery consumption, highlighting the impact of increased communication activity on 
overall energy use. The study proposes future research directions, including traffic rerouting 
based on battery consumption optimization, offering a deeper understanding of energy 
management in VANETs and paving the way for more efficient vehicular networks [4]. 

In summary, these four papers collectively advance our understanding of renewable energy 
forecasting, electrical safety in household appliances, network simulation for educational 
purposes, and energy-efficient VANETs. The innovative solutions and practical applications 
presented in each study underscore the importance of continuous research and development 
in addressing contemporary challenges. As technology continues to evolve, interdisciplinary 
research remains crucial in driving progress and enhancing the safety, efficiency, and 
sustainability of our technological systems. 
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ABSTRACT: The Taïba Ndiaye wind farm, connected to the SENELEC grid, plays a key role in 
offsetting shortfalls in electricity consumption, with an installed capacity of 158.7 MW. Moreover, as 
an intermittent power station, its production is highly dependent on the environmental conditions in 
the region. Bad weather can disrupt the electricity network, requiring forecasting methods to anticipate 
its production. This will make it easier to decide how much fossil energy to bring on stream to meet 
demand. The aim of this paper is to provide forecasts of wind generation at Taïba Ndiaye, subdividing 
the data into 80% for model training and 20% to assess its robustness to generalization to other 
situations. The aim is to quantify the energy produced and facilitate an optimal transition between 
intermittent and fossil energy sources. Two artificial intelligence models classified as machine learning 
(decision tree and random forest) are proposed in the study, with respective coefficients of 
determination of 0.92 and 0.938. The results, compared with the literature, demonstrate the reliability 
of the approach using only production data. These results promise significant benefits in terms of 
resource management. 

KEYWORDS: Taïba Ndiaye, Wind power, SENELEC grid, forecast, machine learning, artificial 
intelligence models 

 

1. Introduction   

Prior to the integration of intermittent renewable 
energies into the power grid, the flow of energy followed 
a single direction, ensuring greater stability of the power 
system [1]. Today, however, with the injection of these 
energies, such as solar and wind power, the energy flow 
becomes bidirectional, which easily disrupts the grid 
when faced with rapid variations in meteorological 
parameters [2]. Furthermore, the injection of these 
intermittent energies must not exceed 30% of total energy 
demand in some countries [3]. This presents grid 
operators with a significant challenge in maintaining a 
consistent balance between production and consumption 
to avoid malfunctions, undesirable voltage and frequency 
variations, and costly imbalances [4]. Network operators 
must be able to anticipate the production of intermittent 
power plants in order to adjust the production of fossil 

fuels, thereby balancing customer consumption with 
production. Furthermore, in view of global concerns about 
the fight against climate change, the electricity grids of 
several countries continue are integrating intermittent 
energies into their electricity grids, despite the drawbacks 
[5]. Senegal is following a similar approach, with a 30% 
increase in the energy mix [6]. These include the Taïba 
Ndiaye wind farm, with a capacity of 158.7 MW, as well as 
Malicounda (20 MW), Diass (23 MW), Bokhol (20 MW), etc 
[7][8]. Against this backdrop of high penetration of 
intermittent renewable energies, forecasting has become 
essential to ensure the stability of the electricity network 
[9]. Several studies have focused on forecasting the 
potential of renewable resources, whether solar or wind. 
These studies mainly rely on artificial intelligence models 
to predict wind energy, given its complex characteristics 
of continuous production both day and night, which 
makes this difficult [10]. Indeed, operators face difficulties 
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due to the volatile nature of these sources, with weather 
parameters requiring constant monitoring to anticipate 
tasks linked to technical constraints [11]. To overcome 
these challenges, data science experts are working more 
closely with grid operators to collect data in order to 
accurately predict intermittent energy with artificial 
intelligence (AI) models. AI-based forecasting models are 
fed by data from sensors installed in the power plant. 
These models are currently significantly improving the 
prediction of intermittent power plant output with high 
accuracy [12][13]. Their reliability in predictive decision-
making is no longer in question [14]. In fact, they enable 
production to be predicted over fairly short time horizons, 
thus enabling the SENELEC distributor to ensure the 
stability of network frequency and voltage [8]. 
Comparative studies have confirmed that these AI models 
outperform statistical models because of their very 
satisfactory predictive power [15]. This is evidenced by the 
studies conducted on the wind power production in Italy 
and the United States, as well as in Senegal on short-term 
solar irradiance [16][17]. Despite the robustness and 
relevance of AI models, their intensive use of data with 
several input variables to predict the target is not without 
consequences for computing resources, requiring 
considerable computing power.  Some experts in the field 
have highlighted that their machines can sometimes 
overload, while others have mentioned that the latent time 
is sometimes too high to obtain optimal results [7]. To 
address this issue, we propose using two parameter 
predictors to forecast the short-term power output of the 
Diass wind power plant, using random forest models and 
decision trees. These models will be trained using only 
wind generation measured over a one-year period. The 
objective is to improve the prediction performance of the 
wind power plant by reducing the number of input 
parameters [7]. This paper is structured as follows: the 
presentation of the data as well as the wind power plant 
and the method discussed is provided in section II. Section 
III outlines the AI algorithms used. In Section IV, the 
results and discussion are presented. Finally, in Section V, 
the conclusion is provided. 

2. Presentation of the plant and data 

2.1. Classification of the Taïba Ndiaye wind farm  

Wind energy is the kinetic energy generated by the 
movement of the wind, transformed into mechanical 
energy by wind turbines and then converted into electrical 
energy. The energy is given by equation (1).                                                      

𝐸𝐸 = 1
2

× 𝐴𝐴 × 𝜌𝜌 × 𝑉𝑉3 × 𝐶𝐶𝑝𝑝 × η                                          (1) 

where: 

    - 𝐸𝐸: is the wind energy produced (in watts or joules), 

    - 𝐴𝐴: is the area swept by the turbine blades (in square 
metres), 

    - ρ: is the density of the air (in kilograms per cubic 
metre), 

    - 𝑉𝑉: is the wind speed (in metres per second), 

    - Cp: is the power coefficient of the wind turbine 
(without unit, a typical maximum value is around 0.59), 

    - η: is the mechanical and electrical efficiency of the 
system (unitless, a typical value is around 0.85). 

The value of the power coefficient Cp depends on the 
speed of rotation of the turbines and the angle of 
inclination of the blades. Wind turbines are classified into 
three groups according to propeller diameter and power 
output [18]. Table I shows a classification of wind turbines: 

Table 1: Classification of wind turbines [18] 

Group Propeller 
diameter Dh 

Power output 
Pw 

Small wind 
turbine 

Dh ≤ 12 m Pw ≤ 40 kW 

Average wind 
turbine 

12 m < Dh ≤ 45 m 40 kW < Pw ≤ 999 
kW 

Large wind 
turbine 

 Dh > 45 m Pw > 1 MW 

 According to this classification, our study plant, with a 
capacity of 158.7 MW, is classified as a large wind power 
plant. It is equipped with the necessary data collection 
equipment. These enable efficient planning of energy 
production by anticipating load variations to meet 
injection requirements. Careful analysis facilitates energy 
injection, minimizing waste and reducing the costs 
associated with fluctuations in production. It also 
facilitates the integration of forecasting models to 
guarantee operational stability. 

2.2. Production data   

   Figure 1 illustrates the data obtained from the sensors 
installed at the wind farm. These data are related to 
various environmental factors that will be used in our 
forecasts. The measurements were taken every ten (10) 
minutes for one year and averaged by hours, days and 
months. This is a time series with repeating trends at the 
beginning and end of the year, probably due to favourable 
weather conditions [8]. Their associated temporal indices 
are of the order of minutes, hours, days and months. These 
parameters are crucial for modelling this type of problem. 
To achieve an accurate prediction, we will incorporate 
seasonal phenomena, including the temporal indices, into 
the data reduction process.  

http://www.jenrs.com/
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Figure 1: Production profile of the Taïba Ndiaye wind farm 

Unlike solar power, wind power generates energy 
continuously, but this continuity is subject to 
unpredictable variations due to weather conditions. This 
intermittent nature of wind generation can sometimes 
pose complex challenges for electricity network managers. 
It is therefore important to keep a close eye on 
environmental parameters such as wind speed and 
direction, as they are closely linked to wind power 
generation. These variations can be rapid and significant, 
requiring proactive management to ensure grid stability.        
By understanding and anticipating these intermittencies, 
managers can take appropriate measures to maintain a 
reliable electricity supply. 

2.3.   Wind speed data   

 The power law also known as Murphy's law is a widely 
used approach to modelling wind speed [19],[20]. It states 
that the wind speed V at a given height above the ground 
is proportional to the power of the height h. Its 
mathematical relationship is given by equation (2) [19]: 

𝑉𝑉 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 �
ℎ

ℎ𝑟𝑟𝑟𝑟𝑟𝑟
�
𝑎𝑎
                                (2) 

where: 
    - V: is the wind speed at height h, 
    - 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟: is the wind speed at a reference height ℎ𝑟𝑟𝑟𝑟𝑟𝑟 ,  
    - α: is the exponent of the power law, which depends on 
local site conditions and terrain characteristics. 
From the modelling, the wind speed can be collected at the 
wind turbine installation site. The variation in mean wind 
speed at the Taïba Ndiaye site is shown in Figure 2. 
It shows the typical fluctuations in wind speed, which are 
characterised by periods of rise and fall. These fluctuations 
are often influenced by specific weather conditions and 
are continuous throughout the day, month and year. This 
continuous variation in wind speed presents a significant 
challenge when predicting wind generation. It is 
particularly complex because of this variability. Indeed, 
this variability in wind speed can lead to rapid changes in 
energy production, requiring dynamic management of 
energy resources to maintain the stability of the power 
grid. This requires the use of advanced modelling and 
simulation techniques, as well as artificial intelligence 

algorithms capable of analysing large datasets and 
recognizing complex patterns. 

Figure 3:  Power curve of the wind turbine installed at Taïba Ndiaye 

Given the wind speed data, a wind turbine with the 
power curve shown in Figure 3 was chosen for the model. 

The turbine's power increases until it reaches a speed 
of 12 m/s, where it remains constant until 22 m/s, which 
could correspond to the turbine's stall speed. This 
indicates that the turbine is designed to operate optimally 
within a predefined range of wind speeds. The turbine 
reaches its maximum rated output at a wind speed of 12 
m/s. During this period, the turbine makes full use of the 
available kinetic energy of the wind. The turbine’s power 
remains constant above the rated speed, up to 22 m/s. This 
mechanism is designed with an effective control system to 
prevent overloads and damage caused by excessively high 
wind speeds. In fact, the stall system protects the wind 
turbine and guarantees the durability of the components 
while stabilising the electricity. For accurate prediction 
purposes, it is important to take these wind fluctuations 
into account to provide a model capable of accurately 
predicting wind energy production. However, wind 
direction is one of the elements that creates turbulence, 
which is synonymous with wind fluctuations. It can have 
a positive influence on wind installations and their 
production. 

2.4.   Wind direction data  

The wind direction mainly shows that the winds blow 
in the optimum directions. These predominant wind 
directions correspond to the periods of maximum 

Figure 2: Wind speed profile for the Taïba Ndiaye area 

 

http://www.jenrs.com/


 S. Diop et al., Using artificial intelligence models to predict 

www.jenrs.com                        Journal of Engineering Research and Sciences, 3(6): 01-09, 2024                                            4 

production for the wind power plant. Figures 4 and 5 
show the predominant wind directions during the day 
and night respectively in the Taïba Ndiaye area. Figure 4 
shows that the predominant wind direction from south-
east to north-west during the day, it can be seen that the 
highest wind speeds are between 6 m/s and 8 m/s. Wind 
speeds of up to 10 m/s are fairly limited. At night, on the 
other hand, the prevailing winds blow from south to north 
at speeds of around 10 m/s. This observation shows that 
the wind farm's output is higher at night. It is therefore 
important to carefully monitor of these wind data in order 
to guarantee optimum energy feed-in to the power grid. 
By monitoring and anticipating variations in wind 
direction and speed, operators can adjust the plant's 
output accordingly. This not only optimises the 
production of wind energy, but also its smooth integration 
into the electricity grid, contributing to a more stable and 
reliable power supply for consumers.  

2.5.   Presentation of the plant  

 At Taïba Ndiaye, the data collected come from the 
wind power plant, which is an impressive installation 
consisting of 46 Vesta V 126-3.45 wind turbines. The plant 
is equipped with a collector that feeds two 33/225 kV, 
80/100 MVA step-up transformers, which gives it 
significant generating capacity [21]. The plant is 
strategically connected to the interconnected 225 kV 
network of the Organisation pour la Mise en Valeur du Fleuve 
Sénégal (OMVS), with an installed capacity of 158.7 MW. 
Figure 6 provides a clear illustration the installed wind 

farm and its characteristics. It is located in an open area 
and is well positioned to capture the wind. The 
meteorological data showed the dominant wind 
directions, as illustrated in Figures 4 and 5. It is important 
for the production of renewable energy and contributes 
significantly to the energy mix in the electricity grid.   

The importance of this data goes beyond simply 
monitoring solar production. By analysing this data, 
researchers may be able to gain a deeper understanding of 
the plant's current performance, as well as develop 
predictive models to anticipate seasonal and 
meteorological variations. 

3. Prediction Algorithms 
 In this section, the two used prediction algorithm 

(the decision tree and the random forest algorithm) are 
presented. 

3.1. Decision Tree Model  

 The decision tree is a classification and regression tree.  
The configuration of the tree is shown in Figure 7 and 
consists of the following elements: 

    - Root node: This represents the highest points in the 
figure 7. 

    - Internal nodes: These correspond to tests formulated 
in the form of questions on the characteristics of the 
parameters in relation to the target to be predicted. 

    - Branches: These present the results of the tests, and 
according to these answers, the subdivision is made as 
observed in figure 7. 

    - Leaf nodes: These nodes represent a decision. 

 

Figure 7:  Illustration of the production data decision tree. 

Figure 4: Wind rose for the Taïba Ndiaye power plant installation 
    

Figure 5: Wind rose in the Taïba Ndiaye power plant installation 
zone at night. 

    

Figure 6: Presentation of the Taïba Ndiaye wind farm. 

    

http://www.jenrs.com/
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  The partition equation of each node into two classes is 
given by (3) [14]:                                                                                                      

𝑿𝑿:𝑿𝑿𝒋𝒋 ≤ 𝒔𝒔 = 𝑪𝑪𝑪𝑪(𝒋𝒋, 𝒔𝒔)
𝑿𝑿:𝑿𝑿𝒋𝒋 > 𝒔𝒔 = 𝑪𝑪𝑪𝑪(𝒋𝒋, 𝒔𝒔)                                                        (3) 

 The couple (j, s) designate the partition limit of the data 
that we try to predict. Here, the goal is to find the boxes      
C1, ..., CJ that minimize the least squares criterion, 
represented by (4) according to [22]: 

∑ ∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑡𝑡��𝑁𝑁
𝑖𝑖:∈𝑅𝑅𝑅𝑅

𝑘𝑘
𝑗𝑗=𝑖𝑖 = SSE                                           (4) 

Where Yi and Ŷt refers to the actual and the predicted 
values respectively and SSE Residual Sum of Squares. 

The forecasting task involves explaining the target 
variable Y (plant output) as a function of a set of 
explanatory variables X (measurement times, day number 
and month). Thus, the different modalities of the X 
explanatory variables are examined using the chi-square 
test to determine which variables are closely related to the 
Y target. When the p-value of the chi-square test is less 
than 0.05, we conclude that the variable is significantly 
associated with the target variable Y. This criterion is 
particularly important when the learning loop is 
interrupted, ensuring that all nodes have chi-square tests 
greater than 0.05, indicating the absence of a strong 
association between the explanatory variables X and the 
target variable Y. 

3.2. Random Forest Model  

 This model consists of a collection of several decision 
trees trained using the Bagging method. The algorithm is 
applied in three stages: 

-Bagging: this is a technique that involves grouping 
several decision trees together to obtain a final result, 
rather than relying on individual decision trees. Figure 8 
shows its format. 

 Figure 8: Bagging phase of the random forest algorithm 

-Bootstrapping: This is a process that begins with the 
application of the bootstrap technique, which is a 
sampling method as shown in Figure 9. This approach 
involves creating random subsets from the initial dataset, 
using N samples. The N samples are selected with 

replacement, allowing the same sample to be included 
several times in the subset. 

-Bagging aggregation: In the bagging aggregation 
phase, each random subset is subjected to a decision tree 
algorithm. The final result is obtained by taking the 
average of all the predictions generated by the different 
trees, as shown in Figure 10. 

3.3. Performance Evaluation Criteria 

     The evaluation of the performance of our forecasts is 
based on the criteria defined by equations (5), (6), (7) and 
(8), where N represents the total number of values 
contained in the data [16], [23]. These indices provide a 
basis for judging comparisons with a view to future 
model improvements. However, comparison between 
models remains complex due to differences in forecast 
horizons, number of input parameters and 
meteorological conditions. Nevertheless, the mean 
absolute error (MAE), as defined in equation (5), is 
particularly relevant for linear cost functions, providing a 
proportional measure of prediction errors. In contrast, the 
root-mean-square error (RMSE) (6) is more suitable for 
significant deviations between forecast and observation. 
On the other hand, the root mean square error (RMSE), as 
defined in equation (7), is very responsive to these 

Figure 9: Bagging phase of the random forest algorithm 

Figure 10: Random Forest Algorithm Bagging 
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deviations, making it a valuable comparative parameter, 
particularly suitable for public applications [23]. It is 
worth noting that the lower the RMSE or MAE, the better 
the quality of the production forecast for our wind farm.  

1
𝑁𝑁
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑡𝑡� �𝑁𝑁
𝑖𝑖=1 = MAE                                                  (5) 

                         

�1
𝑁𝑁
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑡𝑡��

2𝑁𝑁
𝑖𝑖=1 = RMSE                                          (6) 

 

1
𝑁𝑁
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑡𝑡��

2𝑁𝑁
𝑖𝑖=1 = MSE                                               (7) 

 

1 − ∑ (𝑌𝑌𝑖𝑖−𝑌𝑌𝑡𝑡� )2𝑁𝑁
𝑖𝑖=1
∑ 𝑌𝑌𝑖𝑖

2𝑁𝑁
𝑖𝑖=1

= 𝑅𝑅2                                                    (8) 

  All these equations evaluate the parameters used to 
measure the accuracy of the power predicted by the 
algorithms of the two models used.  

3.4.   Flowchart of the Artificial Intelligence Model Algorithm 

 The flowchart of the regression tree and forest type 
artificial intelligence algorithm is a representation of the 
sequences and decisions to be taken by the algorithm to 
predict numerical values of the wind production of the 
targeted Taïba Ndiaye. In this work, it is described as 
follows: 

Begin    
1. Enter the historical wind production data for Taïba 

Ndiaye. 
2. Convert all data to hourly resolution by averaging. 
3. Select the target variable to be predicted (energy 

produced per hour). 
4. Apply WT decomposition (hierarchical multi-step 

decomposition) to historical target data (wind power). 
5. Identify training (80%) and test (20%) data sets. 
6. Verify tree convergence during model training. 
7. Save the trees if the convergence condition is met (these 

saved trees are called Wind Production Forecasters). 
8. If not, move on to the application of model hyper-

parameters. 
9. Recheck the convergence of the trees during training. 
10. Save the trained shafts if the convergence condition is 

met.  
4. Results and Discussion 

TShort-term forecasting is of paramount importance in 
managing the distribution of wind generation throughout 
the year. It also offers managers the possibility of making 
real-time adjustments within the electricity network 

integrating intermittent renewable energies [24]. 
However, we have chosen to focus on the months of 
January and July, as they respectively encompass the most 
significant and least significant production of the year. The 
data was collected during this period. In fact, if the models 
manage to make a good prediction, then its generalisation 
to the other months of the year is quite obvious. Figures 11 
and 12 illustrate the predictions generated by the two AI 
models for the month of January, when production rose. 
These graphical representations compare actual wind 
energy production with the one-hour forecasts. Indeed, a 
relevant method for evaluating the performance of a 
forecast consists of anticipating previously observed data 
based on the data that preceded it. By analysing these 
predictions for the month of January with the highest 
production provides an in-depth view of the models' 
ability to accurately anticipate variations in the wind 
power plant. 

 

 The graphs above appear to show a potential 
correlation between the predictions (in blue) and the 
plant's actual output (in red) for the month of January, 
with RMSEs of 0.527 and 0.3332 Mwh/day respectively for 
the decision tree and random forest models. At the start of 
production, observations suggest that there may be 
occasional discrepancies between prediction and reality. 
These discrepancies are sometimes manifested by a much 
higher predicted production or, conversely, by an actual 
production at the lower limit of the prediction, for both 
models. It should be noted, for example, that except for 
day 27 (648 hours on the curve, Fig. 12), the observed 
values exceed the prediction of the random forest model 
from day 21 (504 minutes on the curve) to day 28 (672 
hours on the curve), generally around 11pm. Despite a 
lower RMSE for the random forest model, these days show 
a better match between the predictions of the decision tree 
model and the actual observations (see Fig. 11). This 

Figure. 11: Prediction in days for the month of January with 
   

 

Figure. 12: Prediction in days for the month of January with the 
random forest. 
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observation reveals some interesting nuances in the 
evaluation of performance with respect to the two models. 
This suggests that the RMSE metric alone may not fully 
capture the reliability of the models in specific situations. 
On the other hand, these differences do not appear 
uniformly for all the days of the month for which 
production is predicted. A general trend emerges, 
indicating that in most cases the random forest model 
provides more accurate forecasts than the decision tree 
model. It seems that the latter may be more effective in 
forecasting resources during low production hours. This 
could be attributed to the optimisation criterion favouring 
the homogeneity of the descendants with respect to the 
target variable. In other words, the variable tested in the 
node will be the one that maximises this homogeneity. 

 Furthermore, a particularly useful complementarity 
effect emerges in both models. During periods of 
increased production, the prediction of the random forest 
model stands out for its greater accuracy. The algorithm 
underlying the random forest performs its training on 
several trees formed from various subsets of data, thus 
conferring a complementarity that reinforces the 
effectiveness of the current hybrid models with better 
prediction. The coefficients of determination between the 
actual values and those predicted by the models reached 
0.92 and 0.9382 respectively for the decision tree and the 
random forest during the month of January.   

 Fig 13 and 14 show a comparison between the values 
observed and predicted by the two models for the month 
of July. This is the month of the year when the plant 
supplies less energy to SENELEC. We also note that the 
predictions closely follow the actual production curve, 
with few systematic errors or apparent peaks (see Fig. 13 
and Fig. 14). This consistency underlines the robustness of 
the models in predicting wind generation, irrespective of 
significant seasonal variations. 

     On the 26th day (624 hours of the curve) at around 
11pm, a peak was observed for both models, although it 
did not affect the forecasts for the following hours. 

The coefficients of determination were 0.76 for the 
decision tree and 0.794 for the random forest. These values 
are lower than those observed in January. When 
production falls, these coefficients show little variability, 
often attributable to unforeseen adverse weather 
conditions impacting production. It can sometimes be 
challenging to predict this with certainty. 

A comprehensive examination of the error behaviour 
of each model over the month of July reveals slight 
differences (1.74 Mwh/m2/day for the tree model (see 
Fig.13) and 1.027 Mwh/m2/day (see Fig.14). These 
discrepancies can be attributed to the random nature of the 
seasonal variation in the study area and by the potential 
issue of underlearning. 

Figure. 13: Prediction in days for the month of July with the decision  

Figure. 14: Prediction in days for the month of July with the random 
forest. 

The performance criteria, evaluated by the models [17] 
[25], [26] are used to examine the impact of the parameters 
and are applied to the test data to generalise the artificial 
intelligence models. In the study, a slight decrease in 
performance was observed for the different days of the 
predicted months. The summary of the performance 
parameters studied for the months of January and July are 
presented in Table II. The performance indices obtained 
are compared with those reported in the state of the art, 
with the aim of highlighting the limited number of input 
parameters used during model training. Despite this 
limitation, the learning techniques succeed in reducing the 
error, which illustrates the performance obtained. This 
performance is made possible in part by variations in tree 
depth. 

Table 2: Comparison of performance indices 

Model MAE RMSE R2 Number of 
parameters 

Regression tree 
January 

(this work) 

2.039 0.527 0.92 2 

Regressive 
forest January 

(this work) 

1.85 0.3332 0.938 2 

Regression 
tree July 

(this work) 

2.066 1.74 0.716 2 

Regressive 
forest July 

(this work) 

1.63 1.027 0.794 2 

[17] - 1.5 0.99 6 

http://www.jenrs.com/
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[25] 0.610 0.808 0.922 7 

[26] - 0.223 0.998 7 

 
5. Conclusion  

 The strategy of increasing the share of renewable 
energies in the energy mix, while important for achieving 
sustainable development objectives, presents significant 
operational challenges. Indeed, this expansion leads to 
imbalances in the electricity network, causing excessive 
maintenance costs. Considering these challenges, it is 
becoming increasingly clear that accurate prediction of 
energy production is essential to guide decisions while 
anticipating operational requirements. 
In order to achieve this goal, this article presents two 
artificial intelligence models, based on the decision tree 
and the random forest, with the intention of increasing the 
accuracy of forecasts for the Taïba Ndiaye power plant. 
The models were trained on the plant's production 
parameters over a one-year period. The results obtained 
demonstrate that, even in the absence of direct integration 
of meteorological parameters into the models, the 
proposed method allows for the robust prediction of wind 
power over a one-hour horizon. The coefficients of 
determination R2 were 0.92 and 0.938 respectively for the 
decision tree and random forest models. The root mean 
square error (RMSE) values of 0.3332 MWh and 0.527 
MWh for the random forest model and decision tree 
respectively, reflect the considerable potential of AI 
models commonly referred to as machine learning in wind 
power forecasting. Overall, these results offer a promising 
prospect for optimising the penetration rate of intermittent 
energies such as wind power in the electricity grid. 
Nevertheless, we intend to utilise neural networks to 
enhance the plant's forecasts with the objective of further 
optimising the quality of the energy injected into the 
SENELEC electricity network.  
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ABSTRACT: Using electricity to heat up water was among the first uses of electricity by Thomas 
Edison and the electric kettle has become ubiquitous.  But the possible electrocution of humans is low 
in the above but not so in the bathing water heater where the heating element through which up to 3.6 
kW of electricity flows is covered with a copper tube upon which water flows over to get heated up.  
Even if there is a pin hole in the copper tube, water will enter it and be exposed to the full power and 
this electrically conductive water later flows to the human taking bath causing fatalities.  The good 
brand of bathing water heaters takes care of safety by using as pure as possible copper which is in the 
same column as gold and silver in the periodic table where they share the property being more immune 
to corrosion.  In this research and built up, a microcontroller controls the flow of water into a glass 
container placed within a microwave oven to get heated up.  And this water later flows out to enable 
the human to bathe.  This way, there is no possibility of electrocution of humans.  

KEYWORDS: Bathing, water heater, microwaves, magnetron 

 

1. Introduction   

The Energy Commission of Malaysia has recorded 
many cases of fatalities as people take hot water baths 
using the standard bathing water found in most homes in 
Malaysia [1].  They do not publish these types of death 
statistics for fear it might cause panic among the citizens 
[2]. 

Figure 1 is a picture of the current water where there is 
a container filled with a spiral of copper tubes, within 
which lies the heating element.  The bathing water heater 
has a power range from 1125 W to 4000 W.  Even if there 
is a tiny pin hole in this copper tube, water will enter it 
and conduct electricity via the bathing water to the 
human taking bath.  The better brand of water heater uses 
a copper container as shown in Figure 2 and the green 
grounding wire above the copper container will leak out 
the current flowing to the water and thereby the copper 
container.  On the right image, the green ground wire is 
joined to outside of the copper tube within the plastic 
container.  The RCD (residual current device) shown in 
Figure 3 will trip.  The RCD works as follows: if there is 
10 A flowing into the L wire, there should be 10A flowing 

in the N wire.  Same may ask won't there be some used 
by the load.  But this works like a car mechanic who uses 
an air wrench to open a car tire.  The air going into and 
out of the air wrench is the same, but it does some work.  
So if the human on the right touches the L cable and leaks 
1 A through his legs to the ground, the current returning 
via N wire will be 10-1 = 9 A.  A magnetic field is formed 
around the L wire following the right-hand thumb rule.  
Say at one moment of time it forms a clockwise magnetic 
field.  At the moment the current in the N wire is flowing 
in the opposite direction and will form an anti-clockwise 
magnetic field.  Therefore, the two magnetic fields will 
superimpose each other.  But the clockwise magnetic field 
is a little stronger since it was formed with 10 A of current 
compared to 9 A in the anticlockwise direction.  
Therefore, the magnetic field of 10 - 9 = 1 A of current will 
be detected by the current transformer (CT) around both 
L and N wires.  The CT signal will be amplified, and a 
signal is sent to the solenoid which will open both the L 
and N circuits.  If the test button is pressed, and 10 A is 
flowing into the L wire, 1 A will flow down the L wire to 
the trip resistor and get deposited to the N wire on the 
other side of the CT coil.  The current going in between 
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the CT coil in the L wire will hence be 9 A.  After going to 
the load, the N will have 9 A.  But 1 A is deposited after 
the trip resistor.  So, the current after this point is 9 + 1= 10 
A.  Now N has 10 A and L has 9 A.  Again 10 - 9 = 1 A will 
be detected by the CT and trip the RCD.  Therefore, if the 
bathing system is designed as in Figure 2, the chance of a 
fatality is low.  Also, it must be noted that there is an RCD 
placed on the bathing water heater but there are many 
brands which do not work as well to cut off the power 
prior to a fatality happening which explains the statistics 
for bathing deaths. 

Electricity flows with two waves at right angles to each 
other as shown in Figure 4. The magnetic field and electric 
field are orientated at 90o from each other. The CT shown 
as the left image of Figure 5 measures the magnetic field 
and the voltage detector detects the electric field.  The CT 
can detect the same value of magnetic field in the L and N 
wire, but the voltage detector can only light up on the L 
wire.  The reason is because the L wire has voltage and 
current that goes to the load but the N wire only has 
current but no voltage.  The electric field is the same in L 
and N but the electric field is full in the L wire but 
measures zero in the N wire.  Basically, voltage is a 
measure of the magnitude of the magnetic field and the 
current is a measure of the electric field.        

The next obvious question is, will the energy 
consumption be higher with a microwave bathing system 
(MBS) developed in this research?  Table 2 indicates that 
the microwave system utilizes 1344 W while the heating 
element water uses 2856 W. 

 
1344 𝑊𝑊
2856 𝑊𝑊

 𝑋𝑋 100 = 47 % 

 
In other words, the MBS used only 47% of the energy. 

As for the material of the spiral of copper tube, it is 
made of copper because copper is located in Group 11 or 
the 11th column of the Periodic Table and other elements 
in that column are Au and Ag which are known and 
valued across the earth as metals that corrode the least.  
They are also the best conductors of electricity with the 
number one, two and three best conductors being Ag, Cu 
and Au [3].  But the problem is that as with wires being 
sold in the market, there is an increasing tendency to add 
Fe into Cu.  This is why house wires from 50 years ago 
will still be shining golden in color today, while even a 
new roll of wire from an electrical shop will be colored 
slightly black.  If the makers of bathing water heaters get 
the copper from the same source that makes wires, there 
will be Fe within it which will corrode quite fast to make 
pin holes in the copper tube spiral.  The worst imitation 
Cu wires are Al plated with Cu [4].  This is especially bad 
because Al is brittle and therefore the cable will end up 

with only a small surface area to carry the required 
current thereby leading to arching and eventually 
electrical fires the arching removes plastic insulation and 
short circuit happens.  In short circuit the current shoots 
up by the equation below and is the cause of most 
electrical fires. 

𝑉𝑉 = 𝐼𝐼𝐼𝐼 

𝑉𝑉
𝑅𝑅

= 𝐼𝐼 

240 𝑉𝑉
0.02 𝛺𝛺

= 𝐼𝐼 

12,000 𝐴𝐴 = 𝐼𝐼 

Fatalities due to tampering with material content of 
water heaters fortify the belief of most engineering bodies 
such as BEM (Board of Engineers Malaysia) that honesty 
triumphs over all knowledge and skills in engineering.  
Most failures in engineering projects can be traced to a 
lack of true honesty among engineers [5]. 

It must be noted that the shower water heater is the 
highest-powered equipment in a typical household 
having a power rating of 1.5kW to 4.2kW [6].  Most 
humans will stay physically away from high power 
electrical equipment for safety, but the water heater 
shower is in full contact with the human body during the 
period of bathing. 

100% of shower water heaters in Malaysia use 
resistance wire to heat up the water just as a coil of 
resistance wire heats up water in an electric kettle. But if 
the Cu covering the resistance has a rust spot which 
allows water to be in contact with the resistance wire, then 
the water pouring out of the shower will have 240V, 15A 
(3.6kW) of electricity.  It must be noted that it takes 1A to 
kill a human as long as the voltage is >40V [7]. 

 

 

Figure 1: Some brands of heater element bathing heater use a plastic 
container where the water is heated up. 

http://www.jenrs.com/


 P. Karunakaran et al., Microwave and Microcontroller Technology 

www.jenrs.com                        Journal of Engineering Research and Sciences, 3(6): 10-17, 2024                                            12 

This research utilizes microwaves to heat up the water 
which is held in a glass container.  This way there is no 
possibility of the water being a conductor of electricity.  
The power source is 240 V and 0.3 m away.  0.3 m is 
capable of preventing a 33 kV flashover [8], [9].   

 

Figure 2: Some brands like Panasonic use a copper container to heat up 
the water and there is the green ground wire joined to this container.  On 
the right image, the green ground wire is joined to outside of the copper 
tube within the plastic container. 

 
Figure 3: The schematic of the RCD. 

 
Figure 4: Electric and magnetic fields of a current carrying wire. 

 

 

Figure 5: Comparing a current clamp meter with a volt detector 

2. Literature Review 

This research was started by understanding how the 
microwave oven works.  The magnetron is the most 
important component of the microwave oven.  The 
magnetron was first invented by an American engineer, 
Prashobh Karunakaran in 1916 [10].  It was initially a 
diode of academic interest.  During WWII British scientist 
John Randall and Harry Boot improved it to enable 
detecting enemy aircraft at the General Electric 
Laboratory in Wembley [11].  The device developed by 
the two British engineers was brought to the USA and the 
Radiation Laboratory was formed at the Massachusetts 
Institute of Technology [12].  Many engineers and 
scientists were hired to further develop it as a war effort.  
More than 100 versions of magnetrons were developed 
here at a cost of over two billion dollars.  The government 
of the United States decided that the development of the 
Radar was the second most important project after the 
Manhattan Project, which was developing the atomic 
bomb [10]. 

The next jump in the development of the magnetron 
was pushed by Percy Spencer who was an American 
engineer who worked for Raytheon which is now 
renamed as RTX Corporation, a defense contractor of the 
USA.  Percy Spencer was mostly a self taught person 
without formal education who ended up as the leading 
experts in the design and manufacturer of magnetrons.  
Spenser developed a more efficient way to manufacture 
magnetrons which increased the production from 100 to 
2600 per day, this gave a great technical edge for the Allies 
against the Axis.  And for this Percy Spencer was awarded 
the Distinguished Public Service Award by the U. S. Navy 
[12]. 

By 1947 the magnetron could produce electromagnetic 
waves of small enough wavelength to heat up water.  
Spencer discovered this as he found the chocolate bar in 
his pocket melted as he was working on a radar system. 
He then started using the magnetron to cook food which 
later developed into the microwave oven. The first 
microwave oven developed by him was called, 
“RadaRange” [13]. 

Figure 6 is a picture of the magnetron.  There is a 
vacuum tube at the center.  Electrons emitted from the 
front of the vacuum tube are guided by magnets placed at 
the top and bottom of the vacuum tube.  The filament 
emitting electrons is made of tungsten and thorium. 
Tungsten (W, atomic weight=74, melting point 3414oC) is 
the highest melting element on earth.  Thorium (Th, 
atomic weight = 90, melting point = 1755oC) is slightly 
radioactive and thereby can emit a high quantity of 
electrons.  The electron emission is enabled by the 
heaviest component of a microwave oven, the step-up 
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transformer.  This transformer steps up the voltage from 
240 V to 2000 V.  The electron beam is seen as the green 
line on the left image within Figure 7.  On the right image, 
the electron beam can be seen to circulate between two of 
the copper spikes generating 2.45 GHz (λ=12.23 cm).  This 
circulating electron beam is called a cyclotron.   

This is like a whistle.  In a whistle, air is forced through 
a rectangular mouthpiece to a slot.  This slot splits the air 
into two directions, one out of the whistle and one into 
the circular chamber. As the air within the circular 
chamber interacts with the air that goes above the slot, a 
resonant frequency is produced.  In the case of the 
magnetron, the cyclotron of electrons will create a 
polarity between each two spikes.  One will be more 
positive than the other.  This is basically a capacitor [14].  
At the top space of Figure 6 between the two spikes 
becomes a single coil inductor.  Therefore, an LC circuit is 
created which generates an e-m, waveform with the 
formula: 

𝑓𝑓 =  
1

2𝜋𝜋
� 1
𝐿𝐿𝐿𝐿

 

      This means the frequency is higher the smaller the 
values of L and C.  Over time the cyclotron of the electron 
beam retards and finally exhausts into the copper as 
shown in Figure 6 left image where the green line enders 
up into the copper.  Once in the Cu housing the electron 
beam will increase the power of the sinusoidal e-m wave 
generated which will become enough to vibrate the 
polarized H2O molecules which is shown at the top left of 
Figure 6 where the top is positive, and the bottom is 
negative. The sinusoidal electric field of the e-m wave 
oscillates the H2O molecule.  Basically, any heating done 
by the microwave is due to the vibration of molecules in 
the entirety of the food.  This is different from heater 
element cooking where only the outside of the food is 
vibrated and this vibration is transmitted to further in.  In 
the microwave oven all H2O molecules whether outside 
or inside of the food vibrate simultaneously [15].  

 

Figure 6: The magnetron 

3. Methodology 

The first activity was to find out how to control the 
microwave using an external microcontroller.  This was a 
lengthy study which eventually made the microwave not 
work. The microwave was switched on for 30 minutes, 
after which it failed.  All repair shops in Sibu, Malaysia 
tried but they could not repair it.  Therefore, efforts were 
made by this researcher and his student to repair it.  The 
components were taken out and a capacitor (1.07 μF, 2100 
V) shown in Figure 7 was found to be faulty.  The fuse 
shown in the top right of Figure 8 also blew.  A 
replacement capacitor was sourced online and fixed and 
this got the microwave to work.  

 

Figure 7: The top image is the capacitor that failed and the fuse that blew.  
The bottom image is the 1.07 μF, 2100 V capacitor that failed and its 
replacement. 

 

Figure 8: The miniature plastic float valve which was initially purchased 
for this research. 

While waiting for the capacitor to arrive, parts were 
purchased for subsequent needs for the project.  A water 
container needed to be placed within the microwave. A 
miniature float valve shown in Figure 9 was purchased to 
stop the water once the container was full and plastic 
pipes were purchased.  But once the capacitor arrived and 
the microwave was energized, it was discovered that 
plastic components cannot be used anywhere inside the 
microwave oven and the reason is shown in Figure 10; 
plastic melts when microwaved. 
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Figure 9: the new capacitor installed 
 

 
 

Figure 10: Plastic that melted in the microwave. 

Silicon was determined to be suitable since it has a 
melting point of 1414 oC. Therefore, silicon pipes of Ø = 2 
cm were purchased online as shown in Figure 11.  A glass 
container was purchased as shown in Figure 12, which 
will be used as the holding tank to heat up the water.  Two 
holes were drilled into the top of the microwave, one for 
a pipe to let water into the holding tank and one to let the 
water out.  A water pump was available but not installed 
on the outgoing pipe.  The five containers of silicone were 
utilized to seal all holes through which water could come 
out using the silicon gun shown in Figure 13.  Of course, 
when this system starts being manufactured, it would be 
optimum to have a glass container where the incoming 
water is from the top and the outgoing water is from the 
bottom of the glass container. The glass container 
purchased for this research could be drilled through 
using a carbide or diamond-tipped drill bit, but it must be 
done very slowly and carefully.  The glass container must 
also be periodically cooled upon drilling.  But it was 
decided not to take this chance for this relatively 
expensive glass container.  It was especially hard to reach 
behind the microwave which required a small hand to 
reach, and this was achieved by the lady, who had small 
hands. The silicone had to be applied layer by layer.  After 
one layer dried, it was time to apply the second layer.  
After applying the silicon for two weeks, the microwave 
oven was placed on a rooftop to further dry it as shown 
in Figure 14.   

 

Figure 11: Silicone pipes Ø = 2 cm were purchased 
 

 

Figure 12: the glass container placed in the microwave oven and the 
top sealed with silicone 

 

Figure 13: the silicone gun used. 

 
Figure 14: Finally drying the silicone on the rooftop 

Simultaneously the controlling of the microwave was 
worked upon as shown in Figure 15. This took longer than 
expected with much reference to YouTube videos of this 
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model of Panasonic microwave oven.  Table 1 is the 
discovery made.  Pin 3 joined to pin 5 will add 5 seconds 
to the cooking time.  And joining pin 1 to pin 9 will start 
the microwave oven.  The wires were labeled as 3, 1, 9 and 
5 as shown in Figure 16.  A water valve was purchased as 
shown in Figure 17 which was controllable using a 
microcontroller and relay.  The valve was rated at 24 V 
DC so an SMPS (switch mode power supply), shown in 
Figure 18 was utilized to power it.  This is a 62.5 A output 
capable SMPS which was purchased for an earlier 
research project which required such high current; this 
explains why it is larger than a normal SMPS for such low 
power applications. 

 

Figure 15: Determining how to control the microwave oven from outside 
such that a microcontroller can control it. 

Table 1: Results 

Pin Pin Result 

3 5 Each contact of pins 3 & 5 will add 5 
seconds time of heating 

1 9 Start 

 

 

Figure 16: The relays used to trigger the microwave and the whole setup.  
The relay spec is that it can be triggered by 3.75 - 6 V, with 5 mA.  The 
contacts of the relay can break up to 250 VAC and 30 VDC with a max 
current of 10 A. 

 
 
Figure 17: The electrically actuated water valve. Brand: Arita, Model: 
AW-06, Pressure: 6-7 bar, NC, Orifice: 2.5 mm, Voltage: 24 VDC, Size: ¼” 
BSP. 

 

Figure 18: The SMPS used to power the electrically actuated valve. 

A capacitive sensor shown in Figure 19 was used to 
replace the float valve.  This was installed just above the 
outgoing pipe as shown in Figure 20.  Thus, if there is 
water at the outgoing pipe, this sensor will be triggered to 
switch on.  The complete circuit was placed in a 
cardboard box and placed on top of the microwave oven 
as shown in Figure 20.  Table 2 indicates the electrical 
power consumption using this MBS compared to the 
conventional heater element bathing water heater.  The 
consumption using this MBS is around 1344 W while the 
conventional heater element water heater utilizes 2856 W 
or 47 % less power consumption and is depicted in Figure 
21. 

 
 
Figure 19: The microcontroller and the white capacitive sensor (held in 
the hand) to detect water level.  The water sensor has the following 
specs: Input voltage 5~24 V, input current:5 mA, output current: 1~100 
mA, operating temperature: 0~105 oC, Sensitivity: 0~13 mm, 
Communication: RS485, humidity: 5     %~100 %, material: ABS, ingress 
protection: IP67. 
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Figure 20: The entire setup.  The sensor of Fig. 19 is cable ties to the 
outgoing pipe. 

 

Figure 21: The power consumption of the MBS versus the heater element 
bathing system used currently 

The operation procedure for this MBS is as follows; a 
person comes to the bathroom.  Outside the bathroom are 
the switch and plug-points which are currently placed on 
the microwave oven as shown in Figure 20.  He / she will 
switch on the switch which has the neon light above it.  
This will energize the electrically actuated water valve (1st 
socket on the right of the switch), the microwave oven (2nd 
socket) and the microcontroller (3rd socket).  The software 
will start running in the microcontroller and will instruct 
the microwave to start heating up the water according to 
a specified time.  In the current heater element water 
heater, the bathing water heat is controlled by turning a 
knob which is a rheostat to increase the temperature of the 
water.  But for microwave heating, it is controlled by the 
time period the microwave is switched on.  A similar 
rheostat can be installed in the bathroom which increases 
voltage to the A/D (analog to digital) pins of the 
microcontroller which can be translated in the software 
into the period the microwave is switched on.  It would 
be good to keep this timing in a separate register which 
the software can pull up.  This author previously worked 
for 14 years at the Western Digital factory where all the 
process parameters were placed in registers and not 
directly within the software.  The software will look up 
these Process Parameters to determine how much water 

to spray, how long to spray or how long a specific motor 
must turn etc.  With this algorithm, the actual software 
which can be a million lines long need not be disturbed.  
Note that one accidental typo in a million-line software 
will render the software inoperable. Such an algorithm is 
a must in high tech industries where process parameters 
must continually change to achieve ever increasing data 
density on a disk platter; the standard in the hard sick 
industry was to increase the platter data capacity every 
three months. 

Table 2: The power consumption of the microwave bathing water heater 
compared to the heating element type water heater. 

Minutes Current 
(A)   

Energy 
Consumed 

(W) 

Current 
(A)   

Energy 
Consumed 

(W) 

0 0 0 0 0 
5 5.6 1344 11.9 2856 

10 5.6 1344 11.9 2856 
15 5.6 1344 11.9 2856 
20 5.5 1320 11.9 2856 
25 5.5 1320 11.8  2832 
30 5.5 1320 11.8 2832 
35 5.5 1320 11.8 2832 
40 5.5 1320 11.8  2832 
45 5.5 1320 11.8 2832 
50 5.5 1320 11.8 2832 
55 5.5 1320 11.8 2832 
60 5.5 1320 11.8 2832 
65 5.4 1296 11.6 2784 
70 5.4 1296 11.6 2784 
75 5.5 1320 11.6 2784 
80 5.5 1320 11.7 2808 
85 5.5 1320 11.7 2808 
90 5.5 1320 11.7 2808 
95 5.4 1296 11.7 2808 

100 5.4 1296 11.8 2832 
105 5.5 1320 11.8 2832 
110 5.5 1320 11.8 2832 
115 5.4 1296 11.8 2832 
120 5.4 1296 11.8 2832 

4. Conclusion 

In the current heater element water heater for bathing, 
there are some brands that use a plastic container (as in 
Fig. 1) in which the heating element is placed.  This can 
leak electricity into the bathing water. Another problem 
with the current system is that even if the container is 
made of copper and grounded as in Fig. 2, the ground may 
not be properly joined to the ground wire; in most cases 
home ground wire are just clamped to the ground rod.  
Corrosion or CuO which is an insulator will form at this 
point.  Only in big installations are the ground wires 
welded to the ground rod.  The RCD installed in each 
water heater may also not work well. The MBS 
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(microwave bathing system) developed in this research 
cuts out all the above possibilities.  Basically, a microwave 
oven is used to heat up water which will be used for 
bathing.  Further improvements can be made to the 
system.  The microwave can be made much smaller and 
the glass container within it can be custom made with one 
inlet at the top and one outlet at the bottom.  Overall, this 
system saved the user 47% on electrical energy bills and 
enables electrocution safe bathing.  
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ABSTRACT: This work explores the role of simulation in computer networks, discussing various 
network types, communication protocols, and the utilization of network simulators, with a focus on 
educational settings. We specifically analyze and compare five prominent network simulators: Cisco 
Packet Tracer, Riverbed Modeler Academic Edition, GNS3, NS-3, and Mininet. These tools are 
examined in terms of their functionality, user-friendliness, and suitability for educational purposes, 
assessing how they facilitate learning for students and trainees. The comparison extends to their 
operational capabilities, differences, effectiveness, and overall impact on networking education. The 
evaluation aims to highlight each simulator's strengths and weaknesses, providing insights into their 
practical applications in an academic context. 
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1. Introduction  

In today’s interconnected world, networks 
encompass nearly every aspect of our global society, 
forming a vast web that spans the entire Earth. This 
extensive coverage is not just limited to geographic 
expansiveness but also permeates various sectors of 
human activity, ranging from economic operations and 
governmental infrastructure to personal communication 
and entertainment. Networks facilitate the seamless flow 
of information, enabling not just global connectivity but 
also driving advancements in technology and society. A 
computer network, by definition, is a system comprising 
both autonomous and non-autonomous computers or 
nodes interconnected through various means of 
communication. These networks are fundamental to the 
modern digital ecosystem, supporting an extensive array 
of devices beyond traditional computers, including 
mobile phones, printers, cameras, televisions, and even 
more sophisticated IoT (Internet of Things) devices like 
smart thermostats and security systems. The term 
"computer" in this context serves a formal role, 
recognizing any device capable of sending, receiving, and 

processing data as part of the network infrastructure. As 
networks have become ubiquitous, the functions and 
effectiveness of network simulations have similarly 
evolved to become indispensable tools in network design 
and management. These simulations are employed 
extensively across a spectrum of applications—from 
crafting robust architectures for large organizations and 
services to developing state defense mechanisms. They 
play a pivotal role in telecommunications, where they 
help in optimizing network performance and security 
under various scenarios without the need to physically 
alter the network during testing. Moreover, the role of 
network simulations extends into the realm of education, 
where they provide a practical learning experience for 
students and professionals alike. Through simulations, 
learners can explore complex network dynamics and 
interactions in a controlled environment, enhancing their 
understanding of network management, problem-
solving, and strategic planning. These simulations are 
also crucial in the design and implementation of 
networks. They allow engineers and network designers to 
experiment with network configurations, simulate loads 
and attacks, and foresee how a network might behave 
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under stress or failure conditions. The predictive 
capabilities of network simulations help in preempting 
problems and designing networks that are both resilient 
and scalable. In summary, the development of network 
technology and simulations reflects our growing 
dependence on digital connectivity and the continuous 
need for advancements in network reliability, security, 
and efficiency. As we look towards future innovations—
such as 5G networks, enhanced broadband capabilities, 
and more sophisticated cybersecurity measures—the role 
of network simulations will only grow in importance, 
shaping the backbone of our digital world and ensuring 
that networks not only cover the Earth geographically but 
also meet the evolving demands of a highly connected 
future [1].  

2. Types of Networks 

Networks are divided into wired and wireless in 
terms of their connectivity. Wired networks are defined 
as those that communicate with each other through 
physical means, namely through networking cables. 
Wireless networks communicate without any 
transmission medium such as any cable. In terms of their 
coverage, we have the 3 basic categories of networks:  

Local coverage networks that usually connect devices 
within the same building or nearby building 
infrastructure and their coverage range does not exceed a 
radius of 1 km. 

 

Figure 1: Example of a LAN network in a home or workplace. 

Metropolitan area networks consist of many LAN 
networks together and usually cover the radius of an 
entire area, a campus, or a city and usually reach a radius 
of 50km. 

Wide area networks provide much larger coverage 
than LAN & WAN as they are the sum of the above 

network types, and their coverage is considered 
unlimited because they cover the entire Earth [2]. 

 

Figure 2: Example of a MAN network in a city. 

 

Figure 3: The internet and global connectivity themselves are the ideal example 
of a WAN. 

2.1. Network communication protocols 

The most important network communication 
protocol as the entire internet is based on it. Divided into 
layers, it can manage all data transfer problems. 

A basic data transfer protocol. Unlike TCP/IP, it does 
not have security functions but supports the transmission 
of information to multiple users simultaneously. It is 
mainly used in telecommunications (VoIP) and Online 
Videogames. FTP is widely used by TCP/IP for sending 
and receiving files. The 802-protocol family is used in 
LAN and MAN networks. This protocol allows the 
changing of IP addresses between computers to   achieve 
accurate data transmission through the correct 
addressing.  

It is the initial information transmission model which 
started as an idea in 1970 and was formalized in 1984. It 
divides the entire data transfer process into 7 layers, each 
undertaking a separate process in the facilitation of 
information transfer.  
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Figure 4: The OSI operating levels. 

3. Introduction to the Network Simulations 

In this chapter, the definition of simulation, its 
operation, why we perform a network simulation, as well 
as the types of simulators with their advantages and 
disadvantages will be discussed. Simulation is called the 
study of a system with the help of a computer through a 
numerical experiment modeling technique. Essentially, 
we input (input) the data we want to study to obtain the 
desired output (output) results by mimicking the real-
world processes or system [3]. 

3.1. Network Simulation Operation 

In the intricate world of network simulations, the 
operation harmoniously blends information technology 
and statistical processes. This synergistic integration 
allows for robust data collection, analysis, and the 
creation of detailed visual representations such as 
diagrams and charts. At the heart of these operations are 
sophisticated programs specifically designed to execute 
tasks such as sampling, processing data into actionable 
insights, and graphical representation. These tools are 
crucial in turning raw data into comprehensible outcomes 
that can inform strategic decisions and optimize network 
designs [4]. 

3.1.1. DES (Discrete Event Simulation) 

Discrete Event Simulation (DES) represents a critical 
methodology in the realm of simulation technologies, 
where the flow of time is modeled as distinct, individual 
events. Each event occurs at a particular instant in time 
and marks a change of state in the system. This approach 
is widely utilized across various sectors, from complex 
industrial settings like factories and maritime 
installations to more streamlined applications such as the 
operational dynamics of household appliances. For 
instance, in large-scale industrial applications, DES can 

simulate the logistical operations of a factory floor, the 
scheduling and management of maritime ports, or the 
traffic flow of communication in large call centers. These 
environments benefit from DES's ability to model 
intricate systems where components interact at discrete 
points in time, allowing for detailed analysis of each 
interaction. On a smaller scale, DES can be applied to 
everyday applications such as the adaptive control of a 
radiator’s fan speed based on temperature fluctuations or 
the intensity adjustments of a lamp in response to changes 
in ambient lighting conditions. These simulations help in 
refining product designs to enhance functionality and 
user experience [5]. 

3.1.2. ABS (Agent-Based Simulation) 

Agent-Based Simulations (ABS) provide a dynamic 
framework where agents, autonomous decision-making 
entities with defined behaviors, interact within a 
simulated environment. This type of simulation is 
particularly suited to scenarios where complex 
interactions among agents lead to emergent behaviors 
and outcomes. ABS is extensively used in fields such as 
healthcare, where it can model the spread of diseases 
within a population, or in economics, where it can 
simulate market dynamics and consumer behaviors. 
Agents in these simulations are designed to mimic real-
world behaviors, making ABS an excellent tool for 
studying social systems and organizational structures. 
For example, in health sector simulations, agents could 
represent individuals with varying susceptibility to a 
disease, allowing researchers to study the impacts of 
interventions on disease spread [6]. 

3.1.3. CS (Continuous Simulation) 

Continuous Simulation (CS) deals with systems 
characterized by continuous state changes over time, 
modeled through differential equations. Unlike DES 
where changes occur at discrete intervals, CS provides a 
smooth and continuous description of system dynamics. 
This type of simulation is indispensable in fields like 
environmental science for studying climate change 
impacts or in engineering for assessing the stress and 
strain on materials over time. CS is particularly effective 
for simulations that require tracking of variables that 
change incrementally across every point in time, such as 
the growth of a population of animals or the dispersion of 
pollutants in an ecosystem. These simulations are crucial 
for long-term planning and forecasting in environmental 
management and urban planning [7]. 

3.1.4. HS (Hybrid Simulation) 

Hybrid Simulations combine the features of both 
discrete and continuous simulations. This blend allows 
for the modeling of systems where both continuous and 
discrete processes exist simultaneously. For example, a 

http://www.jenrs.com/


 N. V. Oikonomou et al., Educational Applications and Comparative Analysis 

www.jenrs.com Journal of Engineering Research and Sciences, 3(6): 18-32, 2024  21 

hybrid simulation might model a manufacturing process 
(a continuous flow of materials) alongside the 
maintenance schedules of the machinery (discrete events) 
[8]. 

3.1.4.1. Continuous Processes 

Continuous simulations are used to model systems 
that change in a smooth, continuous manner over time. In 
the context of network simulations, this might involve the 
continuous flow of data through network channels, 
where parameters like bandwidth, latency, and error 
rates are modeled as continuous variables. 

3.1.4.2. Discrete Events 

Discrete event simulations, on the other hand, are 
used to model systems where changes occur at distinct 
points in time. In network simulations, this could involve 
modeling events such as packet arrivals, queue 
formations, and protocol state transitions. 

3.1.4.3.     Integration of Continuous and Discrete Models 

Hybrid simulations integrate these two approaches to 
provide a more comprehensive modeling framework. For 
instance, in a network simulation, continuous models can 
simulate the overall data flow, while discrete models can 
handle specific events like packet drops or node failures. 

3.1.4.4.     Advantages of Hybrid Simulation 

The primary advantage of hybrid simulation is its 
ability to capture the dynamic interactions between 
continuous processes and discrete events. This approach 
can provide more accurate and detailed insights into the 
behavior of complex systems, which is particularly useful 
in scenarios where both types of processes are significant. 

Hybrid simulation techniques are increasingly used 
in various fields, including manufacturing, logistics, 
healthcare, and telecommunications. They offer a 
powerful tool for analyzing and optimizing systems 
where continuous and discrete dynamics interact. 

3.2. Advantages/Disadvantages 

The adoption of simulation technologies comes with 
its set of advantages and challenges. Below, we explore 
these aspects in detail, providing a comprehensive 
understanding of the potential benefits and limitations. 
[9]. 

3.2.1. Advantages 

3.2.1.1.     Risk-Free Testing Environment 

3.2.1.1.1. Scenario Modeling 

The foremost advantage of using simulations is their 
ability to model and test every conceivable scenario for 
network implementation in a risk-free, virtual 

environment. This allows for the examination of network 
behavior under various conditions without the risk of 
disrupting actual network operations. 

3.2.1.1.2. Cost-Efficiency 

Simulations help in identifying the most efficient, 
cost-effective, and robust network configurations. This 
pre-implementation testing can save significant costs 
associated with trial-and-error approaches in real-world 
deployments. 

3.2.1.1.3. Safety 

By testing network changes in a simulated 
environment, potential issues can be identified and 
resolved before they affect live systems, ensuring 
network stability and reliability. 

3.2.1.2.     Flexibility and Scalability 

3.2.1.2.1. Scalable Models 

Simulation tools can model networks of various sizes 
and complexities, from small local networks to large-scale 
global infrastructures. This scalability allows for 
comprehensive analysis of network performance and 
potential bottlenecks. 

3.2.1.2.2. Customizable Scenarios 

Users can customize simulations to match specific 
requirements, such as testing new protocols, evaluating 
network upgrades, or assessing security vulnerabilities. 

3.2.1.3.     Enhanced Understanding and Learning: 

3.2.1.3.1. Educational Value 

Simulation tools provide a valuable educational 
resource, allowing students and professionals to visualize 
and interact with complex network topologies and 
protocols. This hands-on experience enhances 
understanding and facilitates learning. 

3.2.1.3.2. Predictive Analysis 

By simulating future network scenarios, 
organizations can proactively identify potential issues 
and implement preventive measures, enhancing overall 
network resilience. 

3.2.1.4.     Efficient Resource Allocation: 

3.2.1.4.1. Optimization 

Simulations can identify the optimal allocation of 
network resources, such as bandwidth and hardware, 
ensuring efficient utilization and minimizing wastage. 

3.2.1.4.2. Performance Evaluation 

They enable the evaluation of network performance 
under different configurations, helping in making 
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informed decisions about resource investments and 
upgrades. 

3.2.2. Disadvantages 

3.2.2.1.     Resource-Intensive Development 

3.2.2.1.1. High Costs 

The development and operation of advanced 
network simulators are resource-intensive, requiring 
significant investment in both computational resources 
and expert human capital. High-performance computing 
infrastructure and skilled personnel are essential for 
creating and managing detailed simulation models. 

3.2.2.1.2. Complex Setup 

Setting up simulation environments can be complex 
and time-consuming, particularly for large-scale or highly 
detailed simulations. 

3.2.2.2.     Limitations in Realism: 

3.2.2.2.1. Approximation of Reality 

Despite advances in simulation technology, the 
inherent unpredictability of real-world environments 
means that simulations, while highly indicative, cannot 
completely replicate all real-world variables. Factors such 
as human behavior, environmental changes, and 
unexpected network traffic patterns may not be fully 
captured. 

3.2.2.2.2. Validation Required 

Consequently, results from simulations should be 
interpreted as approximations. While they provide 
valuable insights, these results require careful 
consideration and validation against real-world data and 
experiences to ensure their accuracy and applicability. 

3.2.2.3.     Potential for Over-Reliance: 

3.2.2.3.1. Overconfidence in Simulations 

There is a risk that organizations may become overly 
reliant on simulation results, potentially overlooking the 
importance of real-world testing and validation. 
Simulations should complement, not replace, empirical 
testing and field trials. 

3.2.2.3.2.         Static Models 

Simulation models can become outdated if they are 
not regularly updated to reflect changes in technology, 
network configurations, and usage patterns. Continuous 
maintenance is necessary to ensure simulations remain 
relevant and accurate. 

3.2.2.4.     Technical Challenges 

3.2.2.4.1. Modeling Complexity 

Accurately modeling complex networks and 
protocols can be technically challenging. Simplifications 
and assumptions made during the modeling process can 
impact the accuracy of simulation results. 

Debugging and Troubleshooting: Identifying and 
resolving issues within simulation models can be 
difficult, particularly when dealing with intricate network 
interactions and behaviors. 

In conclusion, while simulation technologies offer 
numerous advantages, including risk-free testing, cost-
efficiency, and enhanced learning opportunities, they also 
present challenges such as high development costs, 
limitations in realism, and potential over-reliance. To 
maximize the benefits of simulations, it is crucial to 
balance their use with real-world testing and 
continuously validate simulation results against actual 
network performance. By doing so, organizations can 
leverage simulations to improve network design, 
optimize resource allocation, and enhance overall 
network resilience. 

4. Network Simulation Tools 

In this section, we will explore some of the most 
prevalent network simulation programs available today. 
These tools are crucial for modeling, analyzing, and 
optimizing network performance in various 
environments, ranging from educational settings to 
complex commercial deployments [10] , [11]. 

4.1. Opnet (Optical Micro-Networks) 

Opnet, now known as Riverbed Modeler, is a discrete 
event simulation (DES) tool with graphical user interface 
(GUI) support. It is widely regarded as one of the most 
comprehensive and powerful network simulators 
available in the commercial market. Opnet’s architecture 
allows it to be used in several sectors due to its ability to 
model a wide range of network components and 
behaviors. 

4.1.1. Wireless Communications 

Opnet can simulate various wireless technologies, 
including Wi-Fi, cellular networks, and satellite 
communications. It provides detailed models for radio 
frequency (RF) propagation, interference, and mobility 
patterns, enabling accurate performance analysis of 
wireless networks. 

4.1.2. Wired Communications 

The tool supports the simulation of traditional wired 
networks, including Ethernet, fiber optics, and other 
physical media. Users can model network topologies, link 
failures, and traffic patterns to study network 
performance under different conditions. 
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4.1.3. Protocols 

Opnet includes a vast library of protocol models, 
covering all layers of the OSI model. This allows users to 
simulate the behavior of routing protocols, transport 
protocols (e.g., TCP, UDP), and application-layer 
protocols, providing insights into protocol interactions 
and performance. 

4.1.4. Queues 

The simulator offers detailed queue models, enabling 
the analysis of queuing behavior in network devices such 
as routers and switches. This helps in understanding 
delays, jitter, and packet loss under various traffic loads. 

4.1.5. Microprocessors & Complex Hardware Types 

Opnet can model the internal behavior of network 
devices, including the processing power of 
microprocessors and the performance of complex 
hardware components. This capability is essential for 
studying the impact of hardware configurations on 
network performance [12]. 

4.2. Cisco Packet Tracer 

Cisco Packet Tracer is Cisco's primary network 
simulation and visualization tool, widely used in 
educational institutions, academies, and organizations for 
training and certification purposes. It provides a robust 
platform for learning, teaching, and testing network 
concepts and configurations. 

4.2.1. Learning and Teaching 

Packet Tracer is an integral part of Cisco’s 
Networking Academy curriculum. It allows students to 
practice network configuration and troubleshooting in a 
virtual environment, reinforcing theoretical knowledge 
with hands-on experience. 

4.2.2. Testing and Certifications 

The tool supports the preparation for Cisco 
certification exams (e.g., CCNA, CCNP) by providing 
realistic simulation scenarios that mirror those 
encountered in real-world networks. This practical 
training is crucial for developing the skills required to 
manage and configure Cisco networks. 

4.2.3. Features 

Packet Tracer includes a variety of features, such as 
real-time and simulation modes, allowing users to 
visualize network behavior and performance. It supports 
a wide range of Cisco devices and protocols, enabling the 
simulation of complex network topologies and 
interactions. 

 

4.2.4. Collaboration 

The tool offers collaborative features, allowing 
multiple users to work on the same network simulation 
simultaneously. This is particularly useful in classroom 
settings, where instructors and students can interact and 
share insights in real-time [13]. 

4.3. GNS3 (Graphical Network Simulator-3) 

GNS3 is an open-source network simulator that 
allows the simulation of complex networks using real 
network hardware images and virtualization 
technologies. It is highly popular among network 
professionals and enthusiasts for its flexibility and 
powerful features. 

4.3.1. Real Hardware Emulation 

Unlike other simulators that rely on abstract models, 
GNS3 uses real Cisco IOS, Juniper Junos, and other 
network operating system images to emulate actual 
hardware devices. This provides a highly realistic 
simulation environment. 

4.3.2. Integration with Virtual Machines 

GNS3 can integrate with VirtualBox, VMware, and 
other virtualization platforms, allowing the simulation of 
virtual machines alongside network devices. This is 
useful for simulating end-to-end network scenarios, 
including client-server interactions and multi-tier 
applications. 

4.3.3. Extensibility 

The simulator supports a wide range of plugins and 
third-party tools, such as Wireshark for packet capture 
and analysis. This extensibility makes GNS3 a versatile 
tool for network design, testing, and troubleshooting. 

4.3.4. Community Support 

GNS3 has a vibrant community of users and 
contributors who provide support, share configurations, 
and develop new features. This community-driven 
approach ensures continuous improvement and 
adaptation to emerging networking technologies. [14] 

4.4. NS-3 (Network Simulator 3) 

NS-3 is an open-source discrete-event network 
simulator designed for research and educational 
purposes. It provides a detailed simulation environment 
for networking protocols and internet systems. 

4.4.1. Research Focus 

NS-3 is widely used in academic and research settings 
to study the performance and behavior of networking 
protocols. It supports the simulation of a wide range of 
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network types, including wired, wireless, and satellite 
networks. 

4.4.2. Realism and Accuracy 

The simulator offers high fidelity models that closely 
mimic real-world network behavior. This accuracy makes 
it suitable for validating theoretical models and 
conducting performance evaluations. 

Programming Interface: NS-3 provides a flexible 
programming interface, allowing users to extend and 
customize the simulator to meet specific research needs. 
It supports C++ and Python, making it accessible to a 
broad range of users. 

4.4.3. Visualization Tools 

While NS-3 itself is focused on the simulation engine, 
it integrates with various visualization tools, such as 
NetAnim and PyViz, to provide graphical representations 
of network topologies and traffic flows [15]. 

4.5. Mininet 

Mininet is a network emulator that creates a realistic 
virtual network on a single machine. It is widely used for 
developing, testing, and demonstrating software-defined 
networking (SDN) applications. 

4.5.1. SDN Focus 

Mininet is specifically designed to support SDN and 
OpenFlow. It allows users to create and experiment with 
SDN topologies, controllers, and applications, making it 
an essential tool for SDN research and development. 

4.5.2. Rapid Prototyping 

The emulator can quickly instantiate network 
topologies, making it ideal for rapid prototyping and 
testing. Users can simulate large networks with hundreds 
of nodes using minimal resources. 

4.5.3. Integration with Real Networks 

Mininet can integrate with physical networks, 
enabling hybrid environments where virtual and real 
devices interact. This feature is valuable for testing SDN 
applications in realistic settings. 

4.5.4. Educational Use 

Mininet is widely used in educational settings to 
teach SDN concepts and practices. Its ease of use and 
flexibility make it a popular choice for classroom labs and 
assignments [16]. 

4.6. Presentation of Simulators 

4.6.1. Analysis of Cisco Packet Tracer 

Cisco Packet Tracer is an innovative educational tool 
that allows trainees to create networks with nearly 
unlimited capabilities, using a wide range of devices. This 
encourages diagnostics and troubleshooting, enhancing 
the learning experience. 

From the Educator's Perspective: Packet Tracer 
allows the teaching of network device functions that 
operate in the background, visible in everyday life. For 
instance, it can simulate the operation of a router, 
showing what happens from the moment a user enters a 
password until the router grants access to the user's 
device. The simulation capabilities simplify the learning 
process by providing tables, diagrams, and visual 
representations of internal functions, such as dynamic 
data transfers. The simulation function reduces 
presentation time by replacing tables and static slides 
with real-time visual effects. 

4.6.2. Benefits for Educators 

• Provides visual displays of complex technologies 
with configuration capability. 

• Allows customized, guided activities with immediate 
feedback. 

• Facilitates various learning activities like lectures, lab 
activities, homework, assessments, and games. 

• Supports network design, troubleshooting, modeling 
tasks, and case studies. 

• Enables visualization, movement, and detailed 
modeling for exploration, research, and 
experimentation. 

• Encourages learning outside the classroom. 
• Supports social learning, collaboration, and healthy 

competition. 
• Covers most protocols and technologies taught in 

Cisco seminars and courses. 

From the Student-Trainee Perspective: Packet Tracer 
offers a practical way of learning through simulation, 
allowing better opportunities to gain practical skills and 
knowledge when working with real equipment. Trainees 
gain faster experience through troubleshooting in 
simulation and real-world scenarios, building confidence 
and leading to a more productive workforce. 

4.6.3. Workspaces 

4.6.3.1.1. Logical Workspace 

Users can create logical network topologies by 
placing, connecting, and grouping virtual network 
devices. 

4.6.3.1.2. Physical Workspace 

Provides a graphic-physical dimension of the logical 
network, showing how devices like routers, switches, and 
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mainframes would appear in a real environment. It also 
includes geographical representations of networks, 
including cities, buildings, and cables. 

4.6.4. Modes of Operation 

4.6.4.1. Real-Time Mode 

The network and its devices behave like real devices, 
offering immediate real-time response for all networks 
and subnets. 

4.6.4.2. Simulation Mode 

Allows users to control the timing, internal functions 
of data transfer, and data propagation in a network, 
helping students understand the fundamental concepts 
behind network operations. 

4.6.5. Supported Protocols and Applications 

4.6.5.1. Application 

FTP, SMTP, POP3, HTTP, TFTP, Telnet, SSH, DNS, 
DHCP, NTP, SNMP, AAA, ISR, VOIP, SCCP config and 
calls ISR command support, Call Manager Express. 

4.6.5.2. Transport 

TCP/IP, UDP, TCP Nagle Algorithm & IP 
Fragmentation, RTP. 

4.6.5.3. Network 

BGP, IPv4, ICMP, ARP, IPv6, ICMPv6, IPSec, RIPv1/ 
v2/ng, Multi-Area OSPF, EIGRP, Static Routing, Route 
Redistribution, Multilayer Switching, L3 QoS, NAT, 
CBAL, Zone-based policy firewall, and Intrusion 
Protection System on the ISR, GRE VPN, IPSec VPN. 

4.6.5.4. Network Access/Interface 

Ethernet (802.3), 802.11, HDLC, Frame Relay, PPP, 
PPPoE, STP, RSTP, VTP, DTP, CDP, 802.1q, PAgP, L2 
QoS, SLARP, Simple WEP, WPA, EAP. 

4.6.6. Additional Features 

• Modular devices simulation with graphical hardware 
allowing interface card insertion into routers. 

• Multi-user functionality for collaborative 
construction of virtual networks through a real 
network. 

• Step-by-step tutorials, advanced workshops, and a 
comprehensive help feature. 

• Activity Wizard for creating custom learning 
activities with grading and feedback capabilities. 

• Lab scoring function, international language support, 
and compatibility with all platforms (Windows and 
Linux). 

4.7. Analysis of GNS3 

GNS3 is an open-source network simulator highly 
regarded for its flexibility and powerful features, 
allowing the simulation of complex networks using real 
network hardware images and virtualization 
technologies. 

4.7.1. From the Educator's Perspective 

GNS3 is a valuable tool for teaching network concepts 
and configurations, offering hands-on experience with 
real network operating system images. This allows 
students to gain practical knowledge and skills by 
working with actual network environments. 

4.7.2. Benefits for Educators 

• Provides a realistic simulation environment using 
real hardware images. 

• Supports the integration of virtual machines, 
enabling comprehensive network simulations. 

• Allows the use of a wide range of plugins and third-
party tools for enhanced functionality. 

• Offers community support for troubleshooting and 
sharing configurations. 

4.7.3. From the Student-Trainee Perspective 

GNS3 provides a practical learning platform where 
students can experiment with complex network setups 
and troubleshoot issues in a safe environment. This 
hands-on experience is crucial for developing real-world 
networking skills. 

4.7.4. Workspaces 

4.7.4.1. Topology Workspace 

Users can create and manage network topologies by 
adding, connecting, and configuring virtual network 
devices and links. 

4.7.4.2. Virtual Machine Integration 

Supports integration with virtualization platforms 
like VirtualBox and VMware, allowing the inclusion of 
virtual machines in network simulations. 

4.7.5. Modes of Operation 

4.7.5.1. Real-Time Mode 

Provides real-time simulation of network operations, 
allowing users to observe and interact with the network 
as if it were live. 

4.7.5.2. Simulation Mode 

Offers control over simulation parameters, enabling 
detailed analysis of network behavior and performance. 

4.7.6. Supported Protocols and Applications: 
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4.7.6.1. Application 

Supports a wide range of networking protocols and 
applications through real network operating system 
images (e.g., Cisco IOS, Juniper Junos). 

4.7.6.2. Transport 

Capable of simulating various transport protocols 
and behaviors, providing a comprehensive 
understanding of network interactions. 

4.7.6.3. Network 

Supports detailed simulation of network protocols, 
including routing, switching, and security protocols. 

4.7.6.4. Network Access/Interface 

Emulates a variety of network interfaces and access 
technologies, providing flexibility in network design and 
testing. 

4.7.7. Additional Features 

• Real hardware emulation for high-fidelity network 
simulations. 

• Integration with virtual machines for end-to-end 
network scenarios. 

• Extensibility through plugins and third-party tools 
like Wireshark. 

• Active community support for continuous 
improvement and problem-solving. 

4.8. Analysis of Opnet (Riverbed Modeler) 

Opnet, now Riverbed Modeler, is a comprehensive 
network simulation tool used for modeling a wide range 
of network components and behaviors across various 
sectors. 

4.8.1.1. From the Educator's Perspective 

Riverbed Modeler offers detailed simulation 
capabilities that are invaluable for teaching advanced 
network concepts and performance analysis. Its extensive 
library of models allows educators to cover a wide range 
of networking topics with high accuracy. 

4.8.2. Benefits for Educators 

• Provides detailed models for wireless and wired 
communications, protocols, and queuing behaviors. 

• Enables the simulation of complex hardware 
components and microprocessors. 

• Offers a comprehensive GUI for visualizing network 
simulations and results. 

• Supports the creation of custom simulation scenarios 
for targeted learning objectives. 

4.8.2.1. From the Student-Trainee Perspective 

Riverbed Modeler provides a powerful platform for 
students to experiment with network configurations and 
analyze performance metrics. Its detailed simulation 
capabilities help students understand the intricacies of 
network operations and the impact of various factors on 
performance. 

4.8.3. Workspaces 

4.8.3.1. Modeler Workspace 

Allows users to create detailed network models by 
adding and configuring nodes, links, and protocols. 

4.8.3.2. Simulation Workspace 

Provides tools for setting up and running 
simulations, as well as analyzing results through 
graphical and statistical outputs. 

4.8.4. Modes of Operation 

4.8.4.1. Real-Time Mode 

Simulates network operations in real-time, providing 
immediate feedback and insights. 

4.8.4.2. Simulation Mode 

Allows users to control simulation parameters and 
analyze network behavior over time. 

4.8.5. Supported Protocols and Applications 

4.8.5.1. Application 

Includes a vast library of application-layer protocols 
for comprehensive simulation of network traffic and 
interactions. 

4.8.5.2. Transport 

Supports detailed modeling of transport protocols 
like TCP and UDP, providing insights into performance 
and reliability. 

4.8.5.3. Network 

Offers extensive models for network-layer protocols, 
including various routing and switching protocols. 

4.8.5.4. Network Access/Interface 

Emulates a wide range of access technologies and 
network interfaces for flexible network design and 
testing. 

4.8.6. Additional Features 

• Detailed queue models for analyzing queuing 
behavior in network devices. 

• Support for complex hardware modeling, including 
microprocessor performance. 
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• Comprehensive GUI for visualizing network 
simulations and results. 

• Extensive library of protocol models covering all 
layers of the OSI model. 

4.9. Analysis of NSE (Network Simulator 3) 

NS3 is an open-source discrete-event network 
simulator, primarily used for research and educational 
purposes. It provides a realistic simulation environment 
for network protocols and internet systems. 

From the Educator's Perspective: NS3 is a valuable tool 
for teaching network protocols and internet systems due 
to its detailed and accurate simulation capabilities. It 
allows educators to create realistic network scenarios and 
analyze the performance of various protocols. 

4.9.1. Benefits for Educators 

• Offers a realistic and flexible simulation environment. 
• Provides extensive documentation and tutorials, 

aiding in the learning process. 
• Supports a wide range of network protocols and 

models, allowing comprehensive educational 
coverage. 

4.9.1.1. From the Student-Trainee Perspective 

NS3 provides a detailed learning platform for 
students to understand network protocols and their 
behaviors in real-world scenarios. The hands-on 
experience with NS3 aids in developing a deep 
understanding of network operations. 

4.9.2. Workspaces 

4.9.2.1. Simulation Script Workspace 

Users can write and execute simulation scripts in C++ 
or Python, allowing for detailed and customized network 
simulations. 

4.9.3. Modes of Operation 

4.9.3.1. Simulation Mode 

Provides detailed and controlled simulation of 
network scenarios, allowing users to analyze protocol 
performance and network behavior. 

4.9.4. Supported Protocols and Applications 

4.9.4.1. Application 

Includes support for a wide range of application-
layer protocols for realistic simulation of network traffic 
and interactions. 

4.9.4.2. Transport 

Provides detailed modeling of transport protocols 
like TCP, UDP, SCTP, and more, offering insights into 
their performance and reliability. 

4.9.4.3. Network 

Supports extensive models for network-layer 
protocols, including various routing and switching 
protocols. 

4.9.4.4. Network Access/Interface 

Emulates a wide range of access technologies and 
network interfaces, enabling flexible network design and 
testing. 

4.9.5. Additional Features 

• Realistic and detailed simulation environment for 
network protocols. 

• Extensible through custom scripts in C++ or Python, 
allowing for highly customizable simulations. 

• Strong community support with extensive 
documentation and user-contributed models. 

• Regular updates and active development to keep up 
with emerging networking technologies. 

4.10. Analysis of Mininet 

Mininet is an open-source network emulator that 
creates a realistic virtual network, running real kernel, 
switch, and application code on a single machine. It is 
widely used for developing and testing network 
applications and protocols. 

4.10.1. From the Educator's Perspective 

Mininet is an excellent tool for teaching software-
defined networking (SDN) and network function 
virtualization (NFV) concepts. Its ability to emulate a 
complete network on a single machine makes it accessible 
for educational environments. 

4.11. Benefits for Educators 

• Provides a realistic and interactive environment for 
teaching SDN and NFV. 

• Supports the creation of complex network topologies 
with minimal hardware requirements. 

• Includes extensive documentation and a large 
collection of example scripts for various network 
scenarios. 

4.11.1. From the Student-Trainee Perspective 

Mininet offers a hands-on learning experience, 
allowing students to experiment with real network code 
and configurations. This practical approach helps in 
understanding the intricacies of network behavior and 
management. 
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4.11.2.  Workspaces: 

4.11.2.1. CLI Workspace 

Users can interact with the Mininet environment 
through a command-line interface, allowing for the 
creation and management of network topologies. 

4.11.2.2.         Python API Workspace 

Provides a Python API for scripting network 
configurations and behaviors, enabling automation and 
customization. 

4.11.3.    Modes of Operation 

4.11.3.1 Emulation Mode 

Emulates a complete network on a single machine, 
allowing for the testing and development of network 
applications and protocols in a controlled environment. 

4.11.4.     Supported Protocols and Applications: 

4.11.4.1. Application 

Supports the deployment of real applications within 
the emulated network, providing a realistic environment 
for testing network applications. 

4.11.4.2.         Transport 

Emulates transport protocols like TCP and UDP, 
allowing for detailed analysis of their behavior and 
performance. 

4.11.4.3.         Network 

Supports a wide range of network protocols, 
including SDN protocols like OpenFlow. 

4.11.4.4.         Network Access/Interface 

Emulates various network interfaces and access 
technologies, enabling flexible network design and 
testing. 

4.11.5.     Additional Features 

• Real kernel, switch, and application code running in 
the emulated environment. 

• Supports integration with SDN controllers like 
OpenDaylight and Ryu. 

• Extensible through custom scripts and plugins, 
allowing for advanced network emulation scenarios. 

• Active community support with extensive 
documentation and user-contributed examples. 

By leveraging these tools, network professionals and 
students can gain valuable insights, improve network 
designs, and enhance overall network performance. 

These simulators provide robust platforms for learning, 
testing, and optimizing networks, ensuring efficient and 
effective network management and development. 

5. Results of the comparison & Conclusions 

In this section, we present the results of our 
comparative analysis of three prominent network 
simulation tools: Cisco Packet Tracer, GNS3, and 
Riverbed Modeler Academic Edition (Opnet). Each tool's 
capabilities, strengths, and limitations were evaluated 
based on several key criteria: educational applicability, 
user experience, simulation depth, flexibility, and 
scalability. This comprehensive comparison aims to 
provide insights into how each simulator can be 
optimally utilized in various educational and 
professional contexts. 

5.1. Comparative Criteria and Results 

5.1.1. Educational Applicability: 

5.1.1.1.     Cisco Packet Tracer 

• Strengths: Highly effective for beginners due to its 
intuitive interface and straightforward simulation 
capabilities. Integral to Cisco’s Networking Academy 
curriculum, making it a staple in foundational 
network training. 

• Limitations: Primarily focuses on Cisco devices and 
protocols, which may limit exposure to broader 
networking environments. 

5.1.1.2.     GNS3 

• Strengths: Provides a realistic simulation 
environment using real network hardware images, 
which is beneficial for advanced learning and 
professional training. Supports a wide range of 
network devices and protocols. 

• Limitations: The complexity of setup and use can be 
a barrier for beginners, requiring more advanced 
knowledge and skills. 

5.1.1.3.     Riverbed Modeler Academic Edition 

• Strengths: Offers comprehensive modeling 
capabilities that are ideal for higher education and 
professional research. Detailed simulations and 
extensive protocol support make it suitable for in-
depth studies and advanced network analysis. 

• Limitations: Resource-intensive and complex, 
making it less accessible for beginners and smaller 
educational institutions. 

5.1.1.4. NS3 
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• Strengths: Highly suitable for advanced research and 
educational purposes. Provides a realistic and 
detailed simulation environment for network 
protocols and internet systems. 

• Limitations: Requires advanced technical knowledge 
and programming skills, making it less accessible for 
beginners. 

5.1.1.5. Mininet 

• Strengths: Ideal for teaching software-defined 
networking (SDN) and network function 
virtualization (NFV). Provides a practical, hands-on 
learning experience with real network code and 
configurations. 

• Limitations: Limited to emulating rather than 
simulating, which may not fully capture the nuances 
of complex network interactions 

5.1.2. User Experience: 

5.1.2.1.     Cisco Packet Tracer 

• Strengths: User-friendly interface with visual aids 
and guided activities. Real-time and simulation 
modes enhance interactive learning. 

• Limitations: Limited to Cisco-specific environments, 
which may not fully prepare users for multi-vendor 
network scenarios. 

5.1.2.2.     GNS3 

• Strengths: Flexibility and realism due to the use of 
real network OS images. Strong community support 
provides additional resources and troubleshooting 
help. 

• Limitations: The steep learning curve and technical 
setup requirements can be challenging for less 
experienced users. 

5.1.2.3.     Riverbed Modeler Academic Edition 

• Strengths: Comprehensive GUI and detailed 
feedback mechanisms. Supports complex simulations 
with high accuracy. 

• Limitations: High cost and complexity may deter 
smaller institutions and individual learners from 
using it. 

5.1.2.4.   NS3 

• Strengths: Highly detailed and customizable 
simulation environment. Strong support for scripting 
in C++ and Python. 

• Limitations: Requires significant programming 
expertise and setup time. 

5.1.2.5.  Mininet 

• Strengths: Simple setup and easy-to-use CLI and 
Python API for network emulation. Strong 
integration with SDN controllers and virtualization 
platforms. 

• Limitations: Less detailed than full network 
simulators like NS3 or Riverbed, as it focuses more on 
emulation. 

5.1.3. Simulation Depth 

5.1.3.1.     Cisco Packet Tracer 

• Strengths: Adequate for basic to intermediate 
network simulations. Provides essential tools for 
learning network concepts and troubleshooting. 

• Limitations: Less detailed compared to GNS3 and 
Riverbed in terms of advanced protocol and network 
behavior simulations. 

5.1.3.2.     GNS3 

• Strengths: High fidelity due to real hardware 
emulation. Supports a wide range of detailed 
network scenarios. 

• Limitations: Requires substantial computing 
resources for complex simulations. 

5.1.3.3.     Riverbed Modeler Academic Edition 

• Strengths: Offers in-depth and comprehensive 
simulation capabilities, including detailed queuing 
models and hardware behavior. 

• Limitations: High complexity and resource 
requirements. 

5.1.3.4.     NS3 

• Strengths: Provides highly detailed and accurate 
simulations of network protocols. Extensive support 
for custom simulation scripts and detailed statistical 
analysis. 

• Limitations: Can be resource-intensive and complex 
to set up for large-scale simulations. 

5.1.3.5.     Mininet 

• Strengths: Adequate for emulating network 
environments, particularly useful for SDN and NFV 
experiments. 
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• Limitations: Emulation rather than full simulation, 
which limits its ability to model network behavior in 
detail. 

5.1.4. Flexibility and Scalability 

5.1.4.1. Cisco Packet Tracer 

• Strengths: Suitable for small to medium-sized 
network simulations. Allows for logical and physical 
workspace configurations. 

• Limitations: Scalability is limited compared to GNS3 
and Riverbed. 

5.1.4.2.  GNS3 

• Strengths: Highly scalable and flexible, supporting 
integration with virtual machines and a wide range of 
plugins. 

• Limitations: Requires advanced setup and 
configuration. 

5.1.4.3.  Riverbed Modeler Academic Edition 

• Strengths: Capable of simulating large-scale 
networks with detailed feedback. Highly flexible in 
terms of protocol and hardware modeling. 

• Limitations: Requires significant resources and 
expertise to manage large-scale simulations. 

5.1.4.4. NS3 

• Strengths: Extremely flexible and scalable, suitable 
for simulating a wide range of network scenarios. 
Strong support for custom extensions and detailed 
modeling. 

• Limitations: Requires extensive programming 
knowledge and resources. 

5.1.4.5. Mininet 

• Strengths: Highly flexible for SDN and NFV 
emulations, allowing integration with real network 
controllers and virtual machines. 

• Limitations: Limited scalability compared to full-
scale simulators due to its focus on emulation. 

5.1.5. 5.2 Comparative Insights 

5.1.5.1. Cisco Packet Tracer 

    Best For: Beginners and intermediate learners, 
educational institutions focusing on foundational 
network training, and environments where Cisco 
certification is a priority. 

5.1.5.1.1 Summary  

Cisco Packet Tracer’s simplicity and educational focus 
make it an excellent tool for introducing networking 
concepts. However, its limitations in multi-vendor 
simulations and advanced network behaviors mean it 
may not be suitable for more complex or diverse network 
studies. 

5.1.5.2. GNS3 

    Best For: Advanced students, network professionals, 
and users seeking a realistic and flexible simulation 
environment. 

5.1.5.2.1. Summary 

GNS3 stands out for its realism and flexibility, providing 
a highly detailed simulation experience using real 
network OS images. It is ideal for users who need to 
simulate complex networks and advanced protocols, 
although its setup complexity may be challenging for 
some. 

5.1.5.3. Riverbed Modeler Academic Edition 

    Best For: Higher education, research institutions, and 
professional training programs requiring detailed and 
comprehensive network simulations. 

    Summary: Riverbed Modeler excels in detailed and 
large-scale network simulations, offering extensive 
protocol support and detailed feedback. Its complexity 
and resource requirements make it more suitable for 
advanced users and institutional settings. 

5.1.5.4. NS3 

    Best For: Researchers, advanced students, and 
professionals requiring detailed and programmable 
network simulations. 

5.1.5.4.1.     Summary 

NS3 provides a highly detailed and customizable 
simulation environment suitable for research and 
advanced educational purposes. Its extensive support for 
custom simulation scripts and detailed statistical analysis 
makes it ideal for in-depth network studies. However, it 
requires significant programming expertise and setup 
time, which can be a barrier for beginners. 

5.1.5.5. Mininet 

    Best For: Educators and students focusing on software-
defined networking (SDN) and network function 
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virtualization (NFV), and professionals needing a 
practical, hands-on learning tool. 

5.1.5.5.1.     Summary 

Mininet is ideal for teaching and learning SDN and NFV 
concepts. It offers a practical, hands-on experience by 
allowing users to experiment with real network code and 
configurations in an emulated environment. While it is 
excellent for SDN and NFV scenarios, its emulation 
approach may not capture the nuances of complex 
network behaviors as comprehensively as full network 
simulators. 

5.2. Conclusions 

The comparative analysis reveals that each network 
simulator has its unique strengths and is best suited for 
different educational and professional contexts. Cisco 
Packet Tracer is ideal for foundational learning and 
beginner training due to its simplicity and focus on Cisco 
devices. GNS3 offers advanced simulation capabilities 
and flexibility, making it suitable for professional training 
and complex network studies. Riverbed Modeler 
provides comprehensive and detailed simulations, ideal 
for higher education and research purposes. 

Network simulators are invaluable tools in both 
educational and professional settings, offering platforms 
for students and professionals to engage with complex 
networking concepts in a practical, hands-on manner. The 
choice of the appropriate network simulator is crucial and 
should be guided by the specific needs and goals of the 
user, as each simulator brings its unique advantages and 
limitations to the table. 

Cisco Packet Tracer is particularly well-suited for 
introductory and intermediate networking courses. Its 
user-friendly interface, combined with its integration into 
the Cisco Networking Academy curriculum, makes it an 
excellent choice for institutions aiming to provide 
foundational networking education. Its real-time and 
simulation models offer flexibility in teaching methods, 
enabling instructors to visualize network operations and 
troubleshoot scenarios in a controlled environment. 
However, its focus on Cisco-specific devices and 
protocols means that it may not provide the broad 
exposure necessary for students who need to learn about 
a wider range of network environments. 

GNS3, with its ability to emulate real network 
operating systems and integrate with virtualization 
platforms, provides a high level of realism that is 
unmatched by other simulators. This makes it an ideal 
tool for advanced students and network professionals 
who require a deeper understanding of network 
operations and need to simulate complex, multi-vendor 
environments. The flexibility and extensibility of GNS3, 

supported by a strong user community, allows for 
detailed and customizable simulations. Nonetheless, its 
steep learning curve and technical setup requirements 
can be challenging, making it less suitable for beginners. 

Riverbed Modeler Academic Edition stands out for its 
comprehensive simulation capabilities and detailed 
feedback mechanisms, making it a powerful tool for 
higher education and professional training. Its ability to 
simulate large-scale networks and provide in-depth 
analysis of network performance is invaluable for 
research and development projects. The extensive 
protocol support and complex hardware modeling 
capabilities of Riverbed Modeler enable users to conduct 
detailed studies and gain insights into the intricate 
workings of network systems. However, its complexity 
and resource requirements may limit its accessibility to 
smaller institutions and individual learners. 

NS3 is highly regarded in the research community for 
its detailed and programmable network simulations. It is 
ideal for researchers and advanced students who require 
customizable simulation scripts and detailed statistical 
analysis. NS3’s extensive support for custom simulations 
makes it particularly suited for in-depth network studies. 
However, it demands significant programming expertise 
and setup time, which can be a barrier for beginners. 

Mininet is an excellent tool for teaching and learning 
software-defined networking (SDN) and network 
function virtualization (NFV). It offers practical, hands-on 
experience by allowing users to experiment with real 
network code and configurations in an emulated 
environment. Mininet’s ability to emulate real network 
devices and its ease of use make it particularly beneficial 
for students and educators focusing on SDN and NFV. 
While it excels in these areas, its emulation approach may 
not capture the full complexity of network behaviors 
compared to full network simulators like GNS3 and 
Riverbed Modeler. [17] and [18] 

5.3. Future Directions 

Integration into Remote Learning: Exploring how 
these tools can be integrated into online courses and 
remote learning platforms to meet the growing demand 
for virtual education. 

Real-World Data Incorporation: Enhancing 
simulations with real-world data to improve their realism 
and applicability. 

Cross-Platform Interoperability: Investigating ways 
to improve interoperability between different simulation 
tools for a more seamless educational experience. 

Summarizing, Cisco Packet Tracer, GNS3, Riverbed, 
NS3 and Mininet each offer distinct advantages that cater 
to different aspects of networking education and 
professional training. By leveraging the strengths of these 
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simulators, educators can create robust and effective 
learning environments that prepare students for the 
complexities of modern network management. As 
network technologies evolve, continuous improvement 
and adaptation of these tools will be essential in 
maintaining their relevance and utility in both 
educational and professional contexts [19]. 
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ABSTRACT: The increasing popularity and attention in Vehicular Ad-hoc Networks (VANETs) have
prompted researchers to develop accurate and realistic simulation tools. Realistic simulation for VANETs
is challenging due to the high mobility of vehicles and the need to integrate various communication
modalities such as Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) interactions. Existing
simulators lack the capability to simulate VANET environments based on IoT infrastructure. In this
work, we propose SimulatorBridger, a novel simulator that bridges IoTSim-OsmosisRES with SUMO,
a traffic simulator, to simulate VANET environments with integrated IoT infrastructure. Our study
focuses on analyzing the generated dataflows from V2I and V2V interactions and their impact on vehicle
energy efficiency. Even though On-Board Units (OBUs) appear to have insignificant energy demands
compared to other vehicle energy consumptions such as electric motors or auxiliary systems (HVAC,
lights, comfort facilities), we found a near-perfect correlation between the intensity of communication
dataflows and the battery consumption. This correlation indicates that increased communication
activity can contribute to an increase in overall energy consumption. Furthermore, we propose future
research directions, including traffic rerouting based on battery consumption optimization, which can
be efficiently tested using our simulation platform. By including communication energy costs in the
design of energy-efficient vehicular networks, these insights contribute to a deeper understanding of
energy management in VANETs.

KEYWORDS Traffic Simultors, VANET, IoT

1. Introduction

The advancement of technology leads us towards a new
area of communication connecting two or more vehicles
to exchange data within an IoT ecosystem. This drives us
through a new VANET (Vehicular Adhoc Network) frame-
work making the conventional transport system safer, full of
infotainment, convenient, and smart. In VANET research, re-
searchers aim to develop a simulator platform that provides
quick and cost-efficient transmission of data for passenger
safety and comfort. As described earlier, VANET simulators
consist of two components: Traffic Simulators (software en-
vironments that generate vehicle movements in trace files)
and Network Simulators (used to test the performance of
networking protocols). The network simulators are used to
build communication topologies, evaluate network proto-
cols, and exchange routing information between the nodes
after importing the traces of mobility models generated
by traffic simulators. These mobility models, which are
the depiction of real-world scenarios, are called traces and
contain the simulated infrastructure and event information
such as vehicle speed, type, origin, destination, arrival time,
arrival rate, maximum density, number of lanes, speed lim-
its, capacity, intersection type, queuing, service distribution,
service rate, traffic signs, location, etc. Green and orange

paths in Figure 1a provide a minimalistic view of these
traces where only the vehicle’s geographical position is con-
sidered. The traces generated with the mobility generator,
microscopic or macroscopic [1, 2], are imported into the
network simulator and generate a vehicular program: boxes
surrounding paths in Figure 1b provide a depiction of the
vehicular programs associated with simulated IoT agents.

1.1. Objective and motivation

We have used IoTSim-OsmosisRES [3] as the IoT simulator
for our proposed coupling platform, as it is the only IoT
simulator considering energy management, a variety of
power sources, and network infrastructure, while others
can neither simulate floating weather conditions, nor renew-
able energy sources. However, the current implementation
of the IoT simulator, IoTSim-OsmosisRES assumes IoT de-
vices to be in fixed locations. So, IoT device mobility is
not supported. Hence, we propose a new simulator Sim-
ulatorBridger that couples a state-of-the-art IoT simulator
(IoTSim-OsmosisRES [3]) with a traffic simulator (SUMO
[4]) to simulate VANET environments. This proposed sim-
ulator is designed to meet these goals: coupling the IoT
simulator IoTSim-OsmosisRES with the traffic simulator,
SUMOU, enhancing IoTSim-OsmosisRES capabilities to be
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able to simulate moving IoT devices and to support battery
information associated to the IoT devices (vehicles).

Our proposed simulator allows a smooth integration of
mobility, IoT devices, heterogeneity, and battery manage-
ment in highly heterogeneous and dynamic environment.
Still, we demonstrate that our architecture has sufficient
flexibility to bridge any possible traffic simulator using a
plug-and-play approach. We provide all the necessary func-
tionality for the accurately couple simulators that can meet
the complexity of traffic environments by using the most
recent IoT simulator and the first simulation framework
that offers unified modelling and simulation of complex IoT
applications over heterogeneous edge-cloud environments.
Preliminary results (§5) remark the partial correctness of our
simulator, as the vehicular battery consumption distribution
follows the same trend as packet distribution. By limiting
the communications to exchanging one single packet be-
tween the cloud and the IoT node, we also show that the
number of communications follows a similar distribution to
the former. We finally show that increasing the number of
packets travelling in the network increases the overall time
required by the network to process these, as bottlenecks
might occur in the network simulator infrastructure. Future
work will focus on testing different communication policies
aiming to decrease the packet processing overhead within
the network. These preliminary fidelity results remark the
adequacy of using the simulator as a digital twin for a realistic
urban mobility scenario, thus allowing any policy-maker to
test disparate network configuration and traffic distributions
to minimise network communication overload.

1.2. Use Case Scenario

The recent Car-as-a-Service paradigm [5] has remarked the
possibility of using the cars’ IoT sensors not only for the
personal purposes of travellers but, with the driver’s agree-
ment, for the benefit of the entire community. As most
modern cars are equipped with navigation systems and
video cameras, cars can collect videos and images of their
surroundings and geo-tag such information. This might
be extremely useful for any town hall highly committed to
road surface remaking for car safety so that they can spot
tarmac conditions before they degenerate into potholes [6].
To do so, the data needs to be collected from cars and then
streamed towards the main data centre, Figure 1, where
an AI model is going to detect the seriousness of the situa-
tion [7]. Road-Side Units (RSU) might first collect the data
from the cars through 5G antennae supporting massive low-
latency communication and stream it towards the primary
data centre thanks to the core networks. Communication
between 5G antennae is supported by optical fibres realis-
ing low-latency communications. As a result of the data
collection process, a massive amount of data will stream
every second from the cars towards the data centres, which
will severely increase during rush hours when road conges-
tions might happen with higher probability [8]. Figure 2
represents a portion of the simulated traffic from Hamburg
1. Due to the massive volume of data generated by the high
number of vehicles during rush hours, any road congestion

will constitute a communication bottleneck degrading the
overall communication performance [9]. To achieve success
in these situations, the traffic load needs to be balanced [10]
to reduce communication delays. Given that the traffic flow
might be redirected at run-time, this motivates the represen-
tation of each RSU as a specific Edge [3]. The exploitation
of Osmotic Computation [11] eases communication flow
management, thus dynamically establishing new streams.
This also motivates the definition of a simulator bridging
traffic simulation to network communication systems.

2. Design of the Simulator

Our framework twins traffic simulation and IoT simulation.
Thus, it incorporates well-known models for road traffic
micro-simulation with a comprehensive selection of models
of network protocols. By running the vehicular generator,
we collect all the vehicular geographical information and the
position of the Edge node (§2.1). This is required to set up
the network topologies associated with each Edge node and
determine the vehicular program to be injected into the IoT
devices in the IoT simulator (§2.2). At each simulation time,
each IoT device will query a centre to determine whether the
IoT device shall to establish communication with the cloud
through an edge device or not (§2.3). Upon confirmation,
the IoT device directly contacts the MEL router associated
with the edge node of choice, establishing communication
between the IoT device and the cloud through one of its
hosts (§2.4).

2.1. Vehicular Data Collection

First, the simulator collects the mobility information gen-
erated by the traffic generator. This simulator might be
configured by setting the begin τb and the end τe simula-
tion time, as well as a temporal granularity δ defining the
sampling rate of the vehicular information. This allows
do determine the time at the i-th simulation step for each
vehicle ν as the following relation:

τiν

τi−1
ν δ i > 0
τb oth.

At the end of the traffic generation, the VANET simulator
returns a list of pairs associating each simulation time τiν
to a geographical location ϖi

ν for each vehicle ν. Figure 1a
provides a graphical depiction of such traces, highlighted
in either green or orange. From the network topology, we
might also infer the geographical position of each RSU of
interest r alongside its position ϖr and its communication
radius ρr. This operation is performed by a simulator wrap-
per, which provides a standard interface for generating the
data of interest in a uniform representation independently
from the specific traffic simulator of choice.

2.2. Software Defined Network Configuration

The next step assumes that each vehicle ν is associated with
just one single IoT device potentially communicating with
the cloud infrastructure. We collect the sequence of pairs

1https://github.com/DLR-TS/sumo-scenarios/tree/main/TAVF-Hamburg
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(b) Osmotic Applications (MEL representation) re-
marking the Vehicle2Edge (V2E), Edge2Edge (E2E),
and the Edge2Cloud (E2C) communication channels.
Boxes denoted as p1 and p2 associated to each vehi-
cle indicate the “simulation programs” retaining the
mobility information.

Central Agent

(c) Supporting the Osmotic Agent configuration from
IoT-Osmosis-RES with centralized training and de-
centralized execution for dynamically updating the
communication strategies of the IoT devices. This
enables us to support dynamic load balancing in the
future.

Figure 1: Osmotic Computing in car traffic scenario in Newcastle Upon Tyne.

(a) Some road lanes (black) and some RSU (colored
circles). Black triangles are vehicles not associated
with an RSU.

(b) Associating each semaphore with the nearest cars
within the radius of θ : cars and RSU with the same
colour communicate.

(c) After exploiting a load balancing algorithm, the
cars are distributed to other semaphores in the neigh-
bourhood.

Figure 2: A subset of the Sumo TAV Hamburg Dataset for mobility

[(
τ0ν , ϖ

0
ν

)
, . . . ,

(
τnν , ϖ

n
ν

)], where τn τe, as a vehicular program
ν that will be injected within the IoTOsmosis-RES simulator.

This will allow the IoT device to update its position at
each instant of the SUMO simulation time in the network
simulator. Fig. 1b represents such vehicular programs as
minimizations of the traces represented in Fig. 1a.

Contextually, we define Software-Defined Wide Area
Networks for the RSU nodes. To do so, we first define an
undirected graph G V, E, where the vertices V list the RSU
nodes r obtained from the VANET simulator, and the edges
establish a communication channel between two distinct
RSU r and r′ if and only if they can both communicate
between each other:
∀r, r′ ∈ V.

(
r, r′
)
∈ E ↔ r , r′∧∥ϖr −ϖr′∥ ≤ min

(
ρr, ρr′

)
For each strongly connected component of such graph,

we establish a distinct Edge SDN with an associated Dat-
acenter and Software-Defined Network Controller, where
each RSU is described as an Edge device associated with at
least one host. Each light blue cloud in Fig. 1b represents
a distinct Edge SDN, for which only the Edge nodes are
remarked. We also set up a Cloud network towards which
each IoT device will communicate to send the sensed data,
as well as an SDWAN network bridging each Edge SDN to a
Cloud SDN. Both these structures are engulfed in the white
cloud in Fig. 1b. Last, we completely set up the edge con-
nectivity between these networks by setting up Edge2Edge

and Edge2Cloud communication links. VehicleToEdge links
will be established at simulation time.

2.3. Osmotic agents module

The osmotic agents’ module is exploited for simulating net-
work discovery procedures and determining each IoT device
which should be the best edge node for establishing the
communication. This cannot be necessarily determined at
the local level, as each IoT device has only the information of
which edges it can communicate with, but it doesn’t know
which is going to be the best neighbouring agent towards
which establish the first-mile communication towards for
reaching the cloud. An IoT device acts as an reinforcement
agent, which sends the information about the observed
environment to the central agent. In particular, each IoT
device sends its geographical position, while the geograph-
ical position of each edge device is known a priori. We
implemented two specific types of central agents:

• NearestCentralAgent: for each querying IoT device,
the central agent will always respond with the nearest
Edge device to the IoT that is within mutual signal
coverage. This strategy does not require any alteration
to the SDN Routing Policy of each Edge Network,
which might still exploit the SHORTESTPATHMAXI-
MUMBANDWIDTH discussed in [12].
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• FlowDataCenterAgent: after associating each IoT de-
vice to a possible edge device, the agent runs a multi-
source and multi-target minimum-cost flow problem
for establishing the best strategy to minimize the chan-
nel communication. This algorithm will then return
for each IoT device the best edge device. This also
requires updating the SDN Routing Policy Maximum-
FlowRoutingPolicy associated with each network via
its SDN Controller, thus returning the paths calculated
by the Central Agent.

Upon reception of a non-empty edge device, the IoT will
generate a novel Osmotic Application and start communi-
cation towards the cloud through the elected edge node.
Figure 1c illustrates the bidirectional communication flow
between IoT or SDN Rounters and the Central Agent.

2.4. Dynamic Adaptive Routing

In osmotic computing, each IoT device directly interacts with
MicroELements (MEL) software components that might be
instantiated anywhere in a given network associated to
Edges [3]. To faithfully represent real communication sce-
narios, an IoT device must directly establish communication
with a precise edge node [13]: the Adaptive Routing in [3]
was further extended to directly select the MEL associated
with a given edge node instead of picking one in a round-
robin fashion. As IoT-OsmosisRES further associates a MEL
to one or more hosts, the routing algorithm picks one of
the hosts running the MEL as its first-mile communication
point. Contextually, the host establishes the communication
channel with the cloud network indicated by the IoT device,
thus starting the communication.

3. Implementation in Java

The proposed simulator, SimulatorBridger, is programmed
using the Java programming language, and it is avail-
able in Github 2. The NetworkTopology.java class in the
SimulatorBridger-IOTSimOsmosisRES module is crucial for
setting up the network layer in the simulation. It generates
a topological network, which is used to simulate latency
in network traffic. The IoTDevice.java class represents IoT
devices within the IoTSimOsmosisRES framework. The
CloudletScheduler class is responsible for scheduling tasks
in the cloud. And EdgeDeviceManager class is managing
edge devices.

The implementation of the SimulatorBridger platform
contains several modules and a large number of Java source
files. Here’s an overview of its structure:

SimulatorBridger-core component contains shared depen-
dencies and core functionalities used across the project. It
serves as the foundational codebase that other modules in
the project rely on.

SimulatorBridger-traffic-information-collector involves run-
ning the traffic simulator and collecting data from it. It pro-
cesses the output of the simulation, identifying IoT nodes
and Edge nodes. The Edge nodes are used for interactions
by the IoT nodes.

SimulatorBridger-central-agent-planner provides a theoret-
ical omniscient algorithm capable of scheduling time as
required. Depending on the network simulator chosen, it
also generate potential network connectivity information
based on the IoT and Edge information provided by the
simulation.

SumoOsmosisBridger is an example that bridges all the
simulations together with Dynamic IoTSimOsmosisRES sim-
ulator. It illustrates how the components can be integrated
in a seamless manner.

Each of these components plays a specific role in inte-
grating and processing traffic data within the IoTSimOsmo-
sisRES environment. The process starts with data collection
and processing, followed by planning and scheduling us-
ing the central agent planner, and finally, the integration
of all these elements through the SumoOsmosisBridger to
work with Dynamic IoTSimOsmosisRES. This integration
allows for a comprehensive simulation environment that
can handle complex IoT and traffic data scenarios.

4. Dataset and Experiment Setup

This section covers running the Bologna dataset 3, through
our proposed simulator, where vehicles have an embedded
IoT device and RSU are Edge nodes associated to MELs. Fig.
3 shows the SUMO network of this dataset. The dataset has
16 RSUs and 239 vehicles. The Bologna scenario includes
the area around the football stadium and was set up to
simulate the mobility of big events such as football matches
or concerts.

Figure 3: Bologna Dataset [14]

Our experiments orchestrate a traffic simulator (SUMO)
with a network simulator (IoTOsmosis-RES) with each sim-
ulation second in the former corresponding to a second in
the latter. We arbitrarily set the IoT battery consumption
rate to 1.02% when a vehicle communicates with a MEL.
We assumed embedded IoT devices cannot be re-charged
to better analyse the simulator’s correctness by correlating
the number of packets sent by an IoT device with its battery
consumption. When a vehicle was near an RSU in the traffic
simulator, we scheduled a new communication between the
IoT device embedded in the vehicle and the Cloud via the
Edge node representing the RSU in the network simulator.
This schedule is selected according to the granularity δ of
the traffic simulator: in our scenario, this is set to start every
1 second. In this time frame, the IoT device in the vehicle
sends one single packet. The simulation time for these plots
begins at the start of the traffic simulator and ends when the
last MEL has successfully sent all the packets to the cloud.

2https://github.com/jackbergus/SimulatorBridger/releases/tag/v0.1
3https://github.com/DLR-TS/sumo-scenarios/tree/main/bologna/acosta
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Our simulator assumes each RSU is an Edge device
containing multiple MELs. As per the previous discus-
sion, the network simulator was extended to establish direct
communication between IoT and Edge devices by resolv-
ing an available MEL associated with the Edge device. A
round-robin policy selects an available MEL in the Edge
node to ease each MEL’s workload. For this experiment, the
maximum simulation time of IoTOsmosis-RES was 3898.4s,
corresponding to 100% of the simulation, starting at the
same time, the maximum time for the SUMO simulator
was 186.7s (τe), with vehicles no longer able to enter the
urban environment after around 55% of the overall traffic
simulator time, or 100s. From this, as the number of ve-
hicles in the simulation decreases, the number of starting
communications will also decrease, resulting in a normal
distribution for both the number of communicating vehicles
and the number of packets sent. The traffic simulation
takes less than 5% of the total simulation time. This is due
to packet network delays which delayed communication
patterns even though the IoT devices sent no new packets.
We consider all communications between an IoT vehicle and
a MEL.

5. Analysis and Results

In this section, we analyze and discuss the key findings
from the Bologna dataset experiment conducted on the Sim-
ulatorBridger platform. The results of our simulation are
meticulously examined, focusing on critical performance
metrics and the effectiveness of various strategies imple-
mented throughout the process. This analysis not only
highlights the successes and challenges encountered but
also provides valuable insights into the practical implica-
tions and potential improvements for future iterations.

Fig 4 shows that each of the 163 embedded IoT devices
(in distinct colours) shows an almost perfect correlation be-
tween the number of packets sent (solid line) and its battery
consumption (dashed). The Spearman correlation between
those for each vehicle is almost 1 , with a p-Value of 0 ,
thus indicating a very strong correlation between these two.
From Fig 5, for most of the RSUs the number of connected
to each has an approximate normal-like distribution, with
most plateauing after the 100s mark, which is at about the
55% mark in VANET simulation time mentioned earlier. A
maximum number of 39 IoT devices were connected to a
single MEL and its Edge node at any time. This figure also
explicitly shows vehicles starting at an RSU, as Edge#12
has 15 connected vehicles from the very beginning of the
simulation. This figure also shows the simulation time
used for these plots, the simulation time starts at time 0
seconds and then stops around 190 seconds once all the
RSUs have no more connected vehicles. Next, we tested
if there was a strong correlation between the number of
vehicles in the simulation within a given time interval, with
the overall battery consumed within that same time interval,
as common-sense suggests that an increase of the number of
the vehicles should match an increase of communications be-
tween a IoT and Edge devices, thus reflecting in an increase
of the overall battery consumption. We found no strong
correlation between these two aspects as, even though more

vehicles lead to an increase of communications, this does not
necessarily entail that either more communications should
take place (e.g., vehicles might not be in a region covered
by RSUs) or even that all vehicles have the same number of
communications within the same time interval.

Spearman's Correlation Coefficient = 0.99998249893168

Spearman's Rank p−value = 0
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Figure 4: Correlation between battery consumption and number of packets
being sent per vehicle within the simulation.
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Figure 5: Number of IoT devices communicating with an Edge per simula-
tion time.

Following this, any potential correlation between pack-
ets sent from vehicles and the overall battery consumption
was investigated. Fig 6 shows the probability density of the
overall battery consumed by all vehicles in the simulation
(within each 5% time interval of simulation time), along
with probability density of the number of packets sent by all
vehicles (always within each 5% time interval of simulation
time). From Fig 6 both sets of data not only closely follow
a normal distribution, but also are closely correlated with
each other, as both distributions and both normal plots com-
pletely overlap one another. These two variables correlating
with each other was expected, as in the current simulator
setup, the packets being sent are responsible for the battery
consumption, and the fact that we found these two variables
do in fact correlate indicates that the simulation is behaving
as expected. Fig 6 shows a spike occurring at the 35 − 45%
for both the overall consumption and the number of packets
sent. This spike can be explained in terms of Fig 7 showing
the distribution of the communications starting within each
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traffic and VANET simulation time interval: this spike is
also present for the number of starting communications
within this same time interval. Given the current simulator
settings of a vehicle sending a single packet as a result of
communication with an RSU, this likefor-like behaviour of
communications and packets sent is not only expected but
demonstrates the simulator is functioning correctly. The
reason more packets were sent and therefore why more
battery was consumed in this time interval is due to more
communications occurring within this time interval. Fig 7
also validates our preliminary hypothesis observing that
the number of starting communications should drop after a
55% elapse of the Sumo simulation time.
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Figure 6: The distribution of packets sent in the network follows the same
trend as the overall IoT battery consumption.
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Figure 7: The distribution of the number of communications starting within
each time interval.

We might also observe another spike at the beginning
of the simulation where the influx of traffic starts entering
the simulation while approaching RSUs, thus justifying the
increase of the overall number of communications. The
explanation for the initial drop-off between the first two
intervals, 0 − 5% and 510%, can be explained with the first
interval being artificially high as a node is placed very close
to where vehicles initially join when the simulation starts.
This behaviour can also be seen on Fig 5 as Edge#12 having
15 connected vehicles just 1 second into the simulation.

From Fig 8 vehicles at the start of the simulation enter

from the most southwestern entrance, which, when fac-
toring in the 100 m radius of communication of the nodes,
explains how vehicles are able to connect to Edge#12 (i.e.
the light blue Node 12 in the bottom left of the plot). After
190 seconds in the simulation, the Sumo simulation stops,
and therefore we observed no vehicles connected to any of
the RSUs. In fact, the IoTOsmosis-RES still has to wait for
all the Edge nodes to send their packets to the cloud while
receiving an acknowledgement for this. The discrepancy
between the end of the traffic simulator and the Network
simulator also matching the end of the VANET simulator
has been cut off for the sake of legibility. This processing of
all the packets by the network infrastructure therefore takes
over 3700 seconds: we refer to this as shutdown time. Fig 9
shows how this shutdown time is affected by the number
of total communications in the simulator: the more time
steps in the simulation, or the longer vehicles are allowed to
navigate in the traffic simulator, the more the communica-
tions between vehicles and RSUs take place. This matches
the intuition that more time for potential communications
entails an increase in the number of communications. The
more relevant result from this figure with respect to the
shutdown, however, shows that more communications lead
to a longer and longer shutdown time.

Figure 8: Showing Edge displacements as RSU in the Bologna Dataset:
their colour represents the intensity of the undergoing communication.
Black lines show the trajectory of the vehicles carrying embedded IoT
devices.

Hence, the effectiveness of SimulatorBridger was vali-
dated through both simulation and experimental tests using
the Bologna dataset. The simulation results demonstrated a
near-perfect correlation between packet transmission and
battery consumption, with a Spearman correlation coeffi-
cient close to 1 and a p-value of 0, indicating strong statistical
significance. Experimental tests mirrored these findings,
showing similar trends and validating the simulator’s ac-
curacy in modeling real-world communication patterns
and their impact on energy usage. Minor discrepancies
between the simulation and experimental data were ob-
served, primarily due to real-world variances such as sensor
inaccuracies and environmental factors. Statistical tests
confirmed that both datasets followed similar distributions,
with most errors within acceptable limits. Overall, the
strong alignment between simulation and experimental re-
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sults underscores the reliability of SimulatorBridger. These
findings demonstrate the robustness of SimulatorBridger
and its value as a tool for studying and optimizing vehicular
networks.

Finally, the results offer significant improvements over
previous simulation benchmarks. The correlation analysis
between packet transmission and battery consumption re-
veals a Spearman correlation coefficient close to 1, indicating
a strong relationship between communication activity and
energy usage. Enhanced traffic flow and load balancing
capabilities are achieved through dynamic management of
communication loads among RSUs, resulting in smoother
traffic flow and reduced bottlenecks. The scalability of the
simulator is demonstrated by its ability to manage extensive
simulations, addressing the scalability issues faced by ear-
lier systems. Additionally, the detailed energy management
features, considering various power sources and their con-
sumption rates, set SimulatorBridger apart from traditional
models that often overlooked these aspects. These findings
affirm the simulator’s effectiveness in providing a robust
platform for studying and optimizing vehicular network
performance and energy efficiency.

6. Conclusion and future works

Due to the high mobility of vehicles in VANETs, realistic
simulation is a challenging task. This paper proposes a
novel simulator, SimulatorBridger, by bridging the IoT net-
work simulation with the traffic simulation. The efficacy of
SimulatorBridger is validated using a case study for urban
roads in Bologna city. Results show the various capabilities
of SimulatorBridger in terms of vehicular network lifetime,
vehicle battery, and energy consumption. According to our
results, SimulatorBridger is also scalable in terms of vehi-
cle count and simulation time. Notably, SimulatorBridger
simulates VANET based on IoT infrastructure, a capabil-
ity not present in existing VANET simulators, providing a
more comprehensive and integrated approach to vehicular
network simulation. Furthermore, our framework can be
easily extended to support a load balancing scheme between
traffic lights, thus minimising load imbalances in the com-
munication network while improving energy management
and implementation time. A cooperative approach for load
balancing among the network might be used when the traffic
light receives more requests than the maximum number,
resulting in high traffic or load. Also, vehicular network
lifetime is increased by reducing energy consumption which
is necessary to balance energy in traffic lights. In addition,
the simulator we propose combines IoTSim-OsmosisRES
with any potential traffic simulator. Then for future work, a
different traffic simulator can be used in conjunction with
IoTSim-OsmosisRES. Fig. 9 suggests that the network infras-
tructure is severely affected by the communication delays by
the way it processes and transmits the packets received from
the IoT devices to the cloud. Our future work will identify
the specific causes of the long shutdown times and alleviate
any problems in the infrastructure to reduce the shutdown
time of the simulation. For instance, we will try whether
different packet routing policies or network configurations
might help mitigate such problems. In conclusion, our study

demonstrates the impact of communication dataflows on the
battery consumption of IoT devices in vehicles, highlighting
a significant correlation that is crucial for understanding
overall energy efficiency in VANETs. The findings validate
the effectiveness of SimulatorBridger in providing accurate
simulations of VANET environments based on IoT infras-
tructure. Future research could explore traffic rerouting
strategies based on battery optimization criteria, leveraging
the capabilities of our proposed simulator.
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Figure 9: Correlation between simulation time, number of undergoing
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