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Editorial

As enterprises and critical infrastructures become increasingly data-driven and interconnected,
the demands placed on integration architectures, physical system reliability, and trustworthy
analytics continue to intensify. The three papers featured in this editorial reflect how
contemporary research is addressing these demands through vendor-agnostic digital
frameworks, rigorous experimental validation of power system components, and statistically
grounded evaluation of machine learning models in healthcare. Although spanning distinct
domains, each study emphasizes robustness, transparency, and practical decision support under
real-world constraints.

The first paper addresses the growing complexity of multi-cloud enterprise environments and the
limitations of vendor-locked integration models. By proposing a comprehensive vendor-agnostic
architecture built on Boomi and SAP Business Technology Platform, the study demonstrates how
resilient integration flows can be deployed across AWS, Google Cloud Platform, Azure, and Oracle
Cloud Infrastructure. Through detailed design principles, governance models, and comparative
analysis of cloud-native capabilities, the work shows how interoperability, security, and
compliance can be maintained without sacrificing agility or performance. Practical evaluations of
common enterprise workflows further illustrate how the proposed framework reduces technical
debt, optimizes costs, and accelerates digital transformation. The forward-looking discussion on
Al-driven integration, federated observability, and zero-trust pipelines positions the contribution
as both technically actionable and strategically future-ready [1].

The second contribution shifts focus to power system protection, presenting an experimental
investigation into the short-circuit behavior of metal oxide surge arresters under severe fault
conditions. By testing pre-faulted 36 kV arresters at rated and extreme short-circuit currents, the
study provides insights that cannot be reliably obtained through simulation alone. The results
demonstrate the arresters’ ability to relieve internal pressure, extinguish flames rapidly, and
prevent enclosure rupture and hazardous component dispersal. This empirical analysis offers
valuable guidance for both designers and end users, strengthening confidence in arrester
performance and safety under real fault scenarios [2].

The third paper examines the trustworthiness of machine learning predictions in clinical
decision-making by focusing on probabilistic calibration rather than discrimination alone. Using
a structured heart-disease dataset, the study rigorously evaluates multiple classifiers and post-
hoc calibration methods under a leakage-controlled workflow. The findings show that isotonic
regression consistently improves probability quality for several widely used models while
preserving discriminatory power, whereas other -calibration techniques may degrade
performance in certain cases. By combining diverse calibration metrics, statistical testing, and
reliability visualization, the research provides a reproducible framework for selecting calibration
strategies that enhance clinical interpretability and risk communication [3].

Together, these three studies highlight a shared commitment to building systems that are resilient,
interpretable, and operationally reliable. Whether enabling seamless integration across
heterogeneous cloud platforms, ensuring the physical safety of power system components under
extreme conditions, or improving the trustworthiness of predictive models in healthcare, each
contribution advances its field through rigorous methodology and practical relevance.
Collectively, they underscore the importance of transparency, validation, and adaptability in
designing digital and physical systems that support informed decision-making in complex, real-
world environments.
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ABSTRACT: The shift toward multi-cloud strategies has made a vendor-agnostic integration
framework indispensable for seamlessly orchestrating workflows across heterogeneous platforms.
Modern enterprises increasingly rely on a mix of cloud ecosystems leveraging Amazon Web Services
(AWS) for elasticity, Google Cloud Platform (GCP) for advanced AI/ML capabilities, Azure Cloud and
Oracle Cloud Infrastructure (OCI) for critical enterprise workloads while simultaneously adopting
best-of-breed integration technologies like Boomi and SAP Business Technology Platform (BTP).
However, traditional integration models, which are often siloed by vendor lock-in or constrained by
legacy middleware, fundamentally fail to deliver the agility, scalability, and strict compliance
demanded by today's digital enterprises. This paper addresses this challenge by proposing a
comprehensive vendor-agnostic architectural framework for designing and deploying resilient
integration flows using Boomi and SAP BTP across AWS, GCP, Azure, and OCIL The research
meticulously details the necessary design principles, technical patterns, and robust governance models
required to ensure full interoperability, security, and resilience across these disparate cloud providers.
Through a comparative analysis of key cloud-native capabilities including networking, identity
management, observability, and workload orchestration the study demonstrates how organizations
can achieve significant cost optimization, drastically reduce technical debt, and accelerate digital
transformation without compromising on either compliance or performance. The key contributions of
this work are three-fold: (i) the introduction of a unified reference architecture for Boomi and SAP BTP
integration across multi-cloud environments; (ii) a practical evaluation of integration strategies for
common enterprise workflows, such as Opportunity-to-Order (O20), ERP-to-CRM synchronization,
and B2B partner onboarding; and (iii) forward-looking insights into emerging directions, including Al-
driven integration, federated observability, and zero-trust security enforcement in multi-cloud
pipelines. By conclusively demonstrating that vendor-agnostic integration is both technically feasible
and strategically advantageous, this paper provides a clear, actionable roadmap for enterprises
committed to building resilience and agility within their complex digital ecosystems.

KEYWORDS: Vendor-Agnostic Integration, Boomi, SAP BTP, AWS, GCP, Oracle Cloud, Microsoft
Azure, Multi-Cloud Integration, Enterprise Integration, Zero-Trust Security

1. Introduction Cloud Infrastructure (OCI) for specialized, mission-critical
enterprise workloads. While this diversification enhances

The adoption of a multi-cloud strategy has evolved cost optimization, innovation, and operational resilience,

it simultaneously introduces significant complexity in
integrating systems across heterogeneous environments.
This complexity is further compounded by the need for
enterprises to modernize their integration layers, shifting

away from monolithic middleware architectures toward

from a tactical choice to a strategic imperative in today’s
enterprise landscape. Organizations are deliberately
leveraging the differentiated strengths of major cloud
providers Amazon Web Services (AWS) for elastic
compute and storage, Google Cloud Platform (GCP) for
advanced artificial intelligence and analytics, and Oracle
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agile, cloud-native platforms such as Boomi and the SAP
Business Technology Platform (BTP).

Traditional integration approaches, which rely on
vendor-proprietary middleware, are not designed to
perform effectively within distributed, multi-cloud
ecosystems. These legacy frameworks inevitably lead to
vendor lock-in, restrict scalability, and inhibit innovation.
More critically, they fail to address contemporary
enterprise  requirements for  zero-trust
compliance-driven data protection, and
analytics. Consequently, for organizations undergoing
digital transformation whether prompted by mergers,
divestitures, or evolving regulatory mandates the need for
integration solutions that are both vendor-agnostic and
cloud-portable has become urgent and unavoidable.

security,
real-time

This research is motivated by the growing necessity to
design
integration flows that seamlessly span multiple clouds
without dependency on a single provider. By focusing on
Boomi and SAP BTP Integration Suite as the foundational

resilient, interoperable, and future-proof

platforms, this paper investigates how enterprises can
architect workflows that synchronize essential business
systems including ERP, CRM, CPQ, and B2B platforms
across AWS, GCP, and OCI. The study places particular
emphasis on high-impact uses cases such as the
Opportunity-to-Order (020) workflow, ERP-to-CRM
synchronization, and partner onboarding within digital
supply chains, where performance, compliance, and
governance are mission-critical factors.

The primary objectives of this study are threefold. First,
it proposes
demonstrates how Boomi and SAP BTP can be effectively
utilized in tandem across multi-cloud environments.

a unified reference architecture that

Second, it evaluates integration patterns and governance
models that support interoperability, scalability, and
resilience in hybrid and multi-cloud ecosystems. Third, it
analyzes emerging trends including Al-driven
automation, federated observability, and multi-agent
orchestration that are expected to define the next phase of
vendor-agnostic paper
contributes to both academia and industry by bridging the
gap between theoretical frameworks and practical, large-
scale transformation programs. The insights derived from
this research are particularly relevant for enterprise
architects, integration leaders, and decision-makers
seeking to align IT landscapes with business agility while

integration. Ultimately, this

strategically minimizing vendor dependency.
2. Background and Literature Review
2.1. Evolution of Enterprise Integration

Enterprise integration has traditionally depended on
monolithic middleware platforms such as Oracle SOA
Suite, IBM WebSphere, and TIBCO Business Works. These

platforms offered strong capabilities for process
orchestration, messaging, and enterprise service bus (ESB)
management but were primarily optimized for on-
premises environments. As enterprises increasingly
adopted cloud computing, legacy integration models
struggled to accommodate elastic scalability, distributed
architectures, and API-first design principles. In response,
the industry experienced a shift toward cloud-native
integration solutions, particularly Integration Platform-as-
a-Service (iPaaS) offerings such as Boomi, MuleSoft, and
SAP BTP Integration Suite. These modern platforms
abstract integration complexity by providing low-code
design tools, API lifecycle management, and pre-built
connectors for SaaS, ERP, and CRM systems. Gartner’s
Magic Quadrant for Enterprise iPaaS continues to
highlight this evolution, emphasizing speed, agility, and
interoperability as defining characteristics of successful
integration ecosystems [1].

2.2. Boomi as a Multi-Cloud Integration Enabler

Boomi, originally a Dell Technologies subsidiary until
2021, has emerged as a market leader in the iPaaS domain
by emphasizing simplicity, flexibility, and hybrid
deployment. Its unified platform consolidates API
management, application integration, B2B/EDI, and
Master Data Hub within a single environment. A
distinguishing feature of Boomi lies in its low-code, drag-
and-drop development environment [2], which
accelerates integration design and reduces reliance on
specialized developers. The platform supports true multi-
cloud deployment through runtime engines such as Atom,
Molecule, and Atmosphere, all of which can operate
seamlessly on AWS, GCP, Azure, OCI, or on-premises
infrastructure. Boomi’s preconfigured B2B/EDI templates
onboarding and supply chain
processes, making it especially valuable for industries

streamline partner

with complex ecosystems. Recent research underscores
Boomi’s capability to bridge leading SaaS platforms like
Salesforce and Workday with enterprise backbones such
as SAP S/4AHANA, reinforcing its strategic role in digital
transformation initiatives across healthcare, financial
services, and manufacturing sectors.

2.3. SAP Business Technology Platform (BTP) Integration
Suite

The SAP BTP Integration Suite serves as SAP’s cloud-
native solution for connecting SAP and non-SAP
applications across distributed enterprise environments
[3], [4], [5]. Its comprehensive APl management and
governance capabilities facilitate full lifecycle control,
including  policy throttling,
authentication, and monetization. The platform includes
over 2,000 pre-built integration packages supporting both
SAP modules such as S/4HANA, SuccessFactors, and
Ariba and third-party applications. A standout feature of

enforcement for
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SAP BTP is its Event Mesh, which enables event-driven
architectures using publish/subscribe models across
multi-cloud ecosystems. In addition, SAP BTP enforces
strong security and compliance standards, offering native
support for OAuth 2.0, SAML, and regulatory frameworks
including GDPR and HIPAA. Enterprises typically
employ SAP BTP for SAP-centric integrations while
complementing it with Boomi for broader, cross-platform
interoperability. As a result, Boomi and SAP BTP often
function as complementary platforms rather than
competitive  offerings, enabling cohesive hybrid
integration landscapes that balance vendor flexibility and
SAP alignment [6].

2.4. Multi-Cloud Ecosystem Ouverview

The broader cloud ecosystem significantly influences
enterprise integration strategies. Amazon Web Services
(AWS) remains the dominant public cloud provider,
offering elastic compute services through EC2, serverless
integration via Lambda, and orchestration through API
Gateway and Step Functions [7]. Its advanced networking
capabilities, such as VPC Peering and Private Link, form
the backbone of secure multi-cloud communications. In
contrast, Google Cloud Platform (GCP) differentiates itself
with
capabilities, particularly through services like Vertex Al
and TensorFlow, as well as API management via Apigee
X and analytics through Big Query [8], [9]. This makes
GCP especially well-suited for data-driven workflows that

artificial intelligence and machine learning

require real-time insights and predictive intelligence.
Cloud Infrastructure (OCI), meanwhile, is
optimized for high-performance enterprise workloads
and offers robust capabilities in database, ERP, and

Oracle

analytics services [10], [11]. OCI'’s focus on cost efficiency,
hybrid deployment, and data sovereignty makes it
particularly appealing to regulated sectors such as finance,
healthcare, and government. Together, these three
platforms represent the multi-cloud foundation upon
which modern integration strategies are architected [12],
[13].

2.5. Literature Gaps and Research Motivation

Despite the significant evolution of integration
technologies, notable gaps persist in the literature
concerning vendor-agnostic models operating across
hybrid and multi-cloud environments. First, vendor lock-
in remains a prevalent challenge, as most integration
frameworks are still designed around single-vendor
ecosystems. Second, comparative studies examining
integration patterns and performance across AWS, GCP,
and OCI remain limited, restricting insights into the
operational complexities of cross-cloud architectures.
Third, governance and security dimensions particularly
zero-trust enforcement, compliance automation, and

federated observability have not been adequately

explored in heterogeneous integration pipelines. Finally,
the integration of Al and automation into enterprise
integration frameworks remains an emerging area of
study, with insufficient research on Al-driven flow
optimization and autonomous monitoring. Addressing
these gaps, this paper proposes a vendor-agnostic
reference architecture and presents practical integration
scenarios that span SAP-centric, SaaS, and multi-cloud
ecosystems, thereby contributing both theoretical depth
and practical relevance to the evolving field of enterprise
integration.

3. Vendor-Agnostic Integration Framework

3.1. Design Principles

A vendor-agnostic integration framework must be
architected to address the challenges of interoperability,
scalability, security, and governance across heterogeneous
cloud environments. The first guiding principle,
Interoperability First, emphasizes the capability to deploy
and operate integration flows consistently across AWS,
GCP, and OCI without the need for significant
architectural redesign [14]. The second principle, API-
Centric Architecture, focuses on exposing business
processes such as Opportunity-to-Order (O20) or ERP-to-
CRM workflows through reusable APIs. This promotes
modularity and reusability while reducing tight coupling
between systems. The third principle, Hybrid Runtime
Flexibility, allows enterprises to leverage Boomi Atoms
and Molecules alongside SAP BTP Cloud Integration
runtimes in containerized or serverless deployment
modes that can run seamlessly across multiple clouds. The
fourth principle, Security by Design, ensures that the
framework incorporates zero-trust networking, mutual
TLS, and token-based authorization while integrating
with native identity management systems such as AWS
IAM, GCP IAM, and OCI Identity. The fifth principle,
Observability and Governance, requires that monitoring,
logging, and auditability be embedded directly into
integration runtimes, utilizing federated observability
tools such as Splunk, Datadog, or native cloud monitoring
services. Finally, Resilience and Portability are achieved
by decoupling integration logic from infrastructure
dependencies, thereby ensuring that workloads remain
portable and easily adaptable across different cloud
environments.

3.2. Framework Layers

The proposed vendor-agnostic integration framework
is composed of five interdependent layers, each serving a
specific function in enabling secure, scalable, and
interoperable integrations, as depicted in Figure 1. The
Connectivity Layer establishes secure communication
with SaaS, ERP, CRM, and partner systems by leveraging
Boomi’s pre-built connectors and SAP’s packaged
integration content. The Integration Runtime Layer

WwWw .jenrs.com

Journal of Engineering Research and Sciences, 4(12): 1-14, 2025 3


http://www.jenrs.com/

@3 JENRS

P. Venkiteela, A Vendor-Agnostic Multi-Cloud Integration

executes integration flows through Boomi Atoms and
Molecules or SAP BTP Cloud Integration runtimes. These
can be deployed on AWS Elastic Kubernetes Service (EKS)
and Lambda, Google Kubernetes Engine (GKE) and Cloud
Run, or Oracle Kubernetes Engine (OKE) and Functions,
providing full deployment flexibility. The API and Event
Layer serves as a unified interface for exposing integration
logic as APIs and event streams, utilizing technologies
such as Apigee X, SAP API Management, or Boomi API
Gateway. The Security and Governance Layer implements
cross-cloud identity management, encryption, and
compliance controls aligned with international standards,
including GDPR, HIPAA, and SOC 2. Finally, the
Observability Layer integrates performance monitoring
and operational metrics into federated dashboards that
connect with enterprise SIEM and SOAR systems,
providing comprehensive visibility and governance
across all integration environments.

The Figure 1 illustrates a wunified multi-cloud
integration architecture where AWS, GCP, and OCI are
connected through central orchestration engines powered
by Boomi and SAP BTP. Each cloud provides its own
connectivity layer such as APl Gateways, Functions,
Kubernetes services, and dedicated network links while
the integration runtime coordinates cross-cloud
workflows and data flows. An API/Event layer enables
communication using Event Bridge,
Pub/Sub, and identity federation, supported by a security
and governance layer with IAM, Guard Duty, and VPC
controls. At the top, observability tools like CloudWatch,
X-Ray,
monitoring through a unified dashboard. Overall, the
architecture provides a secure, governed, and centrally

multi-cloud

standardized

and Logging Analytics deliver end-to-end

managed framework for seamless

interoperability.
3.3. Integration Patterns

The framework supports three primary integration
patterns that enable enterprises to execute workflows
effectively
Orchestration Pattern provides centralized management
of complex workflows such as the Opportunity-to-Order
process ensuring complete visibility and end-to-end
traceability. The Choreography Pattern, in contrast,
enables decentralized and event-driven interactions,
where services communicate asynchronously. This model
is well-suited for dynamic use cases such as partner
onboarding and real-time supply chain updates. The
Hybrid Pattern combines elements of orchestration and
choreography, employing centralized control for mission-
processes
flexibility for agile and real-time operations. Together,
these patterns allow enterprises to tailor their integration
approach based on workload type, business priority, and
latency sensitivity.

across multi-cloud environments. The

critical while maintaining event-driven

Observability
& ’ :
aWs cloudWatch + X-Ray = @ Logging Analytics

Unifed Dashboard
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= __ Connectivity

Figure 1: Vendor-Agnostic Integration Framework
3.4. Benefits of Vendor-Agnostic Approach

The adoption of a vendor-agnostic
strategic benefits. By
abstracting integration logic from cloud-specific services,
enterprises can minimize vendor lock-in and gain the
flexibility to shift workloads among AWS, GCP, and OCI
based on cost optimization, performance, or strategic
considerations. This approach also enhances resilience, as
cross-cloud failover and disaster recovery can be
implemented seamlessly, mitigating risks associated with
provider outages. From a performance standpoint,
deploying integration logic closer to data sources reduces
latency and improves responsiveness. Furthermore, a
vendor-agnostic model strengthens strategic agility,
empowering enterprises to adopt best-of-breed services
from each cloud provider without being constrained by
proprietary limitations. In essence, the framework

integration

framework delivers several

provides a foundation for interoperability, scalability, and
continuous innovation enabling organizations to thrive in
the evolving multi-cloud ecosystem.

4. Architecture and Flow Design
4.1. High-Level Architecture

The proposed architecture positions Boomi and SAP
BTP Integration Suite as complementary platforms that
collaboratively orchestrate enterprise workflows across
heterogeneous multi-cloud environments, including
AWS, GCP, and OCI. At its foundation, the framework
designs integration flows as loosely coupled APIs and
event-driven services, deployed within cloud-native
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runtimes such as AWS Lambda, GCP Cloud Run, and OCI
Functions. Boomi runtime deployments utilize Atoms for
single-tenant and Molecules for clustered environments,
both of which can be containerized and executed on
Kubernetes clusters such as Amazon EKS, Google GKE, or
Oracle OKE. These deployments also support serverless
configurations, ensuring flexibility and portability across
different cloud infrastructures. SAP BTP runtimes, on the
other hand, extend pre-packaged SAP integration flows
through APIs and Event Mesh, enabling seamless
interoperability between SAP and non-SAP workloads.
Cross-cloud API exposure is achieved through API
gateways such as Apigee X, AWS API Gateway, SAP API
Management, or Boomi API
consistent, secure access and unified governance across all

Gateway, ensuring

integration endpoints [15], [16] .

This figure 2 represents an end-to-end multi-cloud
integration landscape where Boomi and SAP BTP act as
central orchestration engines connecting partner systems,
ERP, CRM, and CPQ platforms across AWS, GCP, and
OCI. Partner systems integrate through B2B gateways into
Boomi, which coordinates flows with SAP BTP under a
unified security and governance layer. Each cloud hosts
key business systems SAP S/4AHANA on AWS, Salesforce
CRM on GCP, and the CPQ system on OCI exposed
through their respective API Gateways, serverless
functions, and Kubernetes environments. Observability
and monitoring link all workloads back to the central
platforms, while a shared Data & API Catalog ensures
consistent discovery and management across the
ecosystem. Overall, it illustrates a secure, governed, and
centrally managed enabling
interoperability between enterprise applications deployed
across multiple clouds.

architecture seamless

4.2. Flow Design for Key Enterprise Use Cases

4.2.1.  Opportunity-to-Order (O20) Workflow

The Opportunity-to-Order process typically spans
multiple enterprise systems, including Salesforce CPQ,
SAP S/4AHANA, and external partner portals. In this
workflow, Boomi manages the synchronization between
Salesforce and SAP using pre-built CPQ connectors
enhanced with custom logic for pricing and quotation
handling. SAP BTP orchestrates downstream processes
within SAP S/4HANA modules such as Sales and
Distribution (SD) and Materials Management (MM) while
also enabling real-time updates to fulfillment systems
hosted on OCI. AWS Lambda supports elastic scaling for
order enrichment tasks, and GCP BigQuery provides
analytics capabilities by aggregating sales pipeline data
for business insights [17].

4.2.2.  ERP-to-CRM Synchronization

For seamless synchronization between ERP (SAP
S/AHANA) and CRM (Salesforce, Dynamics 365) systems,
real-time bidirectional data flow is crucial. Boomi’s low-
code connectors facilitate data extraction and
transformation between SAP IDocs and Salesforce objects,
accuracy. SAP BTP
complements these integrations through its Event Mesh,
broadcasting updates to multiple subscribers such as
analytics platforms on GCP or dashboards hosted on
AWS. Security is enforced through OAuth 2.0 and mutual
TLS (mTLS), while runtime credentials are managed via
native identity services such as AWS IAM, GCP IAM, and
OCI Identity Federation, maintaining secure and
authenticated interactions across all environments.

ensuring consistency and

Security & Governance

Boomi
Integration
Platform

_______

| Partner Systems

______

Oservability & Monitoring

Central Orcheteration,
Flows

SAP BTP
(Business Technology [ el NG o
Platform i) Access

}

AWS oc1
SAP S4HNA (ERP) Salesforce (CRM) CPQ System
OF D AWS API Gateway @ GCP Cloud Run / Functions O= OCI APl Gateway
o=3 Lamda / Kuberrates B API Gateway ‘o — OPI Functions

Eo— | B J

| Data & API Catalog '1

Figure 2: High-Level Architecture for Vendor-Agnostic Integration Flows
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4.2.3.  B2B Partner Onboarding

In large-scale supply chains, partner onboarding such
as for distributors like Ingram Micro or Arrow requires
robust automation and secure transaction processing.
Boomi’s B2B/EDI module manages partner-specific
transaction mappings and supports data exchange
through AS2 and SFTP protocols. SAP BTP validates
partner data against SAP S/4HANA business rules and
integrates it with procurement and supply chain systems
for seamless transaction management. OCI provides
resilient storage for archival and long-term retention of
B2B transactions, while GCP Pub/Sub facilitates real-time
event-driven notifications, ensuring synchronized
communication across distributed partner ecosystems.

This Figure 3 shows an interconnected enterprise
landscape where Salesforce (CRM) feeds data into Boomi,
which orchestrates integrations toward SAP BTP and
ultimately SAP S/4AHANA ERP. From SAP S/4HANA,
operational data flows into analytics platforms across
AWS and GCP for data lake and business intelligence
processing. In parallel, Boomi also supports B2B
integrations with external partner systems through
partner B2B gateways hosted on Oracle Cloud
Infrastructure  (OCI). Overall, the architecture
demonstrates seamless CRM-to-ERP integration, multi-
cloud partner
connectivity through a unified integration platform.

analytics distribution, and secure

4.3. Integration Flow Patterns

The framework supports multiple integration flow
patterns to address diverse enterprise scenarios and
performance requirements. Synchronous API flows
enable real-time interactions such as retrieving order
status from SAP S/4HANA via an API gateway ensuring
immediate applications.
Asynchronous event flows leverage message queues and
decoupled,
communication between services, ideal for event-driven

responses for user-facing

event meshes to enable scalable

use cases. Batch processing flows are optimized for large-

Boomi
Integration
Platform

OCI (Oracle Cloud Infsrstucture

scale data synchronization and historical data migration,
where processing latency is less critical. Finally, hybrid
flows combine the best of both worlds real-time API
interactions for critical requests and asynchronous
updates for non-time-sensitive processes, such as real-
time order creation followed by deferred fulfillment
updates.

4.4. Comparative Role of Boomi vs. SAP BTP in Flow Design

Boomi and SAP BTP play distinct yet complementary
roles in enterprise integration architecture. Boomi excels
in broad connectivity, offering over 2,000 connectors that
span SaaS, ERP, CRM, and legacy applications, whereas
SAP BTP provides deeply optimized pre-built integration
packages specifically designed for SAP applications such
as S/4AHANA, SuccessFactors, and Ariba. From a
development perspective, Boomi’s low-code, drag-and-
drop interface enables rapid prototyping and accelerates
integration delivery, while SAP BTP delivers sophisticated
process orchestration capabilities tailored for SAP-centric
environments.

Boomi and SAP BTP play distinct yet complementary roles
in enterprise integration flows as shown in the Table 1.

5. Security and Compliance Across Clouds
5.1. Importance of Security in Multi-Cloud Integration

In today’s enterprise ecosystem, APIs and integration
flows represent one of the most critical attack surfaces,
frequently targeted by malicious actors.
indicates that more than 40% of data breaches stem from
compromised APIs or integration points. In a vendor-

Research

agnostic, multi-cloud environment, this risk becomes even
more pronounced because integration traffic often spans
multiple clouds, networks, and identity domains. To
effectively mitigate these risks, a secure integration
framework must embed zero-trust principles, regulatory
compliance, and end-to-end encryption directly into its
design treating security as a foundational architectural
element rather than a secondary consideration.

SAP BTP
(Business
Technology Platform)

SAP S/4HANA
(ERP)

1
I [ \

,,,,,,,,,,,,,,,,,,,,, IR A LRSS e W N AWS GCP ‘
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Figure 3: End-to-End O20 Flow with Boomi and SAP BTP Across Multi-Cloud
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Table 1: Boomi and SAP BTP Strengths

Dimension Boomi Strengths | SAP BTP
Strengths
Connectivity | 2,000+ connectors | Pre-built  SAP
for SaaS, ERP, | integration
CRM, legacy apps | packages for
S/AHANA,
SuccessFactors,
Ariba
Flow Low-code, drag- | Deep SAP
Development | and-drop interface | process
for rapid | orchestration
prototyping with event-
driven
integration
Deployment | Atoms/Molecules | Tight SAP
Flexibility can run on AWS, | ecosystem
GCP, OCL, or on- | integration,
premises optimized  for
SAP workloads
B2B/EDI Native support for | Limited;
AS2, X12, | typically
EDIFACT, and | extends via
partner Boomi or third-
onboarding party connectors
templates
API Lightweight Enterprise-
Management | gateway for | grade API
publishing APIs management
with
monetization,
throttling, and
governance
Event-Driven | Integrates  with
cloud-native
messaging  (5QS,
Pub/Sub, OCI
Streaming)

This Figure 4 illustrates a secure, identity-driven multi-
cloud integration model where centralized identity
providers such as Okta, Azure AD, and AWSIAM Identity
Center enforce unified identity federation and access
governance. Using OAuth 2.0 and mTLS, authorized data
flows move between Boomi Integration Runtime, SAP
BTP, and backend API gateways or microservices. From
SAP BTP, secure integrations extend across AWS, GCP,
and OCI using their respective cloud-native services API

Gateway, Lambda, Kubernetes/EKS on AWS; Apigee,
Cloud Functions, and GKE on GCP; and OCI API
Gateway, Functions, and OKE on OCIL Overall, the
architecture emphasizes end-to-end secure orchestration,
centralized identity control, and consistent authorization
across all clouds and integration platforms.

5.2. Zero-Trust Architecture (ZTA)

The zero-trust model operates on the principle that no
user, device, or network should be inherently trusted,
regardless of location or prior verification. Within
integration environments, zero trust translates into
identity-centric security controls, where every API call
and message exchange is both authenticated and
authorized using industry standards such as OAuth 2.0,
OpenID Connect, or JWT. Micro-segmentation ensures
that integration runtimes such as Boomi Atoms and SAP
Cloud Integration tenants are securely isolated within
private virtual networks (VPCs) across AWS, GCP, and
OCI. Mutual TLS (mTLS) is used to enforce bidirectional
authentication between Boomi runtimes [18], [19], SAP
BTP, and external APIs. Additionally, just-in-time access
mechanisms ensure that credentials and tokens are short-
lived and dynamically managed through services such as
AWSSTS, GCPIAM, and OCI Identity Federation, thereby
minimizing the risk of credential compromise [20].

5.3. Data Protection and Privacy

In regulated industries such as healthcare, finance, and
the public sector, data protection and privacy are
paramount in any integration strategy. All data must be
encrypted at rest using AES-256 and in transit using TLS
1.3 to maintain confidentiality and integrity. Cloud-native
key management services including AWS KMS, Google
Cloud KMS, and OCI Vault enable centralized control
over encryption key lifecycles. Furthermore, tokenization
and data masking techniques safeguard sensitive
information such as social security numbers, credit card
details, and patient identifiers during data exchange. Data
residency and sovereignty requirements are addressed
through intelligent workload placement, where OCI may
be chosen for jurisdictional control, AWS for global
scalability, and GCP for analytics and Al-driven insights.
This selective deployment strategy ensures that data
governance and regulatory obligations are met without

compromising performance or accessibility.

5.4. Regulatory Compliance Across Clouds

Because often
geographies, they must adhere to differing regional and
A vendor-
agnostic framework must harmonize these obligations.
For example, GDPR mandates rights such as data access

and the right to be forgotten, which can be implemented

integration flows span multiple

sector-specific compliance requirements.

through centralized API governance. HIPAA compliance
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Figure 4: Zero-Trust Security Model for Vendor-Agnostic Integration

for U.S. healthcare requires encryption of protected health
information, robust access logging, and detailed audit
trails within Boomi and SAP BTP flows. In the financial
sector, PCI DSS mandates tokenization of payment data
and stringent logging of transaction flows. Government
and defense use cases require compliance with FedRAMP
and SOC 2 standards, ensuring that Boomi runtimes and
SAP BTP tenants align with federal security baselines.
Both Boomi and SAP BTP offer pre-certified compliance
templates, while AWS, GCP, and OCI provide cloud-
native attestations such as ISO 27001 and SOC 2 Type II,
enabling enterprises to inherit compliance assurances
from their underlying infrastructure

5.5. Governance and Auditability

Strong governance mechanisms are essential for ensuring
that security and compliance policies are not only
enforced but also continuously monitored. Centralized
API governance frameworks establish consistent policy
controls for rate limiting, throttling, and SLA enforcement
across multiple clouds. Federated observability powered
by tools such as Splunk, Datadog, AWS CloudWatch,
GCP Operations, or OCI Monitoring provides unified,
real-time visibility into compliance posture and
operational health. Detailed audit trails record and time-
stamp every integration transaction, supporting
traceability for internal and external audits. Additionally,
adopting policy-as-code principles enables organizations
to codify security and compliance standards within
(IaC)

consistent implementation and reducing manual errors

Infrastructure-as-Code templates, ensuring

across distributed environments.

6. Performance, Scalability, and Observability
6.1. Importance of Performance in Multi-Cloud Integration

Enterprises require integration flows to deliver low
latency, high throughput, and predictable reliability. For
critical workflows such as Opportunity-to-Order (O20) or
ERP-to-CRM synchronization, even minor delays can
result in revenue loss, compliance violations, or negative
customer experiences. In a vendor-agnostic, multi-cloud
environment, performance optimization becomes more
complex, requiring careful tuning of network paths,
runtime deployments, and workload distribution
strategies [21].

This Figure 5 shows how Boomi Molecules achieve
horizontal scaling by distributing workloads across
multiple cloud platforms AWS, GCP and OCI. Each cloud
provides both serverless and Kubernetes-based execution
environments, such as AWS Lambda and EKS, GCP Cloud
Functions and GKE, and OCI Functions and OKE. By
leveraging these cloud-native scaling mechanisms, Boomi
services can run in a geo-distributed and highly available
architecture, resilient

continuity across regions and cloud providers.

ensuring performance and

6.2. Scalability Models

Multi-cloud integrations must be
dynamically scaling to accommodate fluctuating business

demands.

capable of

Four key scalability models are commonly adopted.
Horizontal scaling involves scaling Boomi Molecules and
SAP BTP tenants across Kubernetes clusters such as
Amazon EKS, Google GKE, Azure GKE or Oracle OKE to
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Figure 5: Scalability Model for Vendor-Agnostic Integration

handle increased transaction volumes. Vertical scaling
supports resource-intensive processes such as large EDI
file transformations by provisioning higher-capacity
instances in OCI Compute or AWS EC2. Elastic scaling
leverages serverless compute, including AWS Lambda,
GCP Cloud Functions, and OCI Functions, to
automatically adjust workloads in response to traffic
spikes, thereby reducing costs for bursty processes.
Finally, geo-distributed scaling reduces latency by
deploying runtimes closer to users or enterprise systems
for instance, running Boomi runtimes in AWS Virginia for
Salesforce workloads while deploying another runtime in
OCI Frankfurt for SAP S/4AHANA.

6.3. Performance Optimization Techniques

Ensuring optimal throughput and minimal latency
requires a set of complementary performance techniques.
Data caching improves response times by storing
frequently accessed reference data, such as product
catalogs and price lists, in caching solutions like AWS
ElastiCache, GCP Memory store, or OCI Redis. Payload
optimization reduces cross-cloud data transfer overhead
by performing transformations close to the data source for
example, running SAP BTP runtimes adjacent to SAP
S/AHANA workloads. Batch versus real-time tuning
differentiates between large-scale data migrations, which
are more efficient as batch processes, and transactional
updates, which benefit from event-driven streams for
Additionally, network
minimizes latency and jitter through private interconnects

responsiveness. acceleration

such as AWS Direct Connect, Google Cloud Interconnect,
and OCI Fast Connect.

6.4. Observability in Multi-Cloud Integration

Observability goes beyond monitoring,
enabling enterprises to predict failures, optimize flows,

simple

and ensure compliance across distributed environments.
A vendor-agnostic integration framework requires
federated observability that spans Boomi, SAP BTP, and
the underlying cloud providers. Core components include
metrics monitoring, where throughput, latency, and error
rates are tracked using AWS CloudWatch, GCP Cloud
Monitoring, and OCI Monitoring, unified within
centralized dashboards like Splunk or Datadog.
Distributed tracing powered by Open Telemetry enables
root-cause analysis across Boomi Atoms and SAP BTP
flows in multi-cloud environments. Log aggregation
consolidates integration and API logs into platforms such
as Splunk or ELK pipelines, ensuring holistic visibility.
Finally, Al-driven anomaly detection tools, such as GCP
Vertex Al and AWS Lookout, predict unusual traffic
patterns or potential integration failures before they
impact business operations.

The Figure 6 shows a unified observability architecture
where logs, metrics, and traces from Boomi integrations,
SAP BTP events, and multi-cloud telemetry from AWS,
GCP, Azure and OCI feed into a centralized observability
platform such as Elastic Stack, Grafana, or Splunk. By
aggregating these insights into a single pane of glass
dashboard, the system enables real-time monitoring,
cross-platform  visibility,
insights across all integration and cloud environments.

and Al-driven operational

6.5. Benchmarking Across Clouds

To validate scalability and reliability in a vendor-agnostic
model, enterprises must conduct performance
benchmarks across AWS, GCP, and OCI. Benchmarking
involves measuring latency, ensuring API response times
remain below 200 milliseconds for real-time ERP queries;
throughput, with Boomi Molecule clusters sustaining over
5,000 transactions per minute; elasticity, where serverless

WwWw .jenrs.com

Journal of Engineering Research and Sciences, 4(12): 1-14, 2025 9


http://www.jenrs.com/

@) JENRS

P. Venkiteela, A Vendor-Agnostic Multi-Cloud Integration

Federated Observibality Model

Unified Dashboard

Conssoldated Analytics and Vissulization
(Splunk, Datadog, ELK, Grafana)

Metrics | Metrics

Logs Traces
Metrics Federated Metrics
Logs Observa biality Traces

Hub

Metrics
Traces

Boomi Runtime

AWS GCP
AWS GCP Cloud
CloudWatch Monitoring

Traces
Traces

SAP BTP
Integration Suite

Azure (o]al]
Azure ocl
Monitor Monitoring

Figure 6: Federated Observability Model

runtimes seamlessly scale from 10 to 10,000 requests
without downtime; and error recovery, which ensures
automatic retries and failover within 30 seconds during
regional outages.

6.6. Benefits of Performance-Aware Vendor-Agnostic
Integration

Embedding scalability and observability into
integration design yields significant enterprise benefits.
High availability is achieved through seamless failover
between AWS, GCP, and OCI regions. Operational
efficiency improves as workloads are dynamically
optimized, reducing infrastructure costs. Predictive
reliability is enhanced through Al-driven observability,
which prevents outages before they occur. Finally,
agility is

workflows such as O20 remain resilient and responsive,

business maximized, as mission-critical

even during peak load conditions.

7. Case Studies and Comparative Analysis
7.1. Case Study 1: Opportunity-to-Order (O20) Migration

A global cybersecurity enterprise executed a large-
scale migration of its Opportunity-to-Order (O20)
workflows [18] from legacy Oracle SOA middleware to a
vendor-agnostic, multi-cloud architecture built on Boomi
and SAP BTP. The primary challenge was that legacy
latency, with
Salesforce CPQ-to-SAP order flows exceeding two
seconds, and lacked flexibility during merger and
acquisition-driven divestitures. The adopted solution
positioned Boomi as the primary integration engine for

middleware introduced significant

Salesforce CPQ to SAP S/4AHANA interactions, while SAP
BTP orchestrated downstream SAP modules. Runtime
scaling was distributed across AWS for Salesforce
workloads, GCP for analytics, and OCI for SAP. The
migration achieved an outcome where API response times
were reduced to under 250 milliseconds, elastic scaling
absorbed seasonal spikes such as fiscal year-end activity,
and compliance was maintained for both GDPR and SOX
audit requirements.

7.2. Case Study 2: ERP-to-CRM Real-Time Synchronization

A healthcare real-time
synchronization of patient and billing data between SAP
S/4AHANA as the ERP backbone and Salesforce Health
Cloud as the CRM system. Data silos in the legacy model
created inconsistencies that not only jeopardized HIPAA

compliance but also impaired billing accuracy. The

provider  required

solution involved Boomi
mappings between SAP IDocs and Salesforce objects,
while SAP BTP’s Event Mesh broadcasted updates to
downstream analytics hosted in GCP. The result was a

dramatic reduction in synchronization latency, decreasing

managing  bidirectional

from several hours to less than one minute, thereby
ensuring accurate real-time updates and full compliance
with HIPAA logging and auditability requirements.

7.3. Case Study 3: B2B Partner Onboarding in Supply Chain

A high-tech manufacturer faced challenges in
onboarding new global distribution partners such as
Ingram Micro, Arrow, and Carahsoft. Traditional
onboarding with EDI/X12 transaction support required
weeks of custom development, delaying supply chain
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responsiveness. The solution utilized Boomi’s B2B/EDI
accelerators, which streamlined document mapping and
provided reusable partner onboarding templates. SAP
BTP validated purchase orders against SAP S/4HANA
business rules, while GCP Pub/Sub handled real-time
partner notifications and OCI Object Storage provided
resilient archiving. The outcome was a 70% reduction in
onboarding time, a doubling of transaction throughput,
and significant improvements in supply chain visibility
through unified dashboards.

The Figure 7 depicts an end-to-end integration flow
where partner systems send data through the Boomi
Integration Platform, which acts as both an EDI and API
gateway. Boomi routes and processes the data into SAP
BTP for orchestration before it reaches the SAP S/AHANA
ERP system. Along the way, GCP Cloud Notifications can
be triggered based on integration events, and once
processed in S/AHANA, archival data is securely stored in
OCI Object Storage. Overall, the architecture demonstrates
a streamlined multi-cloud integration pipeline with event
notifications and cloud-based archival support.

7.4. Comparative Cloud Capabilities for Integration

To further contextualize these case studies, a
comparative analysis of AWS, GCP, and OCI highlights

Boomi
Integration
Platform
(EDI/API
Gateway)

each provider’s strengths in vendor-agnostic integration
as shown table 2 below.

8. Challenges and Lessons Learned

While vendor-agnostic integration offers crucial
flexibility and portability, its implementation introduces
significant architectural and operational complexity. A
key challenge is the integration complexity itself;
designing flows across Boomi, SAP BTP, and three distinct
cloud environments (AWS, GCP, OCI) requires deep,
fragmented expertise across diverse runtimes and APIs.
This complexity is amplified by the inherent conflict
between pure vendor neutrality and the benefits of deep
cloud-native optimization were using a provider's native
services (like AWS Step Functions) might offer better
performance than a neutral, cross-provider component. To
counter these issues, enterprises must establish a
centralized Integration Competency Center (ICC) to
enforce standards and adopt a hybrid strategy that
selectively leverages cloud-native services for mission-
critical scenarios while maintaining neutrality for general
portability.

SAP BTP
(Business
Technology
Platform

OClI
(Object Storage
Archive

Figure 7: B2B Onboarding Flow Across Clouds

Table 2: Cloud Capability Dimensions

Capability AWS GCP odc1

Dimension

Strength Elastic compute, serverless | AI/ML (Vertex Al), API | Enterprise ERP workloads, cost-
(Lambda), mature security | Management (Apigee X), | effective high-performance
(IAM, PrivateLink) BigQuery [22], [23] compute

Networking VPC Peering, Direct | Cloud Interconnect, Private | Fast  Connect, low-latency
Connect Service Connect interconnects

Serverless/Runtime | Lambda, ECS, EKS for | Cloud Run, GKE, Functions | Functions, OKE for SAP
Boomi runtimes for event-driven workloads

Data/Analytics Redshift, Kinesis BigQuery, Pub/Sub, Looker | Autonomous Database, Data

Flow

Compliance FedRAMP, HIPAA,SOC?2, | GDPR, HIPAA, ISO 27001, | GDPR, SOX, PCI DSS, data

Certifications PCI DSS Al ethics frameworks sovereignty focus

Best-Fit Use Cases | Real-time ERP-CRM sync, | Analytics-driven workflows, | SAP-heavy workloads, B2B/EDI
scalable O20 flows partner notifications flows, regulated industries
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Operational execution in this model also presents
obstacles related to latency and governance. Cross-cloud
traffic, even with dedicated interconnects, introduces
performance overhead, particularly for synchronous ERP-
to-CRM workflows. Simultaneously, enforcing zero-trust
security and maintaining compliance audit trails across
diverse IJAM models and monitoring tools introduces
substantial governance overhead. To mitigate these
performance and security risks, teams must design
latency-aware architectures by geo-distributing runtimes
and prioritizing asynchronous flows, while standardizing
on policy-as-code (using tools like Terraform and OPA)
and implementing federated observability dashboards for
unified visibility. Finally, managing cost optimization
trade-offs and organizational change is paramount. The
risk of cost inefficiencies from duplicate resources must be
addressed by embedding FinOps practices and strategic
workload placement, while the shift to multi-cloud
operating models necessitates early investment in cross-
training, certifications, and governance playbooks to
ensure seamless adoption by integration teams. As shown
in the Table 3, key lesson learned.

Table 3: Key Challenges and Lessons Learned

Challenge Lesson Learned

Integration Establish a centralized

Complexity Integration Competency Center
(ICQ).

Vendor Neutrality | Hybrid  strategy:  balance

vs. Depth portability with cloud-native

optimizations.

Latency & Network | Deploy runtimes closer to data

Overheads sources; adopt async flows.
Security & | Standardize policy-as-code and
Governance federated observability.

Cost Optimization | Apply FinOps, auto-scaling,

and  workload  placement
strategies.
Organizational Provide training, certifications,
Change and governance playbooks.

9. Future Directions

The future of vendor-agnostic integration is poised to
be transformed by the convergence of artificial intelligence
(Al), automation, multi-agent orchestration, federated
observability, and quantum-inspired security. Emerging
platforms such as Boomi and SAP BTP are increasingly
embedding machine learning capabilities that can
recommend mappings, auto-generate integration flows,

and  predict  performance  bottlenecks.  These

advancements are paving the way for self-healing
integration pipelines that autonomously detect anomalies,
reroute traffic, and optimize performance without human
intervention. The evolution toward multi-agent
orchestration will further enable autonomous, agent-
driven runtimes where intelligent agents monitor health,
performance, and compliance, negotiate workloads across
AWS, GCP, Azure, and OCI, and dynamically collaborate
to form adaptive, context-aware integration pipelines.
Complementing this evolution, federated observability
augmented by Al insights will unify telemetry across
multi-cloud ecosystems, enabling predictive maintenance,
automated compliance monitoring, and proactive root-
As quantum computing advances,
enterprises will also adopt quantum-resistant encryption

cause analysis.

and Al-assisted key rotation to secure API payloads and
enhance resilience. In parallel, generative Al particularly
through large language models (LLMs) will revolutionize
the developer experience, enabling natural language-
driven integration design, Al copilots for real-time
recommendations, and automated documentation for
governance and audit readiness. Collectively, these
innovations will redefine integration as a self-optimizing
digital nervous system capable of autonomous adaptation,
regulatory alignment, and continuous improvement
ushering in an era of intelligent, future-proof architectures
that seamlessly operate across Al- and quantum-enabled
multi-cloud environments.

This Figure 8 illustrates an intelligent, self-optimizing
multi-cloud integration model where Al agents within
Boomi Integration Runtime and SAP BTP autonomously
orchestrate workloads across AWS, GCP, Azure, and OCI.
These AI agents perform autonomous negotiation,
adaptive routing, and continuous monitoring to decide
the best cloud environment such as AWS EKS/Lambda,
GCP GKE/Cloud Functions, or OCI OKE/Functions for
executing integration tasks. Through real-time feedback
loops, the system dynamically balances workloads,
improves performance, and optimizes resource utilization
across clouds.

10. Conclusion

The adoption of multi-cloud strategies has

fundamentally  redefined
compelling organizations to move away from vendor-
proprietary middleware toward vendor-agnostic, cloud-
portable frameworks. This paper has successfully
demonstrated how the synergistic deployment of Boomi
and SAP BTP Integration Suite across AWS, GCP, and OCI
can deliver the scalable, secure, and interoperable flows
necessary for modern digital transformation. The
proposed architectural framework, detailed across five
layers
API/Event Management, Security and Governance, and
Observability provides a practical blueprint for navigating

enterprise  integration,

critical Connectivity, Integration Runtime,
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Figure 8: Future-State Multi-Agent Orchestration

heterogeneous multi-cloud environments. Through
practical design examples such as the Opportunity-to-
Order (020) workflow, ERP-to-CRM synchronization,
and B2B partner onboarding, we validated that vendor
neutrality is both technically feasible and strategically
advantageous.  Key include  the
development of a unified reference architecture that
abstracts integration logic from underlying cloud
dependencies, and the identification of practical
integration patterns orchestration, choreography, and

hybrid approaches that balance centralized control with

contributions

operational agility. Furthermore, the research provided a
comprehensive view of security, compliance, and zero-
trust enforcement strategies for multi-cloud integrations,
supported by a comparative analysis of AWS, GCP, and
OCI capabilities, and emphasized the value of federated
monitoring for performance and observability. While the
study acknowledged challenges related to architectural
complexity, governance overhead, and cost optimization
trade-offs, it suggested mitigation through centralized
governance, policy-as-code, FInOps, and proactive change
management. Looking forward, the future of enterprise
integration will be shaped by innovations in Al-driven
automation, multi-agent orchestration, and quantum-
inspired security, transforming integration into a self-
optimizing and intelligent ecosystem. Ultimately, this
paper positions vendor-agnostic integration not merely as
a technical approach, but as a strategic enabler of
enterprise resilience and agility in a complex multi-cloud
era.
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ABSTRACT: To study the behavior of metal oxide surge arresters at short-circuit current, this paper
presents an experimental study on four pieces of 36 kV, 10 karms and 20 karms surge arresters at
different values of short-circuit current. Prior to the experiments, each surge arrester was electrically
pre-faulted with a power frequency overvoltage without any physical modification. The tests were
conducted under severe conditions at the rated short-circuit current, and the peak value of the first
half-cycle of the actual arrester current was at least V2 times the RMS value of the rated short-circuit
current. The arrester is one of the most effective means of limiting the lightning surge to the
transmission line insulator string and tower head air gap. When an arc occurs, the arrester acts quickly
to relieve the high pressure generated by combustion, preventing serious accidents and protecting
equipment and maintenance personnel. The purpose of this paper is to experimentally demonstrate
whether this type of arrester can prevent cracking and rupture of the enclosure caused by internal
arcing effects, thus preventing sudden breakage and dispersal of components outside a controlled area.
The arresters were able to extinguish open flames in less than 2 minutes after the test was completed.
The paper is important to both arrester designers and end users because it provides an analysis of their
short circuit behavior and related phenomena that cannot be adequately simulated.

KEYWORDS: Surge Arrester, Short-Circuit Current, Transmission Line, Metal Oxide.

1. Introduction The article presents experiments that demonstrate the
ability of arresters to withstand high currents for several
milliseconds, allowing this type of arrester to protect
installations against both atmospheric surges and

switching voltages.

Surge arresters are electrical devices designed to pro-
tect against electrical surges, which can be classified
according to their source: atmospheric surges. Surges of
atmospheric origin can be divided into three categories:
surges due to direct lightning strikes, surges due to static
loads and surges due to indirect lightning strikes; the
amplitude of these surges does not depend on the
operating voltage.

Electrical surge arresters are designed to limit at-
mospheric and switching surges in an electrical instal-
lation, protecting equipment in electrical substations such
as transformers, circuit breakers, disconnectors, current

transformers and voltage transformers. They are

Switching surges are due to changes in the network ., hected in parallel with the equipment to be protected

configuration and are most often caused by: open circuit
of a line, open circuit of a transformer, resonance phe-
nomena, interruption of a short circuit, arcing to ground.

The frequency of these voltages depends on the
inductance and capacitance of the circuit and is generally
much higher than the operating frequency of the net-
work. The amplitude of these surges will be reduced if the
neutral of the system or transformer is grounded.

and are installed at the entrance to the substation, between
phase and earth, and at points where the line changes its
characteristic impedance. Their purpose is to safely
dissipate surge energy to ground and ensure that the
voltage at the terminals remains low enough to protect
equipment insulation from the effects of surges.
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Most surge arresters used in modern high-voltage
systems are of the metal oxide (MO) varistor type.

Surge arresters are designed to keep the voltage below
the withstand voltage (the highest voltage that can be
applied to equipment without damaging it) and provide
an adequate safety margin. However, they cannot limit
transient overvoltages (TOV) of frequency or oscillating
power. Therefore, they must be designed to withstand
these transient overvoltages as well as the maximum
system operating voltage without damage.

The surge arrester is one of the most effective devices
for limiting lightning surges in transmission line insulator
strings and in the tower head air gap [1]-[4]. In the design
process of surge arresters, the performance against short-
circuit current is an essential technical parameter [5]-[9].

The selection of the rated and low short-circuit current
is very important for the arrester design [10]-[12].

If the arrester fails to interrupt the arc at the surge limit
or is subjected to an unacceptable operating load during
operation, the arc will cause severe vaporization and may
burn the silicone rubber coating and internal materials
[13]. At this point, the pressure relief valve should be able
to act quickly to relieve the high pressure gas from the arc
flash, prevent serious explosion accidents caused by the
continuous increase in surge arrester internal pressure,
and ensure the safety of nearby equipment and patrol
personnel.

In recent years, numerous research studies have fo-
cused on the placement of surge arresters on power
transmission lines. Various methods have been used to
evaluate the performance of surge arrester spacers [14]-
[18] and to analyze the use of different numbers of ar-
resters per tower [19].

2. Constructive Features

If the arrester fails to interrupt the arc due to overvolt-
age, or if it encounters fault conditions, the arc can cause
severe vaporization, burning the polymer rubber, break-
ing the porcelain, and igniting the internal materials [20].

When an arc occurs, the arrester quickly releases the
high pressure generated by combustion, helping to
prevent major accidents and ensure the safety of
equipment and personnel.

Figure 1 shows the wiring diagram of a typical arrester.

The magnetic blowout arrester used in the experi-
ments consists of a number of reignition spark gap Eas
connected in series with a sub-assembly consisting of the
L blowout coil and the non-linear resistor R1 and the main
non-linear resistor R2. Each module is shunted by a non-
linear resistor Rs, which ensures uniform voltage
distribution across the modules. If there is no overvoltage,
a current of the order of milliamperes flows through

resistor Rs. When an overvoltage occurs, it primes the Eas
spark gaps to the priming voltage.

Figure 1: Wiring diagram for surge arresters

The discharge current flows through the shunt resistor
Ri1 of coil B. No high value current can pass through it
because its impedance to the high frequency harmonics of
the discharge current is virtually infinite. This current also
flows through the main non-linear resistor Rz. The highest
voltage at the arrester terminals after priming is the
residual voltage. After the discharge electrical loads have
been discharged to earth, the spark gaps retain their
ionization and the associated current passes through the
arrester, limited by the Rz resistors to a few hundred amps.
The accompanying current, which is at a low frequency of
50 Hz, passes through the magnetic blowout coils L. These
cause magnetic induction in the area of the spark gaps,
resulting in Lorentz forces that push the arc into slotted
blowout chutes with cold walls. The intense cooling of the
arc increases its combustion/maintaining voltage and
eventually extinguishes it. The accompanying current is
determined by the source voltage and the impedance of
the short circuit loop, which includes the arc resistance in
the spark gaps and the main resistance R2[21].

The Type B surge arrester used in the experiments is
shown in Figure 2 and Figure 3 shows a Type A porcelain-
encapsulated MO surge arrester.

Figure 2 shows the general arrangement drawing of the
arrester used in the experiments. In this type of arrester,
there is no air gap in the MO.

The MO resistors, which form the active part, are
stacked in the centre of the arrester. They were made from
a mixture of zinc oxide (ZnO) and other metallic powders,
which were then pressed into cylindrical discs. The
diameter of each disc determines its ability to withstand
surges.

The diameter of the MO is 60 mm. Its main charac-
teristic is the voltage current non-linearity.
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The endurance capacity, which is determined by the
arrester rated voltage, together with the switching and
lightning protection levels, determines the height of the
MO resistors, which are mounted with aluminum tube
spacers to ensure uniform contact pressure distribution.
The MO resistance column is supported by multiple fi-
berglass-reinforced plastic support rods and mounting
plates. Axial pressure is maintained by a spring located at
the top of the arrester. The sealing device is integrated into
the cemented flanges at both ends of the arrester.

ﬁlllﬁll:
AL L L

Figure 2: General drawing of the arrester used in the tests

1
]
3

P

o

Figure 3: Drawing of the arrester used in the tests - MO detail (1 - metal
cover, 2 - MO resistors, 3 - porcelain housing)

The endurance capacity, which is determined by the
arrester rated voltage, together with the switching and
lightning protection levels, determines the height of the
MO resistors, which are mounted with aluminum tube
spacers to ensure uniform contact pressure distribution.
The MO resistance column is supported by multiple fi-
berglass-reinforced plastic support rods and mounting
plates. Axial pressure is maintained by a spring located at
the top of the arrester. The sealing device is integrated into
the cemented flanges at both ends of the arrester.

This type of arrester is not directly grounded, but is
connected in series with various monitoring devices. As
shown in Figure 2, the bottom flange of the arrester is
mounted with insulating feet and the ground connection

is made via a special grounding device. This component of
the arrester was eliminated during the short-circuit test.

When a transmission line conductor is subjected to a
short-circuit ground fault, the inductance L of the ground
wire can be determined according to [1]. The distance Ds
and the equivalent radius rm can be calculated according
to references [1] and [3].

_ Mo 1.8514 4h\nfugo
L= 271:[ Ds\2mf poo + 3 | @)
D, = \/1.414213r,dr 1 ()
1
Ty, = esr = 0.779r 3)

where: L - pole inductance under phase to earth fault
(H/m); wo- vacuum permeability (H/m); Ds - cable length;
o - earth conductivity (S/m); f frequency (Hz);
r- equivalent cable radius (m).

On the other hand, the electromotive induction force
generated by the short-circuit current through an
inductive connection on a line can be calculated as follows:

E =Y wM;lilst 4)

where: E- line inductance (V); © - apparent frequency
(rad/s); Mi - mutual inductance (H/km); Ii - line distance in
km; Is - sum of the frequency components of the short-
circuit current (A). Given the line voltage Us we can
calculate the short-circuit current Iscin (A):

_ug[_ 1

ku?:o L
Ise = o |Lg+I® UL + Lgl ®)

assuming that the structural coefficient of the line kris 0.25.

Lais the inductance of the circuit (H) and !/ is the total
length of the transmission line (km).

The next section analyzes the arrester's ability to re-
duce pressure in the event of a short circuit. Tests have
confirmed the arrester's effectiveness in protecting nearby
equipment. According to the source (5), the short-circuit
current varies according to the position of the arrester.
When it is close to the transformer, the short-circuit
current reaches a maximum of 20 kA and decreases to 12 kA
or 6 kA as the distance increases. After a certain distance,
the variations become insignificant and the current value
stabilizes in the range of 600 + 200 A.

3. Short Circuit Tests

Experiments were conducted on identical specimens,
as shown in Figure 2, to determine whether an arrester
malfunction could cause a violent burst of the enclosure
and whether the flames generated could be extinguished
in a controlled manner within a predetermined time
interval. The arrester was not equipped with additional
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devices to replace conventional overpressure

mechanisms.

According to [19], the arrester is classified as type "B",
made of polymeric material, with a solid construction and
without a closed gas volume. When MO (metal oxide)
resistors fail electrically, an internal arc is formed,
resulting in accelerated vaporization and eventual ignition
of the case and materials inside.

The purpose of this paper is to experimentally demon-
strate whether this type of arrester can control the crack-
ing and rupture process of the enclosure caused by inter-
nal arcing effects, thus preventing violent rupture and
dispersion of components beyond a welldefined area.

The circuit used for the experiments, shown in Figure 4,
was designed according to the applicable standards [19],
taking into account the most unfavorable installation
conditions of arresters in electrical substations.

Type A arresters have a volume of air greater than 50%
along the active side and are prepared for short-circuit
testing with a fusible wire connected between their ends.

Type B arresters, which have less than 50% air volume
around the active part, are prepared for short-circuit
testing by a pre-fault process. This process consists of
applying a voltage characteristic of each type of arrester.
The purpose of pre-fault is to provide sufficient electrical
conductivity to allow the short-circuit current to pass at a
voltage below the rated voltage [22].
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Figure 4: Circuit used for short-circuit testing

In the first stage, the arresters 36 kV, 10 kA were
subjected to an electrical pre-fault process by applying an

industrial-frequency surge voltage without any special
preparation.
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Figure 5: Pre-fault oscillographic recording

Figure 5 shows the oscilloscope reading for the first
arrester, the others are similar. The circuit was previously
calibrated to 18 Arms and 43 kVrms.

For example, the voltage applied until the arrester pre-
failed was 43 kVrwms for 47.27 seconds, after which a
current of 18.65 A rms. occurred and was maintained for
1.41 seconds [22].

For the short-circuit tests, the arrester was mounted as
shown in Figure 4, with the lower end of the arrester flush
with a 1.8 m wide square enclosure. The base used for the
experiment was made of insulating material and placed on
an insulating platform.

In the first test, conducted at rated short-circuit current,
the applied voltage was less than 77% of the arrester's
rated voltage. To meet the test conditions, the circuit pa-
rameters were adjusted so that the RMS value of the
symmetrical current component was at least equal to the
required current level. This resulted in the oscillographic
recording shown in Figure 6.

T
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Figure 6: Oscillographic recording of the rated short-circuit current test

Parameters obtained: applied voltage U=22.1 kVrums,;

peak current Ipea=50.2 kA; short-circuit current
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L= 20.9 kArwums; voltage drop Udarop=1.78 kVrms and arc
duration t=0.21 s.

It is observed that the peak value of the current in the
first half-cycle exceeds V2Igms. , these values being
difficult to obtain under normal conditions for polymer
type B arresters. In order to achieve these values in a high
power laboratory, a short-circuit generator with a capacity
of 2500 MVA was used, together with precise excitation
control.

To maintain optimal test conditions, the test was
performed less than 15 minutes after the pre-fault process
to prevent the arrester from cooling.

The experiment was considered successful otherwise it
should have been repeated, ensuring a sufficiently low
arrester impedance by applying a pre-fault current no
more than 2 seconds before applying the short-circuit
current. As part of the pre-fault process, it is permissible
to increase the short-circuit current up to 300 Arwms. In this
case,
magnitude of the current, must not exceed the following
value:

the maximum duration, depending on the

< Qrps (6)

In (6), tyr is the pre-fault time in seconds; Q. is the pre-
fault load = 60As; Iy is the pre-fault current in amps.

Further tests were conducted at reduced currents,
applying a voltage of less than 77% of the arrester's rated
voltage. The circuit parameters have been set so that the
RMS value of the symmetrical current component is at
least equal to the required current level.

According to [19], for arresters with a rated current of
10 kArwms and a rated short-circuit current of 20 kArwms, the
discharge current is 20, 10 or 5 kArms and the reduced
short-circuit currents have the following values:
12000+10%, 6000£10% and 600+£200 Arms.

Figure 7: Oscillographic recording of reduced short-circuit current test

Parameters obtained on another arrester, previously
pre-faulted, under the same conditions, on the
oscilloscope recording in Figure 7 for an assumed current
of 12000 Arwms: applied voltage U=19.8 kVrwms; peak
current Ipeak=26.7 kA; short-circuit current Isc =12.4 kArms;
voltage drop Udrop=1.83 kVrmsand arc duration t=0.22 s.
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Figure 8: Oscillographic recording of reduced short-circuit current test

Parameters obtained on another arrester, previously
under the
oscilloscope recording in Figure 8 for an assumed current
of 6000 Arms: applied voltage U=22.8 kVrwms; peak current
Ipeat=12.5 kA; short-circuit current Is= 6.1 kArwms; voltage
drop Udrop=1.48 kVrmsand arc duration t=0.22 s.

pre-faulted, same conditions, on the

| T

Figure 9: Oscillographic recording of the low short-circuit current test

Parameters obtained on another arrester, previously
under the on the
oscilloscope recording in Figure 9 for an assumed current
of 600 Arwms: applied voltage U=20.5 kVrms; peak current
Ipeak=1.02 kA, short-circuit current Is= 0.59 kArwms, 0.1
seconds after a short-circuit has occurred; voltage drop
Udrop=1.48 kVrMs, and arc duration t=1.04 s.

pre-faulted, same conditions,

In all the tests carried out, the arresters were installed
and the conductors laid under the most unfavorable op-
erating conditions. Figure 10 show photos taken before
and after tests.

WwWw .jenrs.com

Journal of Engineering Research and Sciences, 4(12): 15-24, 2025 19


http://www.jenrs.com/

@3 JENRS

C.E. Salceanu et al., Experimental study of the short-circuit

The earth conductor has been oriented in the opposite
direction to the incoming conductor (Figure 10), so the arc
will remain close to the arrester for the duration of the
short-circuit current, creating the most unfavorable
conditions in terms of fire risk.

Figure 10: Photos taken before and after tests

The research continued on a 36 kV, 20 kA to establish
the traceability of the experiments. The experiments were
performed in the same conditions as previous, according
to [19], presented in Figure 4.

The surge arrester was pre-failed in the same
conditions as the previous one. The experiments were
made at 24 kV applied voltage, measured between
phases. Experiments performed: rated Short-Circuit
current 20 kA, reduced short-circuit current 12 kA,
reduced short-circuit current 6 kA and short-circuit low
current 600 A.

After circuit calibration, the Rated current short-circuit
test on first sample was performed with structural failure
on upper part, all parts remained inside the enclosure.
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Figure 11: Oscillographic recording of the rated short-circuit current test

Parameters obtained in the oscilographic recording
presented in Figure 11 are: applied voltage U=24.1 kVrms;
peak current Ipea= 52.1 kA; short-circuit current I=20.9 kArwms;
voltage drop Udarop=2.83 kVrums, and arc duration t= 0.2 sec.

Next experiment is reduced current short-circuit test
on different sample, where structural failure on upper and
lower part, all parts remained inside the enclosure.

Parameters obtained in the oscilographic recording
presented in Figure 12 are: applied voltage U=24.1 kVrums; peak
current Ipea= 26.1 kA; short-circuit current Is= 12.1 kArwms;
voltage drop Udrp=3.42 kVrums, and arc duration t=0.2 sec.
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Figure 12: Oscillographic recording of reduced short-circuit current test

Next experiment is reduced current short-circuit test
on different sample, where structural failure on upper and
lower part, all parts remained inside the enclosure.
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Figure 13: Oscillographic recording of reduced short-circuit current test

Parameters obtained in the oscilographic recording
presented in Figure 13 are: applied voltage U=24,2 kVrus; peak
current Ipeak= 12.1 kArwms; short-circuit current Is= 6.1 kArwms;
voltage drop Udrop=4.1 kVrums, and arc duration t=0.2 sec.

Next experiment is low current short-circuit test new
sample. The open flames resulted after test self-extinguish
in less than 1 minute.

Parameters obtained in the oscilographic recording
presented in Figure 14 are: applied voltage U=24.1 kVrums;
peak current Ipeak= 1.3 kA ; short-circuit current Is= 0.6 kArms;
voltage drop Udrop= 0.9 kVrms, and arc duration t=1 sec.
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Considering the results obtained we can conclude that
this value of short-circuit current is the maximum value
that can be applied on this type of construction. Even tho
according to [21], the results are considered fulfilled, we
consider the parts that detached might endanger the
personal.
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Figure 14: Oscillographic recording of the low short-circuit current test

Photos from the experiments are presented in figures 15
to 17.
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Figure 15: Aspect of the surge arrester before and after short-circuit test
at20 kA
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Figure 16: Aspect of the surge arrester before and after short-circuit

Figure 17: Aspect of the surge arrester before and after short-circuit test
at 25 kA

4. Discussions and Conclusions

The electricity transmission system is essential to
ensure a continuous and stable flow of electricity to
consumers. However, conditions,
voltage fluctuations, or equipment failures can affect the
safety and reliability of this system. One of the most
effective technical solutions for protecting electrical

extreme weather

infrastructure and preventing major disturbances is surge
arresters, which can make a significant contribution to
improving the reliability of electrical grids. In this context,
it is important to understand their role and impact on the
protection of the transmission system.

Surge arresters are devices designed to protect elec-
trical equipment from surges that can occur for a variety
of reasons, such as lightning strikes, switching equipment
maneuvers, or network faults. They are installed in power
grids, both in substations and at various points in
distribution networks. Surge arresters work by absorbing
and dissipating the extra energy generated by a surge,
protecting transformers, cables and other equipment from
serious damage.

Lightning is a major cause of power surges in electrical
grids. These can cause sensitive equipment such as
transformers and circuit breakers to fail quickly. Surge
arresters are essential to protect these components from
the damaging effects of lightning by quickly absorbing
and dissipating the excess energy generated during a
lightning strike. This prevents serious malfunctions that
could lead to major power losses and prolonged power
outages.

Surges can be caused not only by natural phenomena,
but also by equipment switching maneuvers or network
faults. In these situations, surge arresters provide
immediate protection and limit the negative impact on
equipment. By intervening quickly when voltage exceeds
safe limits, these devices help ensure continuous system
operation without costly interruptions or failures.

Another significant benefit of using surge arresters is
the extended life of electrical equipment. Frequent and
irregular power surges can accelerate component wear

test at 12 kA and lead to premature component failure. By protecting
equipment from these voltages, surge arresters reduce the
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frequency of maintenance and parts replacement, helping
to optimize power system operating costs and minimize
downtime.

A reliable power transmission system must be able to
respond quickly to voltage fluctuations and prevent them
from spreading throughout the network. Surge arresters
play a critical role in maintaining the stability of power
systems by ensuring that local surges do not propagate
and cause cascading failures. This helps reduce the risk of
long-term power outages and protects the integrity of the
entire transmission system.

Surge arresters are essential tools for improving the
reliability of the power transmission system. By pro-
tecting electrical networks and equipment from danger-
ous surges, these devices help prevent failures, extend
equipment life and maintain the stability of electrical
networks. The effective integration of surge arresters into
the power infrastructure is therefore an important step
towards a safer, more reliable and more resilient power
transmission system.

Installing surge arresters increases the reliability of the
power transmission system, but requires additional
capital investment. To determine the most efficient and
cost-effective arrangement of surge arresters in a pro-
tected transmission line, it is suggested that the arresters
be placed according to the resistance characteristic of the
foot,
transmission line can be divided into several line sections.

transmission line tower so that the entire
Each line section consists of towers of similar resistance.
As proposed in [22], two different concepts are considered
for lightning protection:

(a) Install a different number of surge arresters on se-
lected phases of each tower;

(b) Install arresters on all selected tower phases.

By varying the number of towers to be equipped or the
number of phases to be equipped with surge arresters, the
threshold voltage is used to evaluate different surge
arrester installation configurations.

As mentioned in [20], towers are more likely to be built
on ridges to facilitate construction. Therefore, it is not very
effective to reduce the tower ground impedance at the top
of the ridge, where the tower foot impedance is generally
highest. Thus, it is very likely that the ground resistances
of towers on a ridge will be different from the resistances
at the base of adjacent towers. The resistance of the base
has a significant effect, both positive and negative, on the
insulator voltage in different situations. For towers with
high resistance at the base, it is recommended to install
surge arresters with better energy dissipation capacity. In
addition, if the resistance at the base of the towers varies,
the negative effect of the base resistance on lightning
performance cannot be neglected.

Therefore, if the towers have different resistances at the
base near the boundaries of each protected section, it is
recommended that surge arresters be installed on each
tower to prevent damage. Within each line section,
different arrester configurations are used to improve
performance. One configuration model is to install a
varying number of arresters on selected phases of all
towers. For this type of design, simulation results show
that the insulators on the upper phase are most susceptible
to flashover. Therefore, it is recommended that arresters
be installed on the upper phases. The effect of the number
of arresters per tower is studied in the literature using
three different configurations. A proper and more efficient
arrester configuration can be determined using the voltage
diagram and voltage threshold as a function of base
resistance.

The main difference between the surge behavior of
high-voltage and medium-voltage MO arresters is the
energy absorbed during the discharge period when sub-
jected to different types of surges. High-voltage MO
arresters are particularly stressed by switching surges,
which cause a large portion of the electrical load to pass
through the arrester during the entire surge period. On the
other hand, medium-voltage arresters are mostly stressed
by direct lightning strikes in the vicinity of the protected
object. For high-voltage MO surge arresters, there are
standard methods for determining the energy absorption
capacity based on estimating the line discharge energy.

The energy absorbed by the medium-voltage arrester
due to lightning discharges can be estimated by analytical
methods.

Experimental energy absorption capacities of arresters
for AC and impulse currents are presented in [22]. The
product “Ixt” was found to be constant, where I is the
current and ,t” is the pulse duration. Due to the increase
in residual voltage as the applied current increases, the
energy absorption capacity also increases, almost tripling
when large pulses of lightning impulse are applied instead
of small, long duration currents.

Tests show favourable behaviour after the occurrence
of a short-circuit current. The performance achieved was
largely determined by the non-linearity of the resistors
and the accuracy of spark gap ignition and quenching.
Since the resistances are non-linear, the conduction of
electric charges to earth in the form of impulse current is
faster, and in the final stage of electric charge transport, the
resistance reaches high values that favour the extinction of
the electric arc.

During the tests, there was no violent breakage, and no
part of the arrester, such as pieces of polymer materials or
MO resistors, was found outside the test enclosure.
Electrical arresters were able to extinguish naked flames
within 2 minutes of the end of each test

WwWw .jenrs.com

Journal of Engineering Research and Sciences, 4(12): 15-24, 2025 22


http://www.jenrs.com/

@3 JENRS

C.E. Salceanu et al., Experimental study of the short-circuit

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This research was funded by the Ministry of Research,

Innovation and Digitization of Romania as part of the
NUCLEU Program: PN 23 33 02 01.

References

(1

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(%1

(10]

G.S.Gu, S. Wan, Y. Wang, X. Chen, W. Cao and ]J. Wang, “Study
S. Gu, S. Wan, Y. Wang, X. Chen, W. Cao and J. Wang, "Study on
Short-Circuit Current Performance of +500kV DC Transmission
Line Surge Arrester," 2019 11th Asia-Pacific International Conference
on Lightning (APL), Hong Kong, China, 2019, pp. 1-5, doi:
10.1109/APL.2019.8816066.

Q. Xia and G. Karady, "An Efficient Surge Arrester Placement
Strategy to Improve the Lightning Performance of Long
Transmission Line," 2020 IEEE Power & Energy Society General
Meeting (PESGM), Montreal, QC, Canada, 2020, pp. 1-5, doi:
10.1109/PESGM41954.2020.9281691.

K. S. Shreyas and S. Reddy B., "Multistress Ageing Studies on
Polymeric Housed Surge Arresters," 2020 IEEE International
Conference on  Electronics, Computing and Communication
Technologies (CONECCT), Bangalore, India, 2020, pp. 1-4, doi:
10.1109/CONECCTS50063.2020.9198354.

B.S. Ibrahim, D. M. Soomro, S. Sundarajoo and M. N. Akhir Tahrir,
"Lightning and Surge Arrester Simulation in Power Distribution
System," 2023 IEEE 8th International Conference on Engineering
Technologies and Applied Sciences (ICETAS), Bahrain, Bahrain, 2023,
pp- 1-4, doi: 10.1109/ICETAS59148.2023.10346344.

R. Mori and A. Tatematsu, "Response of a Surge Arrester With a
Series Gap for 6.6-kV Distribution Lines to Steep-Front
Transients," in IEEE Transactions on Electromagnetic Compatibility,
vol. 64, mno. 6, pp. 2296-2300, Dec. 2022, doi:
10.1109/TEMC.2022.3202155.

C. Chuayin, M. Zinck, A. Kunakorn and N. Pattanadech, "Study
of Asymmetrical Leakage Currents of Metal Oxide Surge Arrester
due to Multiple Current Impulses," 2020 International Symposium
on Electrical Insulating Materials (ISEIM), Tokyo, Japan, 2020, pp.
305-308.

Trotsenko, Y. Brzhezitsky, V., & Mykhailenko, V. (2020).
Estimation of Discharge Current Sharing Between Surge
Arresters with Different Protective Characteristics Connected in
Parallel. 2020 IEEE 7th International Conference on Energy Smart
Systems (ESS), 73-78.

L. Wang, K. Wan, L. Chen, Q. Qian and J. Huang, "Analysis about
Potential Distrib S. Gu, S. Wan, Y. Wang, X. Chen, W. Cao and ]J.
Wang, "Study on Short-Circuit Current Performance of +500kV
DC Transmission Line Surge Arrester," 2019 11th Asia-Pacific
International Conference on Lightning (APL), Hong Kong, China,
2019, pp. 1-5, doi: 10.1109/APL.2019.8816066.

V. V. Waghmare, V. K. Yadav and L. M. Desai, "Optimization of
Grading Ring of Surge arrester by using FEM method, PSO & BAT
Algorithm," 2022 2nd  International ~Conference on Advance
Computing and Innovative Technologies in Engineering (ICACITE),
Greater Noida, India, 2022, Pp- 367-370, doi:
10.1109/ICACITE53722.2022.9823652.

M.Y. Ataka, L. L. Bacci, T. M. Lima, R. F. R. Pereira, E. C. M. Costa
and L. H. B. Liboni, "Lighting Protection of VSC-HVDC
Transmission Systems using ZnO Surge Arresters," 2020 IEEE

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

(22]

Canadian Conference on Electrical and Computer Engineering
(CCECE), London, ON, Canada, 2020, pp. 1-5, doi:
10.1109/CCECE47787.2020.9255785.

H. Fujita, K. Michishita, S. Yokoyama, K. Kanatani and S.
Matsuura, "Damage Threshold of Surge Arrester Depending on
Configuration of Power Distribution Line," 2021 35th International
Conference on Lightning Protection (ICLP) and XVI International
Symposium on Lightning Protection (SIPDA), Colombo, Sri Lanka,
2021, pp. 01-06, doi: 10.1109/ICLPandSIPD A54065.2021.9627402.

N. Abdullah, M. F. Ariffin, N. M. Hatta, M. F. Nozlan, A.
Mohamad and M. Osman, "Surge Arrester Monitoring
Implementation at 33kV Distribution Overhead Line in
Malaysia," 2023 12th Asia-Pacific International Conference on
Lightning (APL), Langkawi, Malaysia, 2023, pp. 1-3, doi:
10.1109/APL57308.2023.10181389.

A. Munir, Z. Abdul-Malek and R. N. Arshad, "Resistive Leakage
Current Based Condition Assessment of Zinc Oxide Surge
Arrester: A Review," 2021 IEEE International Conference on the
Properties and Applications of Dielectric Materials (ICPADM), Johor
Bahru, Malaysia, 2021, pp- 183-186, doi:
10.1109/ICPADM49635.2021.9493979.

J. Ndirangu, P. Kimemia, R. Ndolo, ]J. Nderu and G. Irungu,
"Appropriate Surge Arrester Lead Lengths for Improved
Distribution Transformer Protection — Kenyan Case Study," 2020
IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 2020, pp. 1-4, doi:
10.1109/PowerAfrica49420.2020.9219990.

P. Gupta, G. N. Reddy and S. Reddy B, "Multi-stress Aging
Studies on Polymeric Surge Arresters for HVDC
Transmission," 2021 IEEE 5th International Conference on Condition
Assessment Techniques in Electrical Systems (CATCON), Kozhikode,
India, 2021, pp- 176-180, doi:
10.1109/CATCON52335.2021.9670490.

J. P. P, C. Prabhakar, B. V. Nagachandra and G. Pandian, "Failure
Analysis of Metal Oxide Surge Arrester Blocks Based on
Repetitive Charge Transfer Rating Verification Test," 2022 12th
International Conference on Power, Energy and Electrical Engineering
(CPEEE), Shiga, Japan, 2022, pP- 22-26, doi:
10.1109/CPEEE54404.2022.9738705.

M. Moghbeli, S. Mehraee, S. Sen, Application of Surge Arrester in
Limiting Voltage Stress at Direct Current Breaker. Appl. Sci. 2024, 14,
8319. https://doi.org/10.3390/app14188319.

H. Zhou et al., "Electromagnetic Simulation and Characterization
of Network-type 10kV Surge Arresters," 2023 5th International
Conference on System Reliability and Safety Engineering (SRSE),
Beijing, China, 2023, PP- 513-519, doi:
10.1109/SRSE59585.2023.10336153.

IEC 60099-4:2014 Surge Arresters — Part 4: Metal-oxide Surge
Arresters Without Gaps for A.C. Systems.

M. S. Savic, "Estimation of the surge arrester outage rate caused
by lightning overvoltages," in IEEE Transactions on Power Delivery,
vol. 20, no. 1, pp. 116-122, Jan. 2005  doi:
10.1109/TPWRD.2004.835435.

E. C. Sakshaug, J. J. Burke and J. S. Kresge, "Metal oxide arresters
on distribution systems: fundamental considerations," in IEEE
Transactions on Power Delivery, vol. 4, no. 4, pp. 2076-2089, Oct.
1989, doi: 10.1109/61.35633.

C. -E. Salceanu, D. Iovan, M. Ionescu, D. -C. Ocoleanu and S.
Seitan, "Analysis on the Behaviour of 36 kV, 10 kA Pre-failed
Polymer Surge Arrester at Short-Circuit Current," 2024
International Conference on Applied and Theoretical Electricity
(ICATE), Craiova, Romania, 2024, pp. 1-6, doi:
10.1109/ICATE62934.2024.10749034.

WwWw .jenrs.com

Journal of Engineering Research and Sciences, 4(12): 15-24, 2025 23


http://www.jenrs.com/

@3 JENRS

C.E. Salceanu et al., Experimental study of the short-circuit

Copyright: This article is an open access article
distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-SA) license
(https://creativecommons.org/licenses/by-sa/4.0/).

» CRISTIAN - EUGENIU SALCEANU
obtained his Bachelor’s degree in Electrical
and Mechanical Engineering from the
University  of Faculty of
Engineering in Electro-Mechanics,
Environment and Industrial Informatics, in
2004. He completed his Master's degree in Quality
Management and Environmental Engineering at the same
faculty in 2006, and earned his PhD in Electrical
Engineering from the Doctoral School of the University of
Craiova in 2025. His doctoral research focused on the
design, construction, and testing of 24 and/or 36 kV, 25 kA
silver-free fuse-links. Ph.D. Salceanu has more than 19
years of experience in scientific research and testing at the
National Institute for Research-Development and Testing
in Electrical Engineering (ICMET Craiova), where he

=~

Craiova,

currently serves as Head of the High Power R&D
Laboratory and Test Responsible. He has contributed to
numerous scientific publications, research projects, and
patents in the field of electrical engineering, with his work
being recognized through several awards for excellence
and innovation.

DANIELA IOVAN received her
Bachelor's  degree in

Engineering from the University of

Electrical
Craiova, Electrical
Engineering, Romania, in 2007, and her
Master’s degree in Advanced Electrical
Engineering from the same university in 2009. She is
currently a Scientific Researcher (3rd Degree) at the
Research, Development and Testing National Institute for
Electrical Engineering — ICMET Craiova. Her research
interests include energy efficiency, power quality,

Faculty of

renewable energy integration, and electrical system
performance analysis. She has co-authored several
technical and scientific papers and participated in
numerous national and international research projects.

1 DANIEL-CONSTANTIN OCOLEANU
received his Bachelor’s and Master’s
degrees in Electrical Engineering from
the University of Craiova, Romania, in
2007 and 2009, respectively. He is
currently pursuing his Ph.D. at the same
university. Since 2009, he has been with the National
Institute for Research-Development and Testing in
Electrical Engineering (ICMET Craiova), where he serves
as Head of the PRAM - Maintenance Collective and
Scientific Researcher. His research focuses on power
systems testing, short-circuit current generation and

measurement, and improving the reliability of high-
power electrical installations.

WwWw .jenrs.com

Journal of Engineering Research and Sciences, 4(12): 15-24, 2025 24


http://www.jenrs.com/
https://creativecommons.org/licenses/by-sa/4.0/

@) JENRS

Received: 29 September 2025, Revised: 21 November 2025, Accepted: 23 November 2025, Online: 12 December 2025

DOI: https://doi.org/10.55708/js0412003

Model Uncertainty Quantification: A Post Hoc Calibration
Approach for Heart Disease Prediction

Peter Adebayo Odesola' ©, Adewale Alex Adegoke?®, Idris Babalola™
1 Southampton Solent University, Southampton, United Kingdom

2 Westminster Foundation for Democracy London, United Kingdom

3Department of Health and Social Care, London, United Kingdom

Email(s): peterodes27@gmail.com (P.A. Odesola), adegokeaad44@gmail.com (A.A. Adegoke)

*Corresponding author: Idris Babalola, Southampton, United Kingdom, eidreiz0l@gmail.com

ABSTRACT: We investigated whether post-hoc calibration improves the trustworthiness of heart-
disease risk predictions beyond discrimination metrics. Using a Kaggle heart-disease dataset (n =
1,025), we created a stratified 70/30 train-test split and evaluated six classifiers, Logistic Regression,
Support Vector Machine, k-Nearest Neighbors, Naive Bayes, Random Forest, and XGBoost.
Discrimination was quantified by stratified 5-fold cross-validation with thresholds chosen by Youden's
] inside the training folds. We assessed probability quality before and after Platt scaling, isotonic
regression, and temperature scaling using Brier score, Expected Calibration Error with equal-width
and equal-frequency binning, Log Loss, reliability diagrams with Wilson intervals, and Spiegelhalter’s
Z and p. Uncertainty was reported with bootstrap 95% confidence intervals, and calibrated versus
uncalibrated states were compared with paired permutation tests on fold-matched deltas.

Isotonic regression delivered the most consistent improvements in probability quality for Random
Forest, XGBoost, Logistic Regression, and Naive Bayes, lowering Brier, ECE, and Log Loss while
preserving AUC ROC in cross-validation. Support Vector Machine and k-Nearest Neighbors were best
left uncalibrated on these metrics. Temperature scaling altered discrimination and often increased Log
Loss in this structured dataset. Sensitivity analysis showed that equal-frequency ECE was
systematically smaller than equal-width ECE across model-calibration pairs, while preserving the
qualitative ranking of methods. Reliability diagrams built from out-of-fold predictions aligned with
the numeric metrics, and Spiegelhalter’s statistics moved toward values consistent with better absolute
calibration for the models that benefited from isotonic regression. The study provides a reproducible,
leakage-controlled workflow for evaluating and selecting calibration strategies in structured clinical
feature data.

KEYWORDS: Heart disease prediction, Machine learning, Probability calibration, Isotonic regression,
Platt scaling, Temperature scaling, Uncertainty quantification, Expected calibration error (ECE), Brier
score, Log loss, Spiegelhalter’s test, Reliability diagram, Post hoc calibration.

1. Introduction was responsible for an estimated 19.8 million deaths in
2022 [1]. However, early and accurate prediction plays a
1.1. Background C . .
significant role in the prevention of adverse results and
Heart disease continues to be the major leading  reduction in healthcare costs. Machine learning (ML)

cause of death globally. It was recorded that heart disease =~ models are increasingly adopted for diagnostic and
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prognostic tasks in cardiology due to their ability to
uncover complex patterns in large clinical datasets [2].

Early ML research on heart disease cohorts primarily
focused on classification accuracy, with studies routinely
reporting performance above 97% using supervised
classifiers [3]. These models have the capacity to learn
non-linear  relationships and  high-dimensional
interactions between contributing factors such as age,
cholesterol, blood pressure, and electrocardiogram
results. For example, algorithms such as Random Forest
and Gradient Boosting have demonstrated superior
subtle

cardiovascular abnormalities compared to traditional

performance to identify indicators  of
rule-based systems [4]. This makes them powerful

techniques for risk stratification and preventive care.

However, there could be possibility that the models
often provide high predictive performance, while
probabilistic outputs can be poorly calibrated. That is, the
confidence scores they assign do not always align with
actual probabilities of disease presence [5]. In high-stakes
domains such as healthcare system, well-calibrated
predictions are more important to guide the appropriate
treatment decisions and manage clinical risks efficiently.
Miscalibrated models may lead to overconfident or
underconfident decisions, ultimately compromising
patient safety [6]. This has prompted a growing interest
in uncertainty quantification and post hoc calibration
which

probabilities without retraining the original model [7].

methods, can adjust the model's output
The importance of these methods has increased in
response to an increasing demand for transparent and
trustworthy Al systems in clinical settings, particularly

with the rise of explainable Al initiatives [8].

Furthermore, recent research has proven that visual
tools such as reliability diagrams and calibration metrics
such as Expected Calibration Error (ECE), Brier score, and
log loss are important in evaluating how well a model is
calibrated [9]. While accuracy and AUROC (Area Under
the Receiver Operating Characteristic curve) remain
popular metrics for model evaluation, they are
insufficient for assessing how well a model estimates
uncertainty. These metrics provide both quantitative and
visual representations of uncertainty and prediction
quality, which are vital for gaining the confidence of

clinical stakeholders.
1.2. Motivation and Problem Statement

One of the major challenges faced by the medical
health sector is the inability to detect early stages of

problems related to the heart. When making decisions in
the clinical sector, uncalibrated predictions may be
misleading. For example, if a model predicts that a patient
has a 90% chance of developing heart disease, clinicians
must trust that this probability truly reflects clinical
reality, otherwise this could lead to incorrect decisions
and poor outcomes for the patient.

In many studies, calibration and uncertainty

quantification in medical AI systems are often
overlooked, leading to a gap between predictive
performance and clinical trust [6]. However, this paper
addresses that gap by evaluating the calibration of several

popular classifiers using post hoc techniques.
1.3. Scope and Contributions

This study aims to evaluate and compare uncertainty
estimation of heart disease prediction models. The
research is guided by the following questions:

1. How do post-hoc calibration methods (Platt scaling,
temperature scaling and isotonic regression) affect
the uncertainty, calibration quality, and prediction
confidence of machine learning models for heart
disease classification?

2. What are the baseline levels of calibration and
uncertainty (ECE, Brier score, log loss, sharpness,
Spiegelhalter’s Z-score) for heart disease prediction
before and after post-hoc calibration?

3. How does each model (e.g., Random Forest, XGBoost,
SVM, KNN and Naive Bayes) perform in terms of
probability calibration for heart disease before and
after applying post hoc calibration?

Below, we delineate the contributions of this work in
light of the research questions above. We conduct a
systematic, model-agnostic evaluation of post-hoc
calibration for heart-disease prediction, quantifying how
Platt (sigmoid) and isotonic mapping alter probability
quality without retraining the base models. Beyond
headline discrimination metrics, we emphasize clinically
relevant probability fidelity, calibration, sharpness, and
statistical goodness-of-fit. This study makes four (4)

contributions, summarized as follows:

1. A side-by-side pre/post analysis of six machine

learning classifiers using reliability diagrams plus
ECE,
sharpness to provide complementary views of

Brier, log loss, Spiegelhalter's Z/p, and

probability quality for heart disease prediction.
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2. Empirical demonstration that isotonic calibration
most consistently improves probability estimates,
whereas Platt and temperature scaling helps some
models but can worsen others.

3. Despite perfect test-set discrimination for some
model, reliability diagrams reveal overconfidence
pre-calibration, demonstrating why discrimination
alone is insufficient for clinical use.

4. Analysis of variance in predicted probabilities shows
calibration-induced smoothing and overconfidence
correction, clarifying confidence reliability trade-offs

relevant to clinical interpretation.
1.4. Related Works

1.4.1. Machine Learning in Heart Disease Prediction:
Calibration and Reliability Considerations

Machine learning (ML) techniques have been widely
applied to predict cardiovascular disease outcomes,
typically using patient risk factor data to classify the
presence or risk of heart disease. For example, in heart
disease prediction using supervised machine learning
algorithms: Performance analysis and comparison, [10]
evaluated several classifiers (KNN, decision tree, random
forest, etc.) on a Kaggle heart disease dataset. They
reported perfect performance with random forests
achieving 100% accuracy (along with 100% sensitivity and
specificity).
accuracy and did not include any probability calibration

However, their evaluation emphasized
or uncertainty quantification. Similarly, [11] evaluation of
Heart Disease Prediction Using Machine Learning
Methods with Elastic Net Feature Selection compared
logistic regression (LR), KNN, SVM, random forest (RF),
AdaBoost, network (ANN), and
multilayer perceptron on the Kaggle dataset used in this

artificial neural
study. They found RF to attain ~99% accuracy and
AdaBoost ~94% on the full feature set and observed SVM
performing best after SMOTE class-balancing and feature
selection. Like [10], this study focused on accuracy
improvements and other discrimination metrics, with no

model calibration applied.

Another work by [12], they also utilized the Kaggle
dataset we explored. They evaluated a wide range of
classifiers including RF, decision tree (DT), gradient
boosting (GBM), KNN, AdaBoost, LR, ANN, QDA, LDA,
SVM and reported extremely high accuracy for ensemble
methods. In fact, their RF model reached 100% training
accuracy (and ~99% under cross-validation). Despite
reporting precision, recall, F1-score, and ROC-AUC for

each model, this work too did not report any calibration
metrics or uncertainty estimates; the focus remained on
discrimination performance.

Beyond the popular Kaggle/UCI datasets, researchers
have explored ML on other heart disease cohorts. For
instance, [13] in A Machine Learning Model for Detection
of Coronary Artery Disease applied ML to the Z-Alizadeh
(303 patients
cardiovascular center). They employed six algorithms
(DT, deep neural network, LR, RF, SVM, and XGBoost) to
predict coronary artery disease (CAD). After Pearson-

Sani dataset from Tehran's Rajaei

correlation feature selection, the best results were
achieved by SVM and LR, each attaining 95.45% accuracy
with 95.91% sensitivity, 91.66% specificity, F1~0.969, and
AUROC =0.98. Notably, although this study achieved
excellent discrimination, it did not incorporate any post-
hoc probability calibration or uncertainty analysis, the
evaluation centered on accuracy and ROC curves alone.

In [14], the authors took a different approach by
leveraging larger, real-world data. In an interpretable
LightGBM model for predicting coronary heart disease:
Enhancing clinical decision-making with machine
learning, they trained a LightGBM model on a U.S. CDC
survey dataset (BRFSS 2015) and validated on two
external cohorts (the Framingham Heart Study and the Z-
Alizadeh Sani data). The LightGBM achieved about 90.6%
accuracy (AUROC ~81.1%) on the BRESS training set,
with slightly lower performance on Framingham (85%
accuracy, ~67% AUROC) and Z-Alizadeh (80% accuracy).
While [14] prioritized model interpretability (using SHAP
values) and reported standard metrics like accuracy,
precision, recall, and AUROC, they did not report any
calibration-specific metrics (e.g. no ECE, Brier score, or
reliability diagrams), nor did they apply Platt scaling or
isotonic regression in their pipeline. Several recent studies
have pushed accuracy to very high levels by combining
datasets or using advanced ensembles, yet still largely
ignore calibration. In [15], the authors proposed a hybrid
approach for predicting heart disease using machine
learning and an explainable AI method, where they
combined a private hospital dataset with a public one and
used feature selection plus ensemble methods. Their best
model (an XGBoost classifier on a selected feature subset
SE-2) achieved 97.57% accuracy with 96.61% sensitivity,
90.48% specificity, 95.00% precision, F1=92.68%, and 98%
AUROC. Despite this impressive performance, no
probability calibration was mentioned; the study’s
contributions focused on maximizing accuracy and
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explaining feature impacts (via SHAP) rather than
assessing prediction uncertainty.

Using a clinical and biometric dataset (n=571) with a
man-in-the-loop paradigm for assessing coronary artery
disease, [16] compared standard ML classifiers; best
accuracy reached =83% with expert input, but the work
emphasized explainability over probabilistic calibration.
To address the need for diverse and comprehensive
research, we conducted a lightweight systematic review

and surveyed a range of peer reviewed studies on ML for
heart disease prediction in the last 5-10 years with focus
on a minimum of 5,000 cohort patients built into the
experimental setup. Table 1 summarizes key studies,
including their data sources, ML approaches, and
whether model calibration was evaluated (and how).
Each study is cited with its year and reference number
(e.g., 2025 [17] means the study was published in 2025 and
is reference [17] in the reference list).

Table 1: Recent ML-based heart disease prediction studies (2017-2025) - Summary of data, methods, and calibration evaluation. (Calibration metrics:

HL = Hosmer-Lemeshow test; ECE = Expected Calibration Error; O/E = observed-to-expected ratio; Brier = Brier score.)

Year | Data (Population /| ML Approach & Key Results Calibration (Evaluation &
[Ref] | Dataset) Metrics)
2025 |Japanese Suita cohort | Risk models (LR, RF, SVM, XGB, LGBM) | Yes - Calibration curves and O/E
[17] (n=7,260; ~15-year follow- | for 10 year CHD; RF best (AUC ~0.73); | ratios; RF ~1:1 calibration.
up; ages 30-84). SHAP identified key factors.
2025 | NHANES (USA; ~37,000). | PSO ANN - particle swarm optimized | No - Calibration not reported.
[18] neural net; ~97% accuracy; surpassed LR
(~95.8%); feature selection + SMOTE.
2024 | Simulated big dataset + | AttGRU HMSI deep model; ~95.4% | No - Calibration not reported.
[19] UCL accuracy; emphasis on big data
processing and feature selection.
2023 | UK Biobank (n~473,000; 10 | AutoPrognosis AutoML; AUC =0.76; 10 [ Yes - Brier ~0.057 (good
[20] year follow up). key predictors discovered. calibration).
2023 China EHR (Ningbo; | XGBoost vs Cox; C index 0.792 vs 0.781. Yes - HL x2? =0.6, p=0.75 in men;
[21] n=215,744; 5 year follow non significant HL  (good
up). calibration).
2023 | Stanford ECG datasets; | SEER CNN using resting ECG; 5 yr CV | No - Calibration not reported.
[22] external validation at 2 | mortality AUC ~0.80 - 0.83; ASCVD AUC
hospitals. ~0.67; reclassified ~16% low risk to higher
risk with true events.
2022 | China hypertension cohort | Ensemble (avg RF/XGB/DNN); AUC [ No - Calibration not reported.
[23] (n=143,043). 0.760 vs LR 0.737.
2021 | Korea NHIS (n=223k) + | ML vs risk scores for 5 yr CVD; simple | Yes - HL x? baseline 171 vs 15-86
[24] external cohorts. NN improved C stat (0.751 vs 0.741). for ML (p>0.05). Brier ~0.031 - 0.032
(good calibration).
2021 | NCDR Chest Pain MI |In hospital mortality after MI | Yes - Calibration slope ~1.0 in
[25] registry (USA; n=755,402; | ensemble/XGBoost/NN VS logistic; | validation; Brier components &
derivation 564k; validation | similar AUC (~0.89). recalibration tables reported.
190k).
2021 | Faisalabad Institute + | Feature importance with 10 ML [ No - Calibration not reported.
[26] Framingham +  South | algorithms; XAI focus.
African Hearth dataset &
UCI (Cleveland n=303).
2020 | Eastern China high risk | Random Forest; AUC ~0.787 vsrisk charts | Yes - HL x?=10.31, p=0.24 (good
[27] screening (n=25,231; 3 year | =0.714. calibration).
follow up).
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2019 | UK Biobank subset | AutoPrognosis ensemble; AUC ~0.774 vs | Yes - Pipeline includes calibration
[28] (n=423,604; 5-year follow- | Framingham =~0.724; +368 cases identified. | (e.g., Platt scaling [sigmoid]); good
up). agreement of predicted vs
observed risk.
2017 | UK CPRD primary care | Classic ML vs ACC/AHA score; NN best [ No - Calibration not reported.
[29] (n=378,256; 10 year follow | (AUC =0.764) vs 0.728;, improved
up; 24,970 events). identification.

1.4.2. Gaps in Research

Despite abundant work on ML-based heart disease
prediction, there are clear gaps in the literature regarding
probability calibration and uncertainty quantification.
First, most studies prioritize discriminative performance
(accuracy, F1, AUROC, etc.) and devote little or no
attention to how well the predicted probabilities reflect
true risk. As shown above, prior works seldom report
calibration metrics like ECE or Brier score, nor do they
plot reliability diagrams. For example, none of the 10+
studies reviewed applied calibration methods such as
Platt scaling or isotonic regression to their classifiers,
except for only one study [28]. This indicates a lack of
focus on calibration quality, an important aspect if these
models are to be used in clinical decision-making where
calibrated risk predictions are crucial.

Second, there is a lack of unified evaluation across
multiple models and calibration techniques. Prior
research typically evaluates a set of ML models on a
dataset (as in comparative studies) but stops at reporting
raw performance metrics. No study to date has
systematically taken multiple classification models for
heart disease and evaluated them before and after post-
hoc calibration. This means it remains unclear how
different algorithms (e.g. an SVM vs. a random forest)
compare in terms of probability calibration (not just
classification accuracy), and whether simple calibration
methods can significantly improve their reliability.
Furthermore, the interplay between model uncertainty
(e.g. variance in predictions) and calibration has not been
explored in this domain. Third, most heart disease
prediction papers do not report uncertainty metrics or
advanced calibration statistics. Metrics such as the Brier
score (which combines calibration and refinement), the
ECE (Expected Calibration Error), or even more domain-
specific checks like Spiegelhalter’s Z-test for calibration,
are virtually absent from prior studies. Sharpness (the
concentration of predictive distributions) and other
uncertainty measures are also not discussed. This leaves
a research gap in understanding how confident we can be

in these model predictions and where they might be over
or under-confident. For instance, none of the reviewed
studies provide reliability diagrams to visually inspect
calibration; as a result, a model claiming 95% accuracy
might still make

poorly calibrated predictions

(overestimating or underestimating risk).

To the best of our knowledge, no prior work has
offered a comprehensive evaluation of pre and post-
calibration metrics across multiple models on the specific
Kaggle heart disease dataset (1,025 records) used in this
study. While several papers have used this or similar data
for model comparison, none have examined calibration
changes (ECE, log-loss, Brier, sharpness, Spiegelhalter’s
Z-test,
calibration methods (Platt scaling, isotonic regression). In

calibration curves) resulting from post-hoc
short, existing studies have left a critical question
unanswered: if we calibrate our heart disease prediction
models, do their confidence estimates become more
trustworthy, and how does this vary by model?
Addressing this gap is the focus of our work. We provide
a thorough assessment of multiple classifiers before and
after calibration, using a suite of calibration and
uncertainty metrics not previously applied in this context,
thereby advancing the evaluation criteria for heart
disease ML models beyond conventional accuracy-based

measures.
2. Materials and Methods

2.1. Research Methodology Overview

This study employs a structured machine learning
workflow to predict heart disease risk based on clinical
and demographic variables. As outlined in Figure 1, the
process begins with the heart disease dataset, followed by
data preprocessing, model selection and training,
performance evaluation, and post-hoc calibration. Three
(3) calibration techniques (i.e Platt Scaling, Isotonic
Regression and Temperature scaling) are applied to refine

probabilistic outputs, with effectiveness assessed.
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Figure 1: Workflow Diagram for Heart Disease Prediction and
Calibration Pipeline

2.2. Description of the Dataset

The Heart Disease dataset used in this study was
sourced from Kaggle. It was originally sourced by
merging data from four medical centers Cleveland,
Hungary, Switzerland and VA Long Beach, bringing the

sample size to 1,025 records, including 713 males (69.6%)
and 312 females (30.4%), ages ranging between 29 - 77
years (median age ~56). The dataset contains 14 variables
encompassing demographic, clinical and diagnostic test
features. Descriptions of the dataset are outlined in Table
2.

The dataset was inspected for missing values and
none was identified. The target variable (heart disease)
was approximately balanced, with 51.3% of records
labelled Presence of Disease and 48.7% labelled absence
of Disease as shown in Figure 2. The target was binarised
as heart disease =1 and absence =0, retained as an integer.
Any re-coding of the target labels was not required for the
present analysis.

Heart Disease Distribution

600 -
526 (51.3%)
450 4 499 (48.7%)
=
3 300 4
150 4
0 T T
Disease No Disease

HeartDisease

Figure 2: Heart disease distribution

Table 2: Data description for heart disease dataset

Feature Description Data Type | Values/Range
Age (Years) Age of the patient Integer 29-77
sex Sex (1 = male, 0 = female) Categorical | 0,1
cp Chest pain type Categorical | 1: typical angina, 2: atypical angina, 3: non-
anginal pain, 4: asymptomatic
trestbps(mmHg) | Resting  blood  pressure (on | Integer 94-200
admission to the hospital)
chol(mmol/L) Serum cholesterol Integer 126-564
Fbs (mmol/L) Fasting blood sugar > 120 mg/dl (1 = | Categorical | 0,1
true, 0 = false)
restecg Resting electrocardiographic results | Categorical | 0: normal, 1: ST-T abnormality, 2: left
ventricular hypertrophy
thalach Maximum heart rate achieved Integer 71-202
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exang Exercise induced angina (1 =yes, 0= | Categorical | 0, 1
no)
oldpeak ST depression induced by exercise | Real 0.0-6.2
relative to rest
slope Slope of the peak exercise ST | Categorical | 1: upsloping, 2: flat, 3: downsloping
segment
ca Number of major vessels (0-3) | Integer 0-3
colored by fluoroscopy
thal Thalassemia test result Categorical | 3: normal, 6: fixed defect, 7: reversible
defect
num Presence of heart disease (target: 0 = | Categorical | 0,1, 2, 3,4
no, 1-4 = disease)

2.3. Data Preprocessing

In this study, the dataset was separated into 13
predictors (i.e patient risk factors) and the 1 outcome
feature (i.e the presence or risk of heart disease).
Predictors were further divided into two groups:
numerical features (e.g Age, RestingBP, Cholesterol) and
categorical features (e.g ChestPainType, RestingECG,
Thalassemia, Sex). We scale numerical features using a
RobustScaler approach, which centres values around the
median and spreads them according to the interquartile
range. This method was selected due to it being less
sensitive to outliers and skewness [30]. For categorical
features, a One-Hot Encoding approach was applied,
converting each category into binary (0/1) variables. This
ensured that all categories were represented in a machine-
readable format.

To prevent information leakage, all preprocessing
steps were fit on training data only and were
implemented inside the model pipelines. Within each
cross-validation fold, imputation, scaling, and encoding
were learned on the fold’s training split and then applied
to the corresponding validation split. The same rule was
followed for the final 70/30 train-test split, where
transformers were fit on the 70% training partition and
then applied to the held-out 30% test set. Where missing
values occurred, numerics were imputed by the median
and categoricals by the most frequent level before scaling
or encoding. The outcome remained binary as integers
throughout the workflow.

2.4. Model Selection

In this work, we benchmark six models (spanning
linear, non-linear and ensemble model architectures) to
classify patients based on the presence or absence of heart
disease. The selected models include Logistic Regression
(LR), Support Vector Machines (SVM), Random Forest
(RF), Extreme Gradient Boosting (XGBoost), K-Nearest
Neighbors (KNN), and Naive Bayes (NB). Using training
(70%) and testing (30%) sets, we trained each model on
the preprocessed training data and evaluated it on the
held-out test data.

Logistic Regression (LR): Logistic Regression is a
supervised machine learning model well-suited for
binary classification, such as determining the presence or
absence of heart disease. LR calculates the probability of
a class (e.g., disease or no disease) by applying a sigmoid
function to a weighted sum of predictor variables. Its
strengths include simplicity, efficiency, and the ability to
interpret coefficients as odds ratios, which is valuable in
clinical settings for understanding feature importance
and risk factors. Logistic Regression has a proven track
record in medical research for risk stratification and is
easily calibrated for probability estimation [31].

Support Vector Machines (SVM):

Machines are powerful, supervised classification models

Support Vector

that work by finding the optimal hyperplane that
separates classes in the feature space. SVMs excel at
handling high-dimensional data and can model nonlinear
relationships through kernel tricks, making them highly
effective for complex medical datasets. Their ability to
maximize the margin between classes reduces the
likelihood of misclassification, which is especially useful
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when distinguishing subtle differences between patients
with and without heart disease. SVMs are known for their
robustness in real-world clinical prediction tasks [32].

Random Forest (RF): Random Forest is an ensemble
algorithm that builds multiple decision trees during
training and aggregates their outputs via majority voting
for classification. It is especially effective at capturing
nonlinear relationships and interactions among risk
factors in heart disease prediction. The ensemble nature
of RF mitigates overfitting and variance, providing more
reliable and stable predictions on diverse patient
populations. Its embedded feature importance scores
help clinicians identify key predictors of heart disease,
further supporting its use in healthcare analytics [33].

Extreme Gradient Boosting (XGBoost): XGBoost is a
gradient boosting framework that creates a series of weak
learners (usually decision trees) and optimizes them
sequentially. It is renowned for combining high
predictive accuracy with speed and efficiency, making it
a top performer in medical classification challenges.
XGBoost handles missing data gracefully and is robust to
outliers, both of which are common in clinical datasets. Its
sophisticated ~ regularization = techniques  reduce
overfitting, and its model interpretability tools are
advantageous for validating results in heart disease risk

prediction [34].

K-Nearest Neighbors (KNN): K-Nearest Neighbors is
a non-parametric classification method that predicts the
class of a sample based on the majority class among its k
closest neighbors in feature space. KNN is intuitive, easy
to implement, and doesn’t assume data distribution,
making it suitable for heterogeneous clinical datasets.
KNN is effective at leveraging local patterns, which can
help identify at-risk heart disease patients by matching
them to previously observed cases. However, it can be
sensitive to feature scaling and less efficient with
extensive datasets [35].

Naive Bayes (NB): Naive Bayes is a probabilistic
classification algorithm that applies Bayes’ theorem,
assuming feature independence. Its simplicity and
computational efficiency make it attractive for medical
tasks with many categorical variables. Despite its “naive”
independence assumption, NB often performs
surprisingly well for heart disease prediction because it
can handle missing values, is robust with noisy data, and

quickly estimates posterior probabilities. This makes it

valuable for real-time risk assessment and decision
support in clinical environments [36].

2.5. Model Tuning Strategy

In this study, GridSearchCV was used as the primary
hyperparameter-tuning strategy due to its structured and
reproducible approach [37], [38]. GridSearchCV works by
exhaustively evaluating all possible combinations of
predefined hyperparameters for a given algorithm [37],
[38]. For each candidate configuration, the model is
trained and validated using 5-fold cross-validation,
ensuring stable performance estimates; this setup is
widely recommended for clinical prediction models and
has been applied to heart-disease prediction tasks [39],
[40]. This is particularly important in healthcare datasets
such as heart disease prediction, where sample sizes may
be limited and class distributions may be imbalanced [40],
[41]. By systematically exploring the parameter space,
GridSearchCV helps identify the configuration that yields
an appropriate balance between accuracy and
generalisation performance [37], [38], [39]. In our heart-
disease model, we used GridSearchCV to improve the
stability of probability outputs before applying post-hoc
calibration techniques. Table 3 summarises the parameter
grid and chosen parameters for each model trained in this

experiment.
2.6. Cross-validated discrimination

To measure discrimination outside one held-out test
split, we used stratified 5-fold cross-validation on the 70%
training set. In every outer fold, the full preprocessing
pipeline and the classifier were fitted only on that fold’s
training partition, then applied to the corresponding
validation partition. This guards against information
leakage from scaling or encoding into validation data.

Threshold-dependent metrics used a single, data-
driven cutpoint per model based on Youden’s ] index. For
a given threshold ton predicted probabilities,
J(t) = Sensitivity(t) + Specificity (t) - 1 and the selected cut
point is t = arg max t J(t), [42]. Within each outer-fold
training partition we ran an inner 5-fold CV to estimate t
using only the inner validation predictions, then fixed t
and applied it to the outer-fold validation data to
compute Accuracy and F1. AUC ROC was computed
from continuous scores and did not use a threshold.
Using ] focuses the operating point where both sensitivity
and specificity are jointly maximized in the training data,
a practice with well-studied statistical properties for
cutpoint selection [43].
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Table 3: Hyperparameter Grids and Selected Best Settings by Model

Model Parameter grid Best parameter
K-Nearest Minkowski p: 1, 2; Number of neighbors: 3, 5, 7, 9; | Minkowski p: 1, Number of neighbors: 9;
Neighbors Weights: uniform, distance Weights: distance

Random Forest

log2

Number of trees: 200, 300, 400; Max depth: None, 5,
10; Min samples per leaf: 1, 2, 4; Max features: sqrt,

Number of trees: 200; Max depth: None;
Max features: sqrt; Min samples per leaf: 1

XGBoost

sample by tree: 0.8, 1.0

Number of trees: 200, 300; Learning rate: 0.03, 0.05,
0.1; Max depth: 3, 4, 5; Subsample: 0.8, 1.0; Column

Number of trees: 200; Learning rate: 0.05;
Max depth: 4; Subsample: 1.0; Column
sample by tree: 0.8

Support Vector

Kernel: rbf, linear; Regularization strength (C): 0.1, 1,

Kernel: rbf; Regularization strength (C): 10;

Machine 10; Gamma: scale, auto Gamma: scale
Logistic Regularization strength (C): 0.1, 1, 10; Solver: lbfgs, | Regularization strength (C): 10; Solver:
Regression liblinear; Class weight: None, balanced Ibfgs; Class weight: None

Naive Bayes Variance smoothing: 1e-09, 1e-08, 1e-07

Variance smoothing: 1e-07

This nested procedure helps control overfitting and
preserves statistical validity. The threshold is chosen
strictly inside the training portion of each outer fold,
never on the outer validation or test data, which avoids
optimistic bias and the circularity that arises when model
selection and error estimation are performed on the same
data [44]. When comparing uncalibrated and calibrated
variants, the identical t learned within the outer-fold
training data was applied to both sets of probabilities for
that fold. This preserves a paired design, reduces variance
in fold differences and maintains the validity of
subsequent significance testing based on matched
resamples [45].

2.7. Model Performance Metrics

We evaluated classification performance using
Accuracy, ROC-AUC, Precision, Recall, and F1-score. Let
TP, FP, TN, and FN denote true positives, false positives,
true negatives, and false negatives, respectively.

TP+TN

TP+FP+TN+FN
share of correctly classified cases in the test set. In clinical

Accuracy. Defined as ( ), accuracy reflects the

screening contexts where disease prevalence may be low
accuracy depends on the decision threshold and can mask
deficiencies under class imbalance, yielding seemingly
strong performance while missing many positive cases
[46].

ROC-AUC. The receiver-operating-characteristic area
summarizes discrimination across all thresholds; it equals
the probability that a randomly selected positive receives
a higher score than a randomly selected negative and
ranges from 0.5 (no discrimination) to 1.0 (perfect). ROC-
AUC is broadly used in clinical prediction for its
threshold-agnostic view of separability, though it does
not reflect calibration or the clinical costs of specific error

types [47].

TP
TP+FP
positive alerts are among patients flagged as having heart

Precision. Given by ( ), quantifies how reliable

disease, the fraction truly positive. As thresholds are
lowered to capture more cases, precision typically
decreases, illustrating the trade-off clinicians face

between false alarms and case finding [48].

T
TP+EN
truly diseased patients the model detects (sensitivity).

Recall. Defined as (—P), measures the proportion of

Raising recall generally requires a lower threshold, which
increases false positives and reduces precision; selecting
an operating point should therefore reflect clinical
consequences and disease prevalence [49].

. Precision x Recall
Fl-score. The harmonic mean (—) ,
Precision+Recall

provides a single summary when both missed cases and
false alarms matter. F1 is commonly reported in
imbalanced biomedical tasks, though its interpretation
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should be complemented by other metrics given known
limitations under skewed prevalence [50].

These metrics establish a consistent baseline for cross-
model comparison and inform our subsequent calibration
and uncertainty quantification analysis.

2.8. Post-Hoc Calibration and Evaluation
2.8.1. Selected Calibration Techniques

Post-hoc calibration refers to techniques applied after
model training that map raw scores to probabilities
without changing the underlying classifier. In clinical
settings where decisions hinge on risk estimates, these
procedures use a held-out calibration set to fit a simple,
typically monotonic mapping so that predicted
probabilities better match observed event rates [9], [51],
[52]. In this study, calibration was fit strictly on training-
only validation data inside cross-validation and applied
to the corresponding validation folds, then to the held-out
test split, which avoids information leakage and
optimistic bias as recommended in prior work [5], [7], [9],

[51].

In clinical text or imaging pipelines for heart-disease
prediction, this is attractive, one can retain the trained
model and its operating characteristics, then calibrate its
outputs to yield probabilities that are more trustworthy
for downstream decision thresholds, alerts, or shared
decision-making [51], [52]. For this study, we applied
three post-hoc calibration methods, Platt scaling, isotonic
regression, and temperature scaling, to adjust model
outputs into well-calibrated probabilities [5], [7].

1) Platt scaling works by fitting a smooth S-shaped
sigmoid curve to the model’s scores using a separate
validation set, so that predicted probabilities better
match actual outcomes. This method is simple and
efficient but assumes that the relationship between
scores and probabilities follows a logistic pattern [9],
[53]. In our pipeline, the sigmoid mapping was
learned on training-only validation folds and then
applied to their matched validation sets.

2) Isotonic regression is a more flexible, non-parametric
method that does not assume any specific shape.
Instead, it fits a step-like monotonic curve that can
adapt to complex patterns in the data [54]. While this
flexibility can better capture irregular relationships, it
can also lead to overfitting if the validation dataset is
small, hence our use of cross-validated, training-only
fits to mitigate instability [5], [7], [51].

3) Temperature scaling applies a single global
temperature T > 0 to sharpen or soften probabilities
via pr = o (logit(p)/T). We estimated T on training-
only out-of-fold predictions by minimizing negative
log loss, then applied the learned T to the
corresponding validation folds and the held-out test
split. Temperature scaling is lightweight and widely
used to correct overconfident scores without altering

class ranking [5].

In practice, Platt scaling is most useful when a
sigmoid relationship is expected, isotonic regression is
preferred when the calibration pattern is unknown or
more complex [9], and temperature scaling provides a
simple, global adjustment of confidence that can be
effective when miscalibration is primarily due to score
overconfidence rather than shape distortions [5]. Using all
three methods provides a robust calibration toolbox,
ensuring reliable probability estimates across different
models, while our training-only fitting approach
addresses concerns about leakage and preserves valid
evaluation.

2.8.2. Model Uncertainty Quantification and Calibration
Evaluation Metrics

In this study, we measure the uncertainty of the
models using these key calibration evaluation metrics:
Reliability diagram, Brier Score, Expected Calibration
Error (ECE), Log Loss and Sharpness. A combination of
these metrics provides a holistic understanding of each
model's effectiveness in quantifying model uncertainty.

Reliability diagram, calibration plot. A reliability
diagram visualizes how predicted probabilities align with
observed event rates by plotting, across confidence bins,
the empirical outcome frequency against the mean
predicted probability. A perfectly calibrated model traces
the 45-degree diagonal line, while systematic deviations
reveal over or under-confidence [9]. Reliability diagrams
are standard in forecast verification and machine-
learning calibration, and they provide a visual check of
probability accuracy while preserving discrimination.
Practical caveats include sensitivity to binning and
sample size, and the fact that the plot alone does not
indicate how many samples fall into each bin, often
addressed by adding a companion confidence histogram
[5], [55], [56]. We experiment with two binning strategies
(i.e equal-width bins and equal-frequency bins). A
rolling-mean curve over the predicted probabilities was
added to stabilise visual trends without changing the bin
statistics.
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Brier Score - The Brier Score measures the mean
squared difference between predicted probabilities and
the actual binary outcomes. Unlike accuracy which
reduces predictions to “yes/no” and ignores the
uncertainty behind probability values the Brier Score
penalizes poorly calibrated or overly confident
predictions. This makes it more informative for model
uncertainty quantification, especially in clinical settings
were knowing the probability of heart disease (and not
just a binary label) aids risk discussions and decision-
making. Lower Brier Scores indicate better calibrated and
more reliable probability forecasts, a key aspect of clinical

utility [57].

Expected Calibration Error (ECE). ECE summarizes
how closely a model’s predicted probabilities match the
observed frequencies of outcomes. It divides predictions
into probability bins and measures the mismatch between
average predicted probability and the actual outcome rate
in each bin. In heart disease prediction, ECE helps verify
if model confidence reflects real-world risks, ensuring
patients with a predicted 70% heart disease risk, for
example, actually face that risk. Lower ECE values
indicate better calibrated models, which is crucial for
trusted clinical decision support [5]. In this work, we
report two ECE variants to assess robustness to binning:

equal-width bins with K = 10 and equal-frequency bins
with K = 10; the latter balances counts per bin and often
yields more stable estimates on modest sample sizes [5],
[56].

Log Loss - Log Loss (or cross-entropy loss) evaluates
the uncertainty of probabilistic outputs by heavily
penalizing confident but incorrect predictions. Log Loss
is sensitive to how far predicted probabilities diverge
from the actual class, providing a continuous measure of
model reliability. For heart disease prediction, low Log
Loss means the model rarely makes wildly overconfident
errors, safer, clinical

promoting uncertainty-aware

interpretation [58].

Sharpness (variance of predicted probabilities) -
Sharpness measures the spread or concentration of
predicted probabilities, independent of whether they’re
correct. High sharpness means the model often predicts
risks near 0 or 1, indicating confident, decisive forecasts.
For heart disease prediction, greater sharpness is
desirable only if paired with good calibration confident
predictions should be correct. Thus, sharpness reveals
how much intrinsic uncertainty the model expresses,
helping physicians judge whether predictions are
actionable or too vague for clinical use [55].

Table 4: Pipeline decisions for Baseline Classification Performance & Calibration - summary of experiment setup, evaluation choices, and

preprocessing decisions

Component

Description

Test Split

30% of dataset (~306 instances), stratified by target class

Cross-Validation

5-fold StratifiedKFold with shufflingpercent

Scaling RobustScaler for numeric variables
Encoding OneHotEncoder for nominal categorical fields
Models Logistic Regression, SVM, Random Forest, XGBoost, KNN, Naive Bayes

Development Environment

Google Colab

Python libraries

Sklearn, matplotlib, scipy, numpy, pandas, seaborn

Model Evaluation Metrics

Accuracy, ROC-AUC, Precision, Recall, and F1 Score

Uncertainty Quantification
Metrics

Brier Score, Expected Calibration Error (ECE), Log Loss, Spiegelhalter’s Z-score & p-
value, Sharpness, Reliability diagram

Train/test split ratio

70% training: 30% testing
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2.9. Confidence intervals and statistical tests

Confidence intervals. For test-set discrimination
metrics, we computed 95% bootstrap percentile intervals
with 2,000 resamples, using stratified resampling to
preserve class balance and skipping resamples with a
single class for AUROC [59]. For cross-validated
then

bootstrapped across the out-of-fold units to obtain fold-

summaries we formed per-fold estimates,
aware 95% intervals for Brier score, ECE, Log Loss, and
sharpness. For reliability diagrams we reported Wilson
95% intervals for bin-wise observed event rates to

stabilize proportions in modest bin counts [60].

Spiegelhalter’s Z-score & p-value - Spiegelhalter’s Z-
score tests overall calibration by comparing predicted
probabilities to actual outcomes, normalized by their
variance. A non-significant p-value suggests the model is
well-calibrated; otherwise, the probabilistic forecasts may
This
calibration test is especially important in health

be systematically over or under-confident.
applications, assuring clinicians that model probabilities
are statistically valid reflections of true outcome chances
[61].

Permutation p-tests on fold-matched deltas. To
compare calibrated to uncalibrated states we used paired
permutation tests on fold-matched differences, for
example A = metricel - metricuncal. Within each model, we
repeatedly flipped the signs of fold-level deltas to
generate the null distribution that the median delta equals

zero, using 10,000 permutations, two sided. We report the
observed delta, its bootstrap 95% interval, and the
corresponding permutation p-value, which answers
whether the improvement is larger than expected by
chance under the paired design [62], [63].

Wilcoxon signed-rank tests. For the equal-width
versus equal-frequency ECE comparison, we also report
paired Wilcoxon signed-rank tests on fold-matched
differences, alongside bootstrap intervals for the median
delta, to summarize direction and robustness of the
binning effect without distributional assumptions [64].

3. Baseline model performance

Six classifiers were trained and evaluated on the held-
out test set. Table 5 reports Accuracy, F1, and ROC AUC
with 95% bootstrap confidence intervals alongside
precision and recall. Four models achieved very high
with KNN, Random Forest,
XGBoost, and SVM, each reaching high test scores. For
example, KNN achieved 99.0% Accuracy, 99.0% F1, and
100.0% ROC AUC, while Random Forest, XGBoost, and
SVM were in the 97.1% to 99.6% range across these
metrics. Logistic Regression was lower, with 86.0%
Accuracy, 86.6% F1, and 94.3% ROC AUC. Naive Bayes
was lowest, with 80.2% Accuracy, 77.8% F1, and 88.4%
ROC AUC. Confidence intervals are tight for the top four
models, as shown in Figures 3 to 5 and wider for Logistic

scores across metrics,

Regression and Naive Bayes, indicating greater sampling
uncertainty for the latter pair.

Table 5: Performance metrics of baseline classification models (before calibration) with 95% confidence interval (CI) bootstrap

(number of boots = 2,000)

F1 95% CI|ROC ROC AUC 95%
Accuracy | Accuracy 95% CI | F1 (Lower - | AUC CI (Lower - | Precision | Recall
Model | (%) (Lower - Upper) | (%) | Upper) (%) Upper) (%) (%)
KNN |99 98.1-100.0 99 97.9-100.0 100 100.0 - 100.0 100 98.1
RF 98.1 96.4 - 99.4 98.1 |96.4-994 99.6 99.1 -100.0 100 96.2
XGB 98.1 96.4 - 99.4 98.1 |96.5-994 99.2 98.5-99.8 98.1 98.1
SVM | 97.1 95.1-98.7 97.1 |95.1-98.8 98.6 96.9 - 100.0 98.1 96.2
LR 86 82.1-89.6 86.6 | 82.3-90.3 94.3 91.7 - 96.7 85.3 88.0
NB 80.2 75.6 - 84.4 77.8 |71.9-829 88.4 84.2-92.1 91.5 67.7
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To quantify discrimination metric without relying on
a single partition, we used stratified 5-fold cross-
validation, fitting preprocessing and models within each
training fold. We selected the decision threshold by
Youden’s ] using inner cross-validation, then applied that
fixed threshold to the outer validation fold. Following
best practice, we tuned the decision threshold in each fold
on the training predictions, selecting the cut-point that
maximized Youden’s J, rather than using a fixed 0.5
threshold [65], while still maintaining statistical
significance [66]. Table 6 reports the fold means for
Accuracy, F1, and ROC AUC for the uncalibrated models
optimized via Youden ], side by side with baseline
performance from Table 5.

Discrimination was strongest for four models, with
consistently high values. Random Forest and KNN reach
99.60% Accuracy and 99.60% F1, with ROC AUC at
100.00%. SVM attains 99.0% Accuracy, 99.1% F1, and
100% ROC AUC. XGBoost follows closely with 99.0%
Accuracy, 99.0% F1, and 100% ROC AUC. Logistic
Regression and Naive Bayes remain well below this
cluster, with 86.8% and 83.8% Accuracy, 87.5% and 84.7%
F1, and 94.0% and 89.5% ROC AUC, respectively.

These results reflect two effects. First, ROC AUC
values confirm very strong class separability on this
dataset. Second, optimizing the threshold on training data
via Youden’s ] raises fold-wise Accuracy and F1
compared with a fixed cutpoint, which explains the
higher values relative to our earlier fixed-threshold point
estimate summaries [67]. The Youden ] optimised values
in Table 6 serve as the discrimination baseline for all later
comparisons, where we examine how post-hoc
calibration changes calibration metrics while tracking any
movement in Accuracy and F1 relative to these
uncalibrated, Youden-J estimates.

Table 6: Uncalibrated Cross-validated Accuracy, F1, and ROC AUC with tuned parameters

Baseline model performance + Baseline model performance + Hyperparameter tuning + Cross
Hyperparameter tuning validation (CV=5) Out of fold (OOF) + Inner 5-fold for Youden ]
Model | Accuracy F1 ROC AUC Accuracy F1 ROC AUC
KNN 99.0 99.0 100 99.6 99.6 100
RF 98.1 98.1 99.6 99.6 99.6 100
XGB 98.1 98.1 99.2 99.0 99.0 100
SVM 97.1 97.1 98.6 99.0 99.1 100
LR 86.0 86.6 94.3 86.8 87.5 94.0
NB 80.2 77.8 88.4 83.8 84.7 89.5
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3.1. Reliability Plots

We plot reliability diagrams to visualise calibration
effects using out-of-fold predictions from stratified 5-fold
cross-validation. Given a test set of 306 instances (30% of
the 1,025-record dataset), predicted probabilities were
partitioned into ten equal-frequency bins so each bin
contained a similar number of cases, which stabilizes bin
estimates. This choice balances resolution and stability in
modest samples, consistent with guidance that
discourages aggressive binning when counts per bin
become small [56]. For each bin we plot the bin mean
against the observed event rate with Wilson 95% intervals
with a thin rolling mean over the sorted predictions.
Figures 6 to 9 present the six models for the uncalibrated
outputs and for Platt, Isotonic, and Temperature

calibration.

Before calibration (Figure 6), Logistic Regression and
XGBoost track the diagonal closely through most of the

probability range, with small departures near the
extremes. Random Forest shows overconfidence in the
upper tail, where predicted risks exceed observed
frequencies. SVM tracks the diagonal in the mid-range
but is less reliable at the extremes. KNN exhibits a flat,
underconfident shape over much of the scale. Naive
Bayes displays the familiar S-shape, underestimating risk
at intermediate probabilities and overshooting near 1,
consistent with prior reports of miscalibration for these
families of models [7], [9], [53].

Platt scaling (Figure 7) improves Logistic Regression,
SVM and Naive Bayes, drawing curves toward the
diagonal ~where deviations were approximately
monotonic, but it leaves clear residual error for Random
Forest and KNN, likely due to its monotonic, logistic-
form constraint [68][69]. XGBoost shows little gain and, in
places, mild distortion relative to its already good pre-

calibration fit.

Reliability diagrams, Uncalibrated — quantile bins, K=10
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Figure 6: Reliability diagrams, uncalibrated outputs, equal-frequency bins K = 10. Each panel shows bin means with Wilson 95% intervals and a

rolling mean curve.
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Reliability diagrams, Platt — quantile bins, K=10
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Figure 7: Reliability diagrams after Platt scaling, equal-frequency bins K = 10.

Reliability diagrams, Isotonic — quantile bins, K=10
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Figure 8: Reliability diagrams after Isotonic regression, equal-frequency bins K = 10.
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Reliability diagrams, Temperature — quantile bins, K=10
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Figure 9: Reliability diagrams after Temperature scaling, equal-frequency bins K = 10.

Isotonic regression (Figure 8) provides the largest and
most consistent improvements. Naive Bayes becomes
markedly more tightly positioned across the range, and
SVM tightens around the diagonal with narrower
uncertainty bands. Random Forest is corrected at high
probabilities, reducing overconfidence. KNN remains
relatively unstable, with small bins at the extremes still
showing variance. These findings suggest that while
sigmoid calibration is suitable for models with nearly
linear miscalibration, isotonic regression better handles
complex, non-monotonic distortions in probabilistic
estimates [70], [71].

Temperature scaling (Figure 9) yields modest, mostly
uniform shifts in confidence. It reduces the top-end
overconfidence for Random Forest and XGBoost, but its
effect is smaller than isotonic and, as expected for a single-
parameter rescaling, it does not correct non-linear
distortions.

The reliability plots show three consistent themes.
First, with
ensembles tending to be overconfident near 1, Naive

calibration needs are model-specific,
Bayes showing S-shaped error, and Logistic Regression
close to calibrated at baseline. Second, isotonic is the most
effective general-purpose post-hoc adjustment on this

dataset, while Platt helps when deviations are nearly
logistic in form. Third, confidence intervals make
departures from perfect calibration most apparent at the
extremes of the probability scale, where data are sparse.

3.2. Sensitivity of ECE to binning choice

We assessed the stability of ECE using two binning
strategies with K = 10, equal-width and equal-frequency.
For each model, calibration state, and fold, we computed
the paired difference [AECE = ECE {uniform} — ECE {quantite}].
Positive values indicate smaller ECE when bins carry
similar counts. The paired summaries are presented in
Table 7 below, and we plot per-model medians with 95 %
CIs in Figure 10.

Across all models and calibration states combined,
equal-frequency binning produced smaller ECE values.
As shown in Table 7, the overall median AECE was 0.0069
with a 95 % CI 0.0056 to 0.0089 and a Wilcoxon p value
4.87x1078, with 74.2% of paired fold comparisons favoring
equal frequency. The largest effects occur for the tree-
based ensembles. For XGBoost the median AECE was
0.0115 (95 % CI 0.0074 to 0.0149, p 9.54x107%), and for
Random Forest it was 0.0098 (95 % CI 0.0057 to 0.0119, p
2.61x10#). These two bars are the tallest in Figure 10,
matching the entries in Table 7.
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Table 7: Paired comparison of ECE with K =10 using equal-width and equal-frequency bins over CV folds. CIs are 95% Cls bootstrap (number of
boots = 10,000). Paired Wilcoxon tests on fold-matched deltas.

95% 95% Frac
Section Sub section | Number of | Median | Median Median CI | Mean | Wilcoxon p | quantile
pairs A ECE CI Low High A ECE <uniform
Overall ---- 120 0.0069 0.0056 0.0089 0.0054 | 4.87x10-® 0.7417
XGB 20 0.0115 0.0074 0.0149 0.011 9.54x10-¢ 0.9
RF 20 0.0098 0.0057 0.0119 0.0099 | 0.000261 0.95
SVM 20 0.0066 0.0007 0.01 0.006 0.009436 0.8
LR 20 0.0061 -0.0044 0.008 0.0024 | 0.2774 0.6
KNN 20 0.0053 0.0017 0.0074 0.0066 | 0.000655 0.75
By model | NB 20 -0.0024 -0.0093 0.013 -0.0037 | 0.7841 0.45
Uncalibrated | 30 0.0069 0.0012 0.0119 0.0078 | 8.09x10-° 0.7333
Isotonic 30 0.0068 0.0048 0.0083 0.0069 | 0.00073 0.8667
Platt 30 0.0073 0.0016 0.0108 -0.0004 | 0.2534 0.7
By
calibration | Temperature | 30 0.0064 0.0004 0.0147 0.0072 | 0.005383 0.6667
00115 Per-model median AECE with 95% ClI
0.015 4 0.0098 —0.(35)24
0.0066
@ 0.010 0.0061 0.0053
ok
53 0.005
c |
.© e
o
o :§ 0.000
E
= —0.005 -
_00]‘0 L T T T T T —I_
XGB RF SVM LR KNN NB
Model

Figure 10: Per-model median AECE with 95 % CIs bootstrap (number of boots = 10,000).

SVM and KNN show smaller but consistent gains. As
seen in Table 7, SVM has median AECE 0.0066 (95 % CI
0.0007 to 0.0100, p 9.44x10-%), and KNN has 0.0053 (95 %
CI 0.0017 to 0.0074, p 6.55x10). Logistic Regression
shows a modest median with a CI that crosses zero, 0.0061
(95 % CI-0.0044 to 0.0080, p 0.277). Naive Bayes shows no
advantage for equal-frequency, -0.0024 (95 % CI -0.0093 to
0.0130, p 0.784). These patterns are visible in Figure 10,

where LR has a short bar with wide whiskers and NB dips
slightly below zero.

By calibration method, the same direction holds. As
shown in Table 7, the median AECE is 0.0069 for
Uncalibrated (95 % CI10.0012 to 0.0119, p 8.09x10-%), 0.0068
for Isotonic (95 % CI 0.0048 to 0.0083, p 7.30x10%), and
0.0064 for Temperature (95 % CI 0.0004 to 0.0147, p
5.38x10-%). Platt shows a positive median 0.0073 with a
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non-significant p value 0.253, which is consistent with its
shorter bar and wide CI in Figure 10.

This sensitivity analysis indicates that ECE is lower
on average with equal-frequency bins, as shown in Table
7 and Figure 10. We therefore report both ECE variants
throughout and treat the quantile-based ECE as a
robustness check rather than as evidence of intrinsically
better calibration.

3.3. Calibration metrics by model and calibration method

Table 8 reports fold means for Accuracy, F1, AUC
ROC, Brier score, ECE with equal-width bins at K = 10,
ECE with equal-frequency bins at K=10, and Log Loss for
each model under Uncalibrated, Platt, Isotonic, and
Temperature. We identify the best calibration per model
using the rule “best” equals the minimum Brier, the
minimum of each ECE variant, and the minimum Log

Across models, Isotonic most often provides the
strongest calibration. This pattern is consistent with the
reliability plots where a monotone nonparametric map
aligns S-shaped or overconfident regions while
preserving ordering. Platt is competitive when deviations
are close to a logistic shift, and Temperature yields
smaller, uniform corrections that can trim overconfidence

without altering rank.

Two models, KNN and SVM, are best uncalibrated
across the calibration metrics in this dataset. For these
models, applying Platt, Isotonic, or Temperature does not
improve Brier, ECE, or Log Loss relative to the
uncalibrated scores in Table 8, and in places calibration
slightly worsens these quantities. This matches the
which
miscalibration for SVM and persistent variance for KNN

reliability  plots, show limited systematic

that calibration does not correct.

Loss.

Table 8: Cross-validated means for Accuracy, F1, AUC ROC, Brier, ECE (uniform, 10), ECE (quantile, 10), and Log Loss by model and calibration

method. Bold, per model, the method achieving the minimum for Brier, each ECE variant, and Log Loss.

RO
Accura C Brier Log ECE ECE Sharpness | Z- Z p-
Model | Calibration F1 (unifo | (quantile,
cy AU | Score | Loss (Var) Score | value
C rm, 10) | 10)

KNN | Isotonic 99.6 99.6 | 100 | 0.0044 | 0.0211 | 0.0146 | 0.0094 0.2396 0.9252 | 0.5618
Platt 99.6 99.6 | 100 | 0.0054 | 0.0388 | 0.0308 | 0.0237 0.2231 0.6622 | 0.5969
Temperature | 96.7 96.7 | 99 0.0258 | 0.1228 | 0.0287 | 0.0148 0.2295 1.0477 | 0.3933
Uncalibrated | 99.6 99.6 | 100 | 0.0026 | 0.007 0.0039 | 0.0039 0.2487 0.9849 | 0.6608

LR Isotonic 87.3 87.8 | 944 | 0.0905 | 0.3018 | 0.055 0.0482 0.1639 -0.1645 | 0.5713
Platt 86.7 87.5 | 94 0.0957 | 0.3182 | 0.0567 | 0.0645 0.1394 -0.0513 | 0.6791
Temperature | 85.1 85.7 1 93.6 | 0.0975 | 0.3259 | 0.0593 | 0.056 0.1504 0.4082 | 0.4916
Uncalibrated | 86.8 87.5 | 94 0.0944 | 0.3171 | 0.0646 | 0.0571 0.1565 0.021 0.577

NB Isotonic 83.8 84.7 1 90.7 |0.1196 | 0.3839 | 0.0621 | 0.0534 0.1344 -0.0773 | 0.5412
Platt 83.7 84.7 1 90.1 | 0.1291 | 0.4222 | 0.0545 | 0.0942 0.1023 -0.1822 | 0.6847
Temperature | 81.2 80.1 | 89.9 |0.1248 | 0.4487 | 0.0741 | 0.0689 0.1656 -0.0968 | 0.6696
Uncalibrated | 83.8 84.7 | 89.5 |0.1492 | 1.51 0.146 0.1348 0.2292 -3.1409 | 0.2343

RF Isotonic 99.6 99.6 | 100 | 0.0042 | 0.0201 | 0.0144 | 0.0098 0.2387 0.8125 | 0.5283
Platt 99.6 99.6 | 100 | 0.0048 | 0.0366 | 0.0331 | 0.0223 0.2217 0.5198 | 0.6463
Temperature | 97 97 199 0.0242 | 0.1024 | 0.0318 | 0.0201 0.2264 0.9775 | 0.4323
Uncalibrated | 99.6 99.6 | 100 | 0.0058 | 0.0484 | 0.0449 | 0.0322 0.2109 0.6992 | 0.506

SVM Isotonic 99.1 99.1 | 100 | 0.0087 | 0.0442 | 0.0337 | 0.0268 0.2228 0.4598 | 0.4639
Platt 98.8 98.9 1 99.9 |0.0125 | 0.075 0.0594 | 0.0452 0.1991 0.3284 | 0.5607
Temperature | 95.6 95.7 | 982 |0.0365 | 0.1675 | 0.0426 | 0.0411 0.2074 0.6681 | 0.4894
Uncalibrated | 99 99.1 | 100 | 0.0065 | 0.0376 | 0.0226 | 0.0214 0.2316 0.0207 | 0.3804

XGB Isotonic 99.2 99.2 | 100 | 0.007 0.0311 | 0.0241 | 0.0147 0.2313 0.4402 | 0.5234
Platt 99.4 99.4 | 100 | 0.0092 | 0.0534 | 0.0438 | 0.0307 0.2125 0.2697 | 0.7105
Temperature | 96.9 96.9 | 98.1 | 0.0308 | 0.1453 | 0.0385 | 0.0311 0.2142 0.7084 | 0.4043
Uncalibrated | 99 99 | 100 |0.0135 | 0.0764 | 0.0639 | 0.0497 0.1964 0.2525 | 0.8046
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Random Forest shows its clearest gains under
Isotonic. Brier, both ECE variants, and Log Loss are
lowest with Isotonic, mirroring the correction of high-
probability overconfidence seen in the reliability plots.
Accuracy and F1 remain close to the uncalibrated
Youden-] values, and AUC ROC is essentially unchanged.
XGBoost starts close to calibrated. Differences among
methods are small, with Isotonic producing the best Log
Loss and competitive ECE values. Accuracy and F1 shift
only marginally relative to the uncalibrated Youden-]
baseline.  Logistic Regression is already well
behaved. Isotonic yields the best Log Loss, ECE, with
discrimination metrics essentially unchanged. Naive
Bayes shows the largest calibration gains with Isotonic.
Brier, both ECE variants, and Log Loss drop, consistent
with the straightening of the S-shaped reliability curve.
AUC ROC remains constant, and Accuracy and F1 may
change slightly without a systematic direction.

On  the
Temperature does not behave as neutral. In your fold

calibration-discrimination balance,

means, Temperature shifts Accuracy and F1 for every

model, and AUC ROC also changes rather than remaining
fixed. Isotonic and Platt tend to preserve AUC ROC
within small deltas while improving Brier, ECE, and Log
Loss, but Temperature’s global rescaling can move
operating points and ranking enough to register in
discrimination metrics. Consequently, when
discrimination stability is a priority, Isotonic is generally
preferred for RF, XGB, LR, and NB, Uncalibrated is
preferred for SVM and KNN, and Temperature should be
used with caution because of its measurable impact on
Accuracy, F1, and sometimes AUC ROC as reflected in

Table 8.

3.4. Calibration metrics with uncertainty

We report cross-validated calibration performance
for Uncalibrated, Platt, Isotonic, and Temperature using
Brier score, ECE with equal-width bins, K =10, ECE with
equal-frequency bins, K = 10, and Log Loss. Table 9
presents per-model means with 95% bootstrap Cls across
folds. These tabulated intervals anchor the comparisons
that follow and are the source for the error bars in the

grouped plots.
Table 9: Calibration metrics with 95% bootstrap confidence intervals by model and calibration state, number of boots = 2000
. ECE ECE Log
Brier . .
95% CI ECE (uniform,10) ECE (quantile,10) Lo Loss
(]
Model | Calibration | Brier L (uniform, | 95% CI (quantile, | 95% CI L 8 95% CI
ower - 0ss
U ) 10) (Lower - 10) (Lower - (Lower -
er
PP Upper) Upper) Upper)
Uncalibrated | 0.0026 00~ 0.0039 0.0-0.01 0.0039 0.0-0.01 0.007 0.0~
ncalibrate . 0.0075 . . . . . . . 0.0192
KNN 0.0019 - 0.0274 -
Platt 0.0054 0.0308 0.0263 - 0.0352 | 0.0237 0.0185-0.029 | 0.0388
0.0114 0.0537
Isotoni 0.0044 00009~ 0.0146 0.0083 - 0.0211 | 0.0094 0.0036 - 0.0162 | 0.0211 0.0085 -
sotonic . 0.0108 . . . . . . . 0.0393
0.0199 - 0.068 -
Temperature | 0.0258 0.0287 0.0206 - 0.0388 | 0.0148 0.0102 - 0.0193 | 0.1228
0.0326 0.1916
. 0.0046 - 0.0449 -
Uncalibrated | 0.0058 0.0449 0.0422 - 0.049 | 0.0322 0.0316 - 0.0328 | 0.0484
0.0078 0.054
RF 0.0027 - 0.0303 -
Platt 0.0048 0.0331 0.0289 - 0.0374 | 0.0223 0.0195 - 0.0256 | 0.0366
0.0083 0.0442
. 0.0012 - 0.0111 -
Isotonic 0.0042 0.0144 0.0104 - 0.0184 | 0.0098 0.0071 - 0.0133 | 0.0201
0.0095 0.0329
0.017 - 0.076 -
Temperature | 0.0242 0.0318 0.0257 - 0.0378 | 0.0201 0.0109 - 0.0308 | 0.1024
0.0306 0.1339
. 0.0119 - 0.0716 -
Uncalibrated | 0.0135 0.0639 0.0592-0.069 | 0.0497 0.046 - 0.0534 | 0.0764
XGB 0.0152 0.0812
0.0074 - 0.0484 -
Platt 0.0092 0.0438 0.0382 - 0.0496 | 0.0307 0.0261 - 0.0371 | 0.0534
0.0112 0.0574
. 0.0044 - 0.0248 -
Isotonic 0.007 0.0241 0.0204 - 0.0294 | 0.0147 0.011-0.0194 | 0.0311
0.0096 0.0372
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0.0216 - 0.1089 -
Temperature | 0.0308 0.0385 0.0317 - 0.0444 | 0.0311 0.0268 - 0.0388 | 0.1453
0.04 0.1871
, 0.002 - 0.0204 -
Uncalibrated | 0.0065 0.0226 0.0157 - 0.0307 | 0.0214 0.0133-0.0299 | 0.0376
0.0132 0.061
SVM 0.0094 - 0.0668 -
Platt 0.0125 0.0594 0.0512 - 0.0664 | 0.0452 0.0312-0.0567 | 0.075
0.0174 0.0861
.0056 - 0376 -
Isotonic 0.0087 | %090~ 10 0337 0.0309 - 0.0365 | 0.0268 0.0221-0.0313 | 0.0442 | 20976
0.0128 0.052
0.0304 - 0.1266 -
Temperature | 0.0365 0.0426 0.0368 - 0.0484 | 0.0411 0.0322-0.05 | 0.1675
0.0412 0.2111
0.088 - 0.2912 -
Uncalibrated | 0.0944 0.0646 0.0575 - 0.0745 | 0.0571 0.0505 - 0.0637 | 0.3171
0.1002 0.34
LR 0.0906 - 0.3001 -
Platt 0.0957 0.0567 0.0446 - 0.0693 | 0.0645 0.0546 - 0.0746 | 0.3182
0.1007 0.3352
, 0.0842 - 0.2784 -
Isotonic 0.0905 0.055 0.0511 - 0.0589 | 0.0482 0.0415 - 0.0539 | 0.3018
0.0962 0.3194
0.0922 - 0.3062 -
Temperature | 0.0975 0.0593 0.0497 - 0.0697 | 0.056 0.0462 - 0.0655 | 0.3259
0.1027 0.3455
Uncalibrated | 01492 | 297 | 0146 0.1314-0.1649 | 0.1348 01191-0148 |151 | 2B%
ncalipbrate . 01634 . . -VU. . . - V. . 17586
NB 0.1201 - 0.4009 -
Platt 0.1291 0.0545 0.0407 - 0.0715 | 0.0942 0.0759 - 0.1117 | 0.4222
0.1381 0.4453
Isotoni 01196 | 21197 1 0621 0.0498 - 0.0784 | 0.0534 0.0425-0.0637 | 0.3839 | 0220~
sotonic . 01308 . . . . . . . 04166
0.1134 - 0.3869 -
Temperature | 0.1248 0.0741 0.0542 - 0.0893 | 0.0689 0.057-0.0771 | 0.4487
0.1382 05153

As shown in Figure 11, Brier score with 95% ClIs, tree
ensembles benefit the most from Isotonic. For Random
Forest, Brier drops from 0.0058 uncalibrated to 0.0042
with Isotonic, while Platt and Temperature are higher at
0.0048 and 0.0242. For XGBoost, Brier improves from
0.0135 uncalibrated to 0.0070 with Isotonic, with Platt

0.0092 and Temperature 0.0308. Naive Bayes shows a
large reduction relative to its baseline, 0.1492 uncalibrated
to 0.1196 with Isotonic. Support Vector Machine and K-
Nearest Neighbors are best Uncalibrated on Brier at
0.0065 and 0.0026 respectively, and Temperature is the
worst state for both.

Brier across Models and Calibration (95% CI from CV folds)

B=— 0.0026 Calibration
p— 0.0258 .
KNN = 0.0054 Isotonic
- 0.0044 Platt
B4 0.0058 Temperature
RF - T 0.0242 Uncalibrated
—— 0.0042
- 0.0065
SYM 00125|_| 0.0365
[ —— 0.0087
=l
[=}
0.0135
" xe8- I—I'-:)' 0092 00308
=i 0.007
——- 0.0944
LR 4 F—— 0.0975
F———- 0.0957
——- 0.0905
'Tz-m—' 0.1492
i 0
NB A - 0.1291
— 0.1196
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Brier

Figure 11: Brier score across models and calibration states with 95% Cls
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Turning to Figure 12, ECE (equal-width, K = 10),
Random Forest falls from 0.0449 uncalibrated to 0.0144
with Isotonic, and XGBoost from 0.0639 to 0.0241. Naive
Bayes improves from 0.146 to the 0.055-0.062 range under
Platt or Isotonic. KNN is already very low uncalibrated at
0.0039, and all calibrators increase uniform-ECE. SVM
shows mixed behavior, with Temperature giving a lower
uniform-ECE than Platt, yet Brier and Log Loss still favor
the uncalibrated state.

The sensitivity of ECE to the binning approach is clear
in Figure 13, ECE (equal-frequency, K = 10). Absolute
values are smaller and intervals are tighter because bins
carry similar counts. Random Forest improves from

near 0.0942. KNN remains best uncalibrated at 0.0039,
with Isotonic 0.0094 and Temperature 0.0148 above that.
SVM is lowest Uncalibrated at 0.0214 and rises under
calibration, Isotonic 0.0268, Temperature 0.0411, Platt
0.0452.

Likelihood trends in Figure 14, Log Loss with 95%
ClIs, reinforce the Brier score pattern with Temperature
worsening on most of the models. Random Forest moves
from 0.0484 uncalibrated to 0.0201 with Isotonic. XGBoost
drops from 0.0764 to 0.0311. Naive Bayes is most erratic,
1.51 uncalibrated to 0.3839 with Isotonic and 0.4222 with
Platt. KNN and SVM are best Uncalibrated at 0.0070 and
0.0376; Temperature increases loss across models.

0.0322 (uncalibrated) to 0.0098 with Isotonic, and  Logistic Regression improves modestly, 0.3171
XGBoost improves from 0.0497 to 0.0147. Naive Bayes  uncalibrated to 0.3018 with Isotonic.
drops from 0.1348 to 0.0534 with Isotonic, while Platt sits
ECE (uniform,10) across Models and Calibration (95% CI from CV folds)
0.0039 Calibration
KNN 00%[?8287 e Isotonic
0.0146 mem Platt
0.0226 . Temperature
SVM 0.0426 0.0594 W Uncalibrated
0.0 7
b 0.0449
RF 0.0331
] 0.0144
E=
g R 0.0639
XGB 40.0438
0.024
0.0555°%4¢
LR 0.0567
0.055
o 0.146
NB 0.0545 ’
0.0621
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
ECE (uniform,10)
Figure 12: Expected Calibration Error with equal-width bins, K = 10, across models and calibration states with 95% ClIs.
ECE (quantile,10) across Models and Calibration (95% CI from CV folds)
0.0039 Calibration
KNN 0.0148 0.0237 mm Isotonic
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Figure 13: Expected Calibration Error with equal-frequency bins, K = 10, across models and calibration states with 95% ClIs.
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Log Loss across Models and Calibration (95% Cl from CV folds)

Calibration
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e Platt
. Temperature
B Uncalibrated

KNN
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LR

1.51
NB

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
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Figure 14: Log Loss across models and calibration states with 95% Cls

The statistical check in Figure 15, Spiegelhalter's Z  for the uncalibrated state. Logistic Regression remains

and p, complements the aggregate metrics. Valuesnear Z  close to zero, Z from -0.16 to 0.41 with p = 0.49-0.68, in line

= 0 with p > 0.05 indicate no detectable miscalibration at
fold scale. Random Forest stays near zero across states
with p = 0.50-0.65, and XGBoost shows Z = 0.25-0.71 with
p = 0.40-0.81. Naive Bayes improves from Z = -3.14, p =

with small but consistent gains under Isotonic.

We further conducted a statistical comparison test
using permutation P-values between pre and post-

calibration metrics, setting the number of permutations to
20,000 and the number of bootstraps to 2,000. Table 10
reports

0.234 uncalibrated to Z = -0.08 to -0.18 with p =~ 0.54-0.69
after calibration, consistent with its large reductions in
Brier and Log Loss. KNN sits around Z = 0.66-1.05 with p
= 0.39-0.66, which matches its already strong Brier and
Log Loss when uncalibrated and the lack of benefit from
calibration. SVM shows Z = 0.02-0.67 and p =~ 0.38-0.56,
again echoing the mixed ECE behavior and the preference

changes calculated as calibrated minus
uncalibrated for each metric, where negative deltas
indicate

improvement, with permutation p-values

computed on fold-matched resamples.

Spiegelhalter's Z-Score

Spicgelhalter's Z p-value

K-Nearest Neighbors i 5 . 0.597

Logistic Regression ~OH k . 0.679

Naive Bayes

Maodel

Random Forest

- 0.4
Suppoert Vector Machine

- 0.3
XGBoost

Uncalibrated  Isotonic Platt

Calibration

Temperature Uncalibrated Isotonic Platt

Calibration

Temperature

Figure 15: Heatmaps of Spiegelhalter’s Z-score and p-value across models and calibration states. Values near zero with p above 0.05 indicate no
detectable miscalibration
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Table 10: Statistical comparison tests using Permutation P between pre and post-calibration metrics.

ECE
. . Brier . Permutation | ECE Permutation | Log

Calibration . (uniform, i i

Model A (Cal | Permutation 10) A p (ECE (quantile, | p (ECE Loss A | Permutation
odel | vs
] - p (Brier) (uniform, 10) A (Cal | (quantile, (Cal- | p(Log Loss)
Uncalibrated (Cal -
Uncal) 10) - Uncal) 10) Uncal)
Uncal)

Platt 0.0028 | 0.0626 0.0269 0.0632 0.0198 0.0624 0.0318 | 0.0682

Isotonic 0.0018 | 0.0608 0.0107 0.0684 0.0055 0.0638 0.0141 | 0.0624
KNN | Temperature | 0.0232 | 0.0633 0.0248 0.0637 0.0109 0.1284 0.1158 | 0.0618

Platt -0.001 | 0.2537 -0.0119 0.0601 -0.0099 0.0566 0.0118 | 0.0637

Isotonic 0.0016 | 0.3717 -0.0305 0.0612 -0.0224 0.0604 0.0283 | 0.0664
RF Temperature | 0.0184 | 0.0611 -0.0131 0.0605 -0.0121 0.1826 0.054 | 0.0604

Platt 0.0043 | 0.0654 -0.0202 0.0624 -0.019 0.0605 0.0231 | 0.0611

Isotonic 0.0065 | 0.0613 -0.0398 0.064 -0.0349 0.0625 0.0453 | 0.0612
XGB Temperature | 0.0173 | 0.0616 -0.0254 0.0642 -0.0185 0.1278 0.0688 | 0.0632

Platt 0.006 | 0.06 0.0368 0.0626 0.0238 0.0637 0.0374 | 0.0625

Isotonic 0.0022 | 0.3037 0.0111 0.0618 0.0054 0.1889 0.0065 | 0.4374
SVM Temperature | 0.03 0.0622 0.02 0.1236 0.0197 0.1863 0.1299 | 0.0634

Platt 0.0013 | 0.0637 -0.0079 0.1285 0.0074 0.1236 0.0011 | 1

Isotonic 0.0039 | 0.0644 -0.0096 0.0611 -0.0089 0.1241 0.0153 | 0.0637
LR Temperature | 0.0031 | 0.1859 -0.0053 0.5643 -0.0011 0.8708 0.0088 | 0.0625

Platt 0.0201 | 0.0589 -0.0915 0.0619 -0.0406 0.0632 1.0878 | 0.0628

Isotonic 0.0296 | 0.0589 -0.0838 0.063 -0.0814 0.0599 -1.126 | 0.0612
NB Temperature | 0.0244 | 0.0609 -0.0719 0.0662 -0.0659 0.0633 1.0613 | 0.0622

For Random Forest, Isotonic delivers coherent gains
across all metrics, for example ECE with equal-width bins
falls by 0.0305 and ECE with equal-frequency bins by
0.0224 with p about 0.06, and Log Loss drops by 0.0283
with similar uncertainty. XGBoost shows the same
direction with larger magnitudes, ECE with equal-width
bins by 0.0398, ECE with equal-frequency bins by 0.0349,
and Log Loss by 0.0453, all with p near 0.06.Naive Bayes
exhibits the largest changes in this study, moving from
poor raw calibration to materially lower error after
Isotonic, Brier decreases by 0.0296, ECE with equal-width
by 0.0838, ECE with equal-frequency by 0.0814, and Log
Loss by 1.126, again with p around 0.06.

In contrast, K-Nearest Neighbors and Support Vector
Machine are best left uncalibrated, since all calibrators

raise error on most metrics, for example KNN Log Loss
increases by 0.0318 with Platt and by 0.1158 with
Temperature, while SVM ECE with equal-width increases
by 0.0368 with Platt and by 0.020 with Temperature.
Logistic Regression shows only small, mostly favorable
shifts under Isotonic, for example ECE with equal width
decreases by 0.0096 and Log Loss by 0.0153, while Platt
and Temperature are mixed or neutral. The p-values
cluster near 0.06, so the direction and coherence across
metrics carry the interpretation. Where effects are large
and consistent, as in Naive Bayes and the two ensembles
with Isotonic, the conclusion is strong. Where effects are
small or mixed, as in Logistic Regression, claims should
be conservative.
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To explore the relationship between calibration and
prediction quality, we plotted Expected Calibration Error
(ECE) against the Brier Score for all model-calibration
combinations (Figure 16-17). Ideally, well-calibrated and
accurate models should lie close to the diagonal line,
where ECE and Brier Score are proportionally aligned.
We plotted ECE (uniform, K = 10) against the Brier score
for every model-calibration pair, with a 45° reference line
for proportional agreement (Figure 16). Points in the
lower left indicate both low Brier and low ECE. XGBoost
and Random Forest cluster close to this region under
isotonic and Platt, consistent with the grouped bar results
that showed small Brier and small ECE after calibration.
Logistic Regression sits mid-left, where Brier is modest
and ECE varies by method, with isotonic typically lowest.
K-Nearest Neighbors and Support Vector Machine show
larger spread, and their uncalibrated states lie below the
diagonal with small Brier but noticeably higher ECE,
matching their reliability curves that showed local
miscalibration at low and mid probabilities. Naive Bayes

forms the upper-right cloud, reflecting both high Brier
and high ECE when uncalibrated, with clear leftward and
downward shifts after calibration.

Repeating the plot with quantile binning reduces ECE
values across most points while preserving the relative
ordering (Figure 17). This mirrors the sensitivity analysis
where quantile ECE was systematically lower than
uniform ECE. Tree models remain in the lower-left
quadrant, Logistic Regression is slightly shuffled &
moves closer to the diagonal under isotonic, and KNN
continues to show higher ECE than its Brier alone would
suggest in the uncalibrated and Platt states. Naive Bayes
still separates from the rest, but calibration methods shift
it downward and left. The consistency of these patterns
across both binning schemes supports the conclusion that
models with better Brier also tend to have better
calibration, while ECE exposes cases where apparently
small Brier can hide meaningful miscalibration.

Calibration Comparisan: Brier Score vs ECE (uniform,10)
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Figure 16: Calibration comparison, Brier score vs ECE (uniform, K = 10). Each point represents one model-calibration pair. The dashed line marks

proportional equality between the two metrics.
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3.5. Sharpness of predicted probabilities

Sharpness, measured as the variance of predicted
probabilities, summarizes how concentrated a model’s
probabilities are. Larger variance means more confident
smaller variance means flatter,

predictions; more

conservative outputs.

Across all conditions, KNN is the sharpest. The
uncalibrated KNN attains the highest variance at 0.249,
and remains high after calibration, 0.240 with isotonic and
0.230 with temperature, with a modest reduction under
Platt to 0.223. Tree ensembles are also highly sharp, but
their behavior differs by calibration method. Random
Forest rises from 0.211 uncalibrated to 0.239 with isotonic,
with smaller values for Platt (0.222) and temperature
(0.226). XGBoost pattern, 0.196
uncalibrated, 0.231 isotonic, 0.214 temperature, 0.212
Platt. These results indicate that isotonic leaves ensemble

shows a similar

predictions are confident, while Platt and temperature
introduce mild smoothing.

For margin-based and linear models, calibration
tends to smooth more. SVM drops from initial 0.232
to 0223 with 0.207 with
temperature, and 0.199 with Platt. Logistic Regression
falls from 0.157 uncalibrated to 0.164 isotonic, 0.150
temperature, and 0.139 Platt. Naive Bayes exhibits the
largest reduction, from 0.229 uncalibrated to 0.166

uncalibrated isotonic,

temperature, 0.134 isotonic, and 0.102 Platt, consistent
with its strong decrease in ECE and Log Loss in Table 9.

Isotonic often preserves or slightly increases

sharpness for the ensembles while reducing ECE and Log
Loss, suggesting better-positioned confidence without

blunting predictions. Also, Platt and temperature
systematically soften LR, SVM, and NB, which can be
desirable when the uncalibrated model is overconfident,
as evidenced by their reliability curves in Figure 6-9 and
Spiegelhalter’s statistics in Figure 15.

4. Interpretation of Results

This study demonstrates the impact of post-hoc
calibration methods on model confidence, calibration
quality, and statistical reliability in heart disease
prediction. Isotonic regression remained the most
effective calibrator for several models, but its advantage
was model-dependent. In our cross-validated analysis,
Random Forest, XGBoost, Logistic Regression, and Naive
Bayes showed consistent improvements under isotonic
calibration across Brier, ECE, and Log Loss, while
Support Vector Machine and K-Nearest Neighbors were
best left uncalibrated on the calibration metrics and
likelihood, with temperature scaling often worsening
discrimination. These conclusions are supported by the
grouped calibration plots with 95% confidence intervals
and the permutation tests that compare calibrated to
uncalibrated fold by fold (Tables 8-10, Figures 11-15). As
an illustration, Random Forest's ECE and Log Loss
decrease substantially under isotonic relative to
uncalibrated in the grouped plots, and Naive Bayes
exhibits the largest drops among all models. These effects
are mirrored by near-zero Spiegelhalter Z with higher p
after calibration in several models, which indicates no
detectable miscalibration at fold scale while recognizing
that non-significant p does not prove perfect calibration

[61].
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Figure 18: Sharpness of predicted probabilities (variance) across models and calibration methods.
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These findings support the theory that sigmoid
calibration is most suitable when miscalibration is close to
a logistic shift, whereas isotonic regression can correct
distortions [7], [9].
Temperature scaling provides a single-parameter softness

more complex, monotone
control, but it shifts Accuracy and F1 across all models
and frequently increased Log Loss, so it should be applied
with caution here [5]. The comparative nature of our
analysis is crucial. We based inferences on cross-validated
fold means with confidence intervals, and on paired
permutation tests that quantify whether calibrated
metrics are better than uncalibrated under the matched
fold design, directly addressing requests for statistical
comparison rather than isolated point estimates.

In clinical applications, where predicted risks inform
communication and thresholds, miscalibrated models can
convey inappropriate levels of confidence, complicating
risk discussions and the consistency of threshold-based
decisions without necessarily improving patient-level
utility. For example, Naive Bayes before calibration
produced extreme probabilities with poor alignment to
outcomes, which post-calibration corrected, lowering
Brier and Log Loss and improving Z and p toward values
consistent with good calibration. This highlights the need
for calibration pipelines in Al-assisted diagnostics to
improve trustworthiness and reduce the risk that
[72].
Reliability diagrams built from out-of-fold predictions

probability outputs misrepresent uncertainty
with Wilson intervals and per-bin counts further illustrate
these corrections while avoiding test-set leakage [5][56].
Together with the sharpness analysis, this shows when
confidence is well in line with observed risk and when it
is not.

A key methodological contribution is the joint use of
multiple calibration summaries, guidance on clinical
presentation of calibration and reporting practices
supports this multi-metric approach [52]. Previous work
often reported only one metric such as Brier or ECE [5],
[73]. We combined Brier, ECE, Log Loss, Spiegelhalter’s
Z, p-value, and Sharpness across six classifiers, and we
visualized their relationships with grouped plots and
Brier versus ECE scatterplots. The scatterplots show that
points move down and left after isotonic for the tree
ensembles and Naive Bayes, indicating lower calibration
error and lower probabilistic loss, while SVM and KNN
tend to cluster closer to their uncalibrated states,
consistent with their preference to remain uncalibrated.
The ECE sensitivity analysis confirms that equal-
frequency binning yields smaller ECE than equal-width

on average, with a positive median difference and a
paired test p below conventional threshold. We therefore
report both ECE variants, interpret their magnitudes
cautiously, and base primary claims on the convergence
of multiple metrics rather than a single summary [5], [56].

Another contribution of this work is a reproducible
evaluation framework for post-hoc calibration in binary
heart disease prediction that couples strict leakage control
with fold-conscious uncertainty and paired comparative
testing. Some models, notably Naive Bayes and Random
Forest, benefit substantially from isotonic calibration,
while others, such as KNN and SVM, do not. By
introducing sharpness alongside calibration, we examine
correctness and the confidence dispersion, which is
essential for risk stratification and model auditability [74].
Throughout, all preprocessing, threshold selection by
Youden’s | inside an inner loop, and calibration were fit
on training data only, never on the test set, which reduces
optimistic bias and supports statistically valid inference
[44], [75], [76].

From an operational standpoint, the calibration
procedures used here are lightweight and feasible to
maintain. Platt and temperature scaling add negligible
compute at inference and only a small fit cost on held-out
training predictions, while isotonic regression remains
inexpensive at structured clinical feature data. For
integration, the same nested cross-validated approach can
be embedded in routine retraining to provide continuous
calibration as data drift is detected, for example by
monitoring ECE and Log Loss on recent cases and
triggering recalibration when control limits are exceeded.
Because probability calibration can change subgroup
error profiles, fairness should be checked pre and post-
calibration, for instance by reporting calibration curves,
ECE, and Brier stratified by demographic groups, and by
tracking stability under distribution shift. In our setting,
the per-model recommendations are actionable, isotonic
for tree ensembles and Naive Bayes, uncalibrated for
SVM and KNN, and cautious use of temperature scaling.
This preserves inference speed and aligns with a periodic
recalibration policy that is straightforward to implement
in clinical pipelines.

This study is limited by the size of the dataset
(N=1,025), which can increase variability in binned
metrics and in Z, even with Wilson intervals and cross-
validated designs. We did not include an external cohort,
to be
independent populations. We focused on Platt, Isotonic,

so generalizability remains confirmed on

and Temperature, leaving alternatives such as beta
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calibration or Bayesian binning to future work. We also
did not include decision-curve analysis in the main
results, which would connect calibrated probabilities to
clinical net benefit and we did not integrate model
interpretability or explainability analysis. Future research
should extend the framework to external and temporal
validation, add decision-curve analysis under fixed
thresholds selected by Youden's ], evaluate alternative
calibrators, and incorporate explainability to link
calibrated risk with feature attributions in support of
clinical review.

5. Conclusion

This study evaluated the calibration performance of
six classification models for heart disease prediction using
post-hoc techniques and multiple uncertainty metrics.
While several models achieved strong discrimination,
their probability estimates were not always aligned with
observed outcomes. This confirms the need to assess
probability quality in addition to accuracy and AUC
ROC.

Across methods and models, post-hoc calibration
improved probability alignment in a model-dependent
way. Isotonic regression yielded the most consistent gains
in Brier score, ECE, and Log Loss for Random Forest,
XGBoost, Logistic Regression, and Naive Bayes, with
verified under cross-validated

effects estimation,

bootstrap intervals, and paired permutation tests.
Spiegelhalter’'s Z and p provided complementary
evidence for absolute calibration, interpreted cautiously
given sample size. In contrast, Support Vector Machine
and K-Nearest Neighbors were best left uncalibrated on
these metrics. Temperature scaling was included for
completeness, but in this setting, it often increased Log

Loss and affected discrimination.

The study contributes a reproducible calibration-
evaluation framework for structured clinical predictors.
Preprocessing, threshold selection via Youden'’s ], and all
calibrators were fit on training data within cross-
validation, then applied to matched validation folds and
only finally to the held-out test set. Reliability diagrams
were built from out-of-fold predictions with Wilson
intervals and bin counts. ECE was reported in two
variants, equal-width and equal-frequency, and a paired
sensitivity analysis showed lower values under quantile
binning without changing the qualitative ranking.
Sharpness was calibration to

reported alongside

characterize confidence concentration, helping to

interpret when improvements reflect better aligned
probabilities rather than simple smoothing.

These results indicate that isotonic calibration is a
strong default for tree ensembles and Naive Bayes under
this workflow, that Logistic Regression benefits from
Isotonic, and that SVM and KNN may not require
calibration. The framework balances calibration and
discrimination by using a single threshold per model
chosen with Youden’s ] inside the training folds, which
stable
recommendation is to evaluate calibration routinely with

mirrors a operating policy. The overall
fold-aware uncertainty, to select the calibration method
by empirical evidence on the target data, and to deploy

periodic recalibration with monitoring for drift.
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