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Editorial 
As enterprises and critical infrastructures become increasingly data-driven and interconnected, 
the demands placed on integration architectures, physical system reliability, and trustworthy 
analytics continue to intensify. The three papers featured in this editorial re�lect how 
contemporary research is addressing these demands through vendor-agnostic digital 
frameworks, rigorous experimental validation of power system components, and statistically 
grounded evaluation of machine learning models in healthcare. Although spanning distinct 
domains, each study emphasizes robustness, transparency, and practical decision support under 
real-world constraints. 

The �irst paper addresses the growing complexity of multi-cloud enterprise environments and the 
limitations of vendor-locked integration models. By proposing a comprehensive vendor-agnostic 
architecture built on Boomi and SAP Business Technology Platform, the study demonstrates how 
resilient integration �lows can be deployed across AWS, Google Cloud Platform, Azure, and Oracle 
Cloud Infrastructure. Through detailed design principles, governance models, and comparative 
analysis of cloud-native capabilities, the work shows how interoperability, security, and 
compliance can be maintained without sacri�icing agility or performance. Practical evaluations of 
common enterprise work�lows further illustrate how the proposed framework reduces technical 
debt, optimizes costs, and accelerates digital transformation. The forward-looking discussion on 
AI-driven integration, federated observability, and zero-trust pipelines positions the contribution 
as both technically actionable and strategically future-ready [1]. 

The second contribution shifts focus to power system protection, presenting an experimental 
investigation into the short-circuit behavior of metal oxide surge arresters under severe fault 
conditions. By testing pre-faulted 36 kV arresters at rated and extreme short-circuit currents, the 
study provides insights that cannot be reliably obtained through simulation alone. The results 
demonstrate the arresters’ ability to relieve internal pressure, extinguish �lames rapidly, and 
prevent enclosure rupture and hazardous component dispersal. This empirical analysis offers 
valuable guidance for both designers and end users, strengthening con�idence in arrester 
performance and safety under real fault scenarios [2]. 

The third paper examines the trustworthiness of machine learning predictions in clinical 
decision-making by focusing on probabilistic calibration rather than discrimination alone. Using 
a structured heart-disease dataset, the study rigorously evaluates multiple classi�iers and post-
hoc calibration methods under a leakage-controlled work�low. The �indings show that isotonic 
regression consistently improves probability quality for several widely used models while 
preserving discriminatory power, whereas other calibration techniques may degrade 
performance in certain cases. By combining diverse calibration metrics, statistical testing, and 
reliability visualization, the research provides a reproducible framework for selecting calibration 
strategies that enhance clinical interpretability and risk communication [3]. 

Together, these three studies highlight a shared commitment to building systems that are resilient, 
interpretable, and operationally reliable. Whether enabling seamless integration across 
heterogeneous cloud platforms, ensuring the physical safety of power system components under 
extreme conditions, or improving the trustworthiness of predictive models in healthcare, each 
contribution advances its �ield through rigorous methodology and practical relevance. 
Collectively, they underscore the importance of transparency, validation, and adaptability in 
designing digital and physical systems that support informed decision-making in complex, real-
world environments. 
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Cristian-Eugeniu Sălceanu, Daniela Iovan and Daniel-Constantin Ocoleanu 

15 

Model Uncertainty Quanti�ication: A Post Hoc Calibration Approach for Heart 
Disease Prediction 
Peter Adebayo Odesola, Adewale Alex Adegoke and Idris Babalola 

25 

ix



 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(12): 1-14, 2025                                            1 

Received: 15 October 2025, Revised: 27 November 2025, Accepted: 29 November 2025, Online: 8 December 2025  

DOI: https://doi.org/10.55708/js0412001  

 

 

A Vendor-Agnostic Multi-Cloud Integration Framework Using Boomi 
and SAP BTP 
Padmanabhan Venkiteela*  
Senior Enterprise Architect- Integrations, IEEE Member, Trellix, Texas, USA  
*Corresponding author: Padmanabhan Venkiteela, padmanabham.research@gmail.com  
 

ABSTRACT: The shift toward multi-cloud strategies has made a vendor-agnostic integration 
framework indispensable for seamlessly orchestrating workflows across heterogeneous platforms. 
Modern enterprises increasingly rely on a mix of cloud ecosystems leveraging Amazon Web Services 
(AWS) for elasticity, Google Cloud Platform (GCP) for advanced AI/ML capabilities, Azure Cloud and 
Oracle Cloud Infrastructure (OCI) for critical enterprise workloads while simultaneously adopting 
best-of-breed integration technologies like Boomi and SAP Business Technology Platform (BTP). 
However, traditional integration models, which are often siloed by vendor lock-in or constrained by 
legacy middleware, fundamentally fail to deliver the agility, scalability, and strict compliance 
demanded by today's digital enterprises. This paper addresses this challenge by proposing a 
comprehensive vendor-agnostic architectural framework for designing and deploying resilient 
integration flows using Boomi and SAP BTP across AWS, GCP, Azure, and OCI. The research 
meticulously details the necessary design principles, technical patterns, and robust governance models 
required to ensure full interoperability, security, and resilience across these disparate cloud providers. 
Through a comparative analysis of key cloud-native capabilities including networking, identity 
management, observability, and workload orchestration the study demonstrates how organizations 
can achieve significant cost optimization, drastically reduce technical debt, and accelerate digital 
transformation without compromising on either compliance or performance. The key contributions of 
this work are three-fold: (i) the introduction of a unified reference architecture for Boomi and SAP BTP 
integration across multi-cloud environments; (ii) a practical evaluation of integration strategies for 
common enterprise workflows, such as Opportunity-to-Order (O2O), ERP-to-CRM synchronization, 
and B2B partner onboarding; and (iii) forward-looking insights into emerging directions, including AI-
driven integration, federated observability, and zero-trust security enforcement in multi-cloud 
pipelines. By conclusively demonstrating that vendor-agnostic integration is both technically feasible 
and strategically advantageous, this paper provides a clear, actionable roadmap for enterprises 
committed to building resilience and agility within their complex digital ecosystems. 

KEYWORDS: Vendor-Agnostic Integration, Boomi, SAP BTP, AWS, GCP, Oracle Cloud, Microsoft 
Azure, Multi-Cloud Integration, Enterprise Integration, Zero-Trust Security 

 

1. Introduction 

The adoption of a multi-cloud strategy has evolved 
from a tactical choice to a strategic imperative in today’s 
enterprise landscape. Organizations are deliberately 
leveraging the differentiated strengths of major cloud 
providers Amazon Web Services (AWS) for elastic 
compute and storage, Google Cloud Platform (GCP) for 
advanced artificial intelligence and analytics, and Oracle 

Cloud Infrastructure (OCI) for specialized, mission-critical 
enterprise workloads. While this diversification enhances 
cost optimization, innovation, and operational resilience, 
it simultaneously introduces significant complexity in 
integrating systems across heterogeneous environments. 
This complexity is further compounded by the need for 
enterprises to modernize their integration layers, shifting 
away from monolithic middleware architectures toward 
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agile, cloud-native platforms such as Boomi and the SAP 
Business Technology Platform (BTP). 

Traditional integration approaches, which rely on 
vendor-proprietary middleware, are not designed to 
perform effectively within distributed, multi-cloud 
ecosystems. These legacy frameworks inevitably lead to 
vendor lock-in, restrict scalability, and inhibit innovation. 
More critically, they fail to address contemporary 
enterprise requirements for zero-trust security, 
compliance-driven data protection, and real-time 
analytics. Consequently, for organizations undergoing 
digital transformation whether prompted by mergers, 
divestitures, or evolving regulatory mandates the need for 
integration solutions that are both vendor-agnostic and 
cloud-portable has become urgent and unavoidable. 

This research is motivated by the growing necessity to 
design resilient, interoperable, and future-proof 
integration flows that seamlessly span multiple clouds 
without dependency on a single provider. By focusing on 
Boomi and SAP BTP Integration Suite as the foundational 
platforms, this paper investigates how enterprises can 
architect workflows that synchronize essential business 
systems including ERP, CRM, CPQ, and B2B platforms 
across AWS, GCP, and OCI. The study places particular 
emphasis on high-impact uses cases such as the 
Opportunity-to-Order (O2O) workflow, ERP-to-CRM 
synchronization, and partner onboarding within digital 
supply chains, where performance, compliance, and 
governance are mission-critical factors. 

The primary objectives of this study are threefold. First, 
it proposes a unified reference architecture that 
demonstrates how Boomi and SAP BTP can be effectively 
utilized in tandem across multi-cloud environments. 
Second, it evaluates integration patterns and governance 
models that support interoperability, scalability, and 
resilience in hybrid and multi-cloud ecosystems. Third, it 
analyzes emerging trends including AI-driven 
automation, federated observability, and multi-agent 
orchestration that are expected to define the next phase of 
vendor-agnostic integration. Ultimately, this paper 
contributes to both academia and industry by bridging the 
gap between theoretical frameworks and practical, large-
scale transformation programs. The insights derived from 
this research are particularly relevant for enterprise 
architects, integration leaders, and decision-makers 
seeking to align IT landscapes with business agility while 
strategically minimizing vendor dependency. 

2. Background and Literature Review 

2.1. Evolution of Enterprise Integration 

Enterprise integration has traditionally depended on 
monolithic middleware platforms such as Oracle SOA 
Suite, IBM WebSphere, and TIBCO Business Works. These 

platforms offered strong capabilities for process 
orchestration, messaging, and enterprise service bus (ESB) 
management but were primarily optimized for on-
premises environments. As enterprises increasingly 
adopted cloud computing, legacy integration models 
struggled to accommodate elastic scalability, distributed 
architectures, and API-first design principles. In response, 
the industry experienced a shift toward cloud-native 
integration solutions, particularly Integration Platform-as-
a-Service (iPaaS) offerings such as Boomi, MuleSoft, and 
SAP BTP Integration Suite. These modern platforms 
abstract integration complexity by providing low-code 
design tools, API lifecycle management, and pre-built 
connectors for SaaS, ERP, and CRM systems. Gartner’s 
Magic Quadrant for Enterprise iPaaS continues to 
highlight this evolution, emphasizing speed, agility, and 
interoperability as defining characteristics of successful 
integration ecosystems [1]. 

2.2. Boomi as a Multi-Cloud Integration Enabler 

Boomi, originally a Dell Technologies subsidiary until 
2021, has emerged as a market leader in the iPaaS domain 
by emphasizing simplicity, flexibility, and hybrid 
deployment. Its unified platform consolidates API 
management, application integration, B2B/EDI, and 
Master Data Hub within a single environment. A 
distinguishing feature of Boomi lies in its low-code, drag-
and-drop development environment [2], which 
accelerates integration design and reduces reliance on 
specialized developers. The platform supports true multi-
cloud deployment through runtime engines such as Atom, 
Molecule, and Atmosphere, all of which can operate 
seamlessly on AWS, GCP, Azure, OCI, or on-premises 
infrastructure. Boomi’s preconfigured B2B/EDI templates 
streamline partner onboarding and supply chain 
processes, making it especially valuable for industries 
with complex ecosystems. Recent research underscores 
Boomi’s capability to bridge leading SaaS platforms like 
Salesforce and Workday with enterprise backbones such 
as SAP S/4HANA, reinforcing its strategic role in digital 
transformation initiatives across healthcare, financial 
services, and manufacturing sectors. 

2.3. SAP Business Technology Platform (BTP) Integration 
Suite 

The SAP BTP Integration Suite serves as SAP’s cloud-
native solution for connecting SAP and non-SAP 
applications across distributed enterprise environments 
[3], [4], [5]. Its comprehensive API management and 
governance capabilities facilitate full lifecycle control, 
including policy enforcement for throttling, 
authentication, and monetization. The platform includes 
over 2,000 pre-built integration packages supporting both 
SAP modules such as S/4HANA, SuccessFactors, and 
Ariba and third-party applications. A standout feature of 

http://www.jenrs.com/
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SAP BTP is its Event Mesh, which enables event-driven 
architectures using publish/subscribe models across 
multi-cloud ecosystems. In addition, SAP BTP enforces 
strong security and compliance standards, offering native 
support for OAuth 2.0, SAML, and regulatory frameworks 
including GDPR and HIPAA. Enterprises typically 
employ SAP BTP for SAP-centric integrations while 
complementing it with Boomi for broader, cross-platform 
interoperability. As a result, Boomi and SAP BTP often 
function as complementary platforms rather than 
competitive offerings, enabling cohesive hybrid 
integration landscapes that balance vendor flexibility and 
SAP alignment [6]. 

2.4. Multi-Cloud Ecosystem Overview 

The broader cloud ecosystem significantly influences 
enterprise integration strategies. Amazon Web Services 
(AWS) remains the dominant public cloud provider, 
offering elastic compute services through EC2, serverless 
integration via Lambda, and orchestration through API 
Gateway and Step Functions [7]. Its advanced networking 
capabilities, such as VPC Peering and Private Link, form 
the backbone of secure multi-cloud communications. In 
contrast, Google Cloud Platform (GCP) differentiates itself 
with artificial intelligence and machine learning 
capabilities, particularly through services like Vertex AI 
and TensorFlow, as well as API management via Apigee 
X and analytics through Big Query [8], [9]. This makes 
GCP especially well-suited for data-driven workflows that 
require real-time insights and predictive intelligence. 
Oracle Cloud Infrastructure (OCI), meanwhile, is 
optimized for high-performance enterprise workloads 
and offers robust capabilities in database, ERP, and 
analytics services [10], [11]. OCI’s focus on cost efficiency, 
hybrid deployment, and data sovereignty makes it 
particularly appealing to regulated sectors such as finance, 
healthcare, and government. Together, these three 
platforms represent the multi-cloud foundation upon 
which modern integration strategies are architected [12], 
[13].  

2.5. Literature Gaps and Research Motivation 

Despite the significant evolution of integration 
technologies, notable gaps persist in the literature 
concerning vendor-agnostic models operating across 
hybrid and multi-cloud environments. First, vendor lock-
in remains a prevalent challenge, as most integration 
frameworks are still designed around single-vendor 
ecosystems. Second, comparative studies examining 
integration patterns and performance across AWS, GCP, 
and OCI remain limited, restricting insights into the 
operational complexities of cross-cloud architectures. 
Third, governance and security dimensions particularly 
zero-trust enforcement, compliance automation, and 
federated observability have not been adequately 

explored in heterogeneous integration pipelines. Finally, 
the integration of AI and automation into enterprise 
integration frameworks remains an emerging area of 
study, with insufficient research on AI-driven flow 
optimization and autonomous monitoring. Addressing 
these gaps, this paper proposes a vendor-agnostic 
reference architecture and presents practical integration 
scenarios that span SAP-centric, SaaS, and multi-cloud 
ecosystems, thereby contributing both theoretical depth 
and practical relevance to the evolving field of enterprise 
integration. 

3. Vendor-Agnostic Integration Framework 

3.1. Design Principles 

A vendor-agnostic integration framework must be 
architected to address the challenges of interoperability, 
scalability, security, and governance across heterogeneous 
cloud environments. The first guiding principle, 
Interoperability First, emphasizes the capability to deploy 
and operate integration flows consistently across AWS, 
GCP, and OCI without the need for significant 
architectural redesign [14]. The second principle, API-
Centric Architecture, focuses on exposing business 
processes such as Opportunity-to-Order (O2O) or ERP-to-
CRM workflows through reusable APIs. This promotes 
modularity and reusability while reducing tight coupling 
between systems. The third principle, Hybrid Runtime 
Flexibility, allows enterprises to leverage Boomi Atoms 
and Molecules alongside SAP BTP Cloud Integration 
runtimes in containerized or serverless deployment 
modes that can run seamlessly across multiple clouds. The 
fourth principle, Security by Design, ensures that the 
framework incorporates zero-trust networking, mutual 
TLS, and token-based authorization while integrating 
with native identity management systems such as AWS 
IAM, GCP IAM, and OCI Identity. The fifth principle, 
Observability and Governance, requires that monitoring, 
logging, and auditability be embedded directly into 
integration runtimes, utilizing federated observability 
tools such as Splunk, Datadog, or native cloud monitoring 
services. Finally, Resilience and Portability are achieved 
by decoupling integration logic from infrastructure 
dependencies, thereby ensuring that workloads remain 
portable and easily adaptable across different cloud 
environments. 

3.2. Framework Layers 

The proposed vendor-agnostic integration framework 
is composed of five interdependent layers, each serving a 
specific function in enabling secure, scalable, and 
interoperable integrations, as depicted in Figure 1. The 
Connectivity Layer establishes secure communication 
with SaaS, ERP, CRM, and partner systems by leveraging 
Boomi’s pre-built connectors and SAP’s packaged 
integration content. The Integration Runtime Layer 

http://www.jenrs.com/
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executes integration flows through Boomi Atoms and 
Molecules or SAP BTP Cloud Integration runtimes. These 
can be deployed on AWS Elastic Kubernetes Service (EKS) 
and Lambda, Google Kubernetes Engine (GKE) and Cloud 
Run, or Oracle Kubernetes Engine (OKE) and Functions, 
providing full deployment flexibility. The API and Event 
Layer serves as a unified interface for exposing integration 
logic as APIs and event streams, utilizing technologies 
such as Apigee X, SAP API Management, or Boomi API 
Gateway. The Security and Governance Layer implements 
cross-cloud identity management, encryption, and 
compliance controls aligned with international standards, 
including GDPR, HIPAA, and SOC 2. Finally, the 
Observability Layer integrates performance monitoring 
and operational metrics into federated dashboards that 
connect with enterprise SIEM and SOAR systems, 
providing comprehensive visibility and governance 
across all integration environments. 

The Figure 1 illustrates a unified multi-cloud 
integration architecture where AWS, GCP, and OCI are 
connected through central orchestration engines powered 
by Boomi and SAP BTP. Each cloud provides its own 
connectivity layer such as API Gateways, Functions, 
Kubernetes services, and dedicated network links while 
the integration runtime coordinates cross-cloud 
workflows and data flows. An API/Event layer enables 
standardized communication using Event Bridge, 
Pub/Sub, and identity federation, supported by a security 
and governance layer with IAM, Guard Duty, and VPC 
controls. At the top, observability tools like CloudWatch, 
X-Ray, and Logging Analytics deliver end-to-end 
monitoring through a unified dashboard. Overall, the 
architecture provides a secure, governed, and centrally 
managed framework for seamless multi-cloud 
interoperability. 

3.3. Integration Patterns 

The framework supports three primary integration 
patterns that enable enterprises to execute workflows 
effectively across multi-cloud environments. The 
Orchestration Pattern provides centralized management 
of complex workflows such as the Opportunity-to-Order 
process ensuring complete visibility and end-to-end 
traceability. The Choreography Pattern, in contrast, 
enables decentralized and event-driven interactions, 
where services communicate asynchronously. This model 
is well-suited for dynamic use cases such as partner 
onboarding and real-time supply chain updates. The 
Hybrid Pattern combines elements of orchestration and 
choreography, employing centralized control for mission-
critical processes while maintaining event-driven 
flexibility for agile and real-time operations. Together, 
these patterns allow enterprises to tailor their integration 
approach based on workload type, business priority, and 
latency sensitivity. 

 
Figure 1: Vendor-Agnostic Integration Framework 

3.4. Benefits of Vendor-Agnostic Approach 

The adoption of a vendor-agnostic integration 
framework delivers several strategic benefits. By 
abstracting integration logic from cloud-specific services, 
enterprises can minimize vendor lock-in and gain the 
flexibility to shift workloads among AWS, GCP, and OCI 
based on cost optimization, performance, or strategic 
considerations. This approach also enhances resilience, as 
cross-cloud failover and disaster recovery can be 
implemented seamlessly, mitigating risks associated with 
provider outages. From a performance standpoint, 
deploying integration logic closer to data sources reduces 
latency and improves responsiveness. Furthermore, a 
vendor-agnostic model strengthens strategic agility, 
empowering enterprises to adopt best-of-breed services 
from each cloud provider without being constrained by 
proprietary limitations. In essence, the framework 
provides a foundation for interoperability, scalability, and 
continuous innovation enabling organizations to thrive in 
the evolving multi-cloud ecosystem. 

4. Architecture and Flow Design 

4.1. High-Level Architecture 

The proposed architecture positions Boomi and SAP 
BTP Integration Suite as complementary platforms that 
collaboratively orchestrate enterprise workflows across 
heterogeneous multi-cloud environments, including 
AWS, GCP, and OCI. At its foundation, the framework 
designs integration flows as loosely coupled APIs and 
event-driven services, deployed within cloud-native 
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runtimes such as AWS Lambda, GCP Cloud Run, and OCI 
Functions. Boomi runtime deployments utilize Atoms for 
single-tenant and Molecules for clustered environments, 
both of which can be containerized and executed on 
Kubernetes clusters such as Amazon EKS, Google GKE, or 
Oracle OKE. These deployments also support serverless 
configurations, ensuring flexibility and portability across 
different cloud infrastructures. SAP BTP runtimes, on the 
other hand, extend pre-packaged SAP integration flows 
through APIs and Event Mesh, enabling seamless 
interoperability between SAP and non-SAP workloads. 
Cross-cloud API exposure is achieved through API 
gateways such as Apigee X, AWS API Gateway, SAP API 
Management, or Boomi API Gateway, ensuring 
consistent, secure access and unified governance across all 
integration endpoints [15], [16] . 

This figure 2 represents an end-to-end multi-cloud 
integration landscape where Boomi and SAP BTP act as 
central orchestration engines connecting partner systems, 
ERP, CRM, and CPQ platforms across AWS, GCP, and 
OCI. Partner systems integrate through B2B gateways into 
Boomi, which coordinates flows with SAP BTP under a 
unified security and governance layer. Each cloud hosts 
key business systems SAP S/4HANA on AWS, Salesforce 
CRM on GCP, and the CPQ system on OCI exposed 
through their respective API Gateways, serverless 
functions, and Kubernetes environments. Observability 
and monitoring link all workloads back to the central 
platforms, while a shared Data & API Catalog ensures 
consistent discovery and management across the 
ecosystem. Overall, it illustrates a secure, governed, and 
centrally managed architecture enabling seamless 
interoperability between enterprise applications deployed 
across multiple clouds. 

4.2. Flow Design for Key Enterprise Use Cases 

4.2.1. Opportunity-to-Order (O2O) Workflow 

The Opportunity-to-Order process typically spans 
multiple enterprise systems, including Salesforce CPQ, 
SAP S/4HANA, and external partner portals. In this 
workflow, Boomi manages the synchronization between 
Salesforce and SAP using pre-built CPQ connectors 
enhanced with custom logic for pricing and quotation 
handling. SAP BTP orchestrates downstream processes 
within SAP S/4HANA modules such as Sales and 
Distribution (SD) and Materials Management (MM) while 
also enabling real-time updates to fulfillment systems 
hosted on OCI. AWS Lambda supports elastic scaling for 
order enrichment tasks, and GCP BigQuery provides 
analytics capabilities by aggregating sales pipeline data 
for business insights [17]. 

4.2.2. ERP-to-CRM Synchronization 

For seamless synchronization between ERP (SAP 
S/4HANA) and CRM (Salesforce, Dynamics 365) systems, 
real-time bidirectional data flow is crucial. Boomi’s low-
code connectors facilitate data extraction and 
transformation between SAP IDocs and Salesforce objects, 
ensuring consistency and accuracy. SAP BTP 
complements these integrations through its Event Mesh, 
broadcasting updates to multiple subscribers such as 
analytics platforms on GCP or dashboards hosted on 
AWS. Security is enforced through OAuth 2.0 and mutual 
TLS (mTLS), while runtime credentials are managed via 
native identity services such as AWS IAM, GCP IAM, and 
OCI Identity Federation, maintaining secure and 
authenticated interactions across all environments. 

 
Figure 2: High-Level Architecture for Vendor-Agnostic Integration Flows 
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4.2.3. B2B Partner Onboarding 

In large-scale supply chains, partner onboarding such 
as for distributors like Ingram Micro or Arrow requires 
robust automation and secure transaction processing. 
Boomi’s B2B/EDI module manages partner-specific 
transaction mappings and supports data exchange 
through AS2 and SFTP protocols. SAP BTP validates 
partner data against SAP S/4HANA business rules and 
integrates it with procurement and supply chain systems 
for seamless transaction management. OCI provides 
resilient storage for archival and long-term retention of 
B2B transactions, while GCP Pub/Sub facilitates real-time 
event-driven notifications, ensuring synchronized 
communication across distributed partner ecosystems. 

This Figure 3 shows an interconnected enterprise 
landscape where Salesforce (CRM) feeds data into Boomi, 
which orchestrates integrations toward SAP BTP and 
ultimately SAP S/4HANA ERP. From SAP S/4HANA, 
operational data flows into analytics platforms across 
AWS and GCP for data lake and business intelligence 
processing. In parallel, Boomi also supports B2B 
integrations with external partner systems through 
partner B2B gateways hosted on Oracle Cloud 
Infrastructure (OCI). Overall, the architecture 
demonstrates seamless CRM-to-ERP integration, multi-
cloud analytics distribution, and secure partner 
connectivity through a unified integration platform. 

4.3. Integration Flow Patterns 

The framework supports multiple integration flow 
patterns to address diverse enterprise scenarios and 
performance requirements. Synchronous API flows 
enable real-time interactions such as retrieving order 
status from SAP S/4HANA via an API gateway ensuring 
immediate responses for user-facing applications. 
Asynchronous event flows leverage message queues and 
event meshes to enable decoupled, scalable 
communication between services, ideal for event-driven 
use cases. Batch processing flows are optimized for large-

scale data synchronization and historical data migration, 
where processing latency is less critical. Finally, hybrid 
flows combine the best of both worlds real-time API 
interactions for critical requests and asynchronous 
updates for non-time-sensitive processes, such as real-
time order creation followed by deferred fulfillment 
updates. 

4.4. Comparative Role of Boomi vs. SAP BTP in Flow Design 

Boomi and SAP BTP play distinct yet complementary 
roles in enterprise integration architecture. Boomi excels 
in broad connectivity, offering over 2,000 connectors that 
span SaaS, ERP, CRM, and legacy applications, whereas 
SAP BTP provides deeply optimized pre-built integration 
packages specifically designed for SAP applications such 
as S/4HANA, SuccessFactors, and Ariba. From a 
development perspective, Boomi’s low-code, drag-and-
drop interface enables rapid prototyping and accelerates 
integration delivery, while SAP BTP delivers sophisticated 
process orchestration capabilities tailored for SAP-centric 
environments. 

Boomi and SAP BTP play distinct yet complementary roles 
in enterprise integration flows as shown in the Table 1. 

5. Security and Compliance Across Clouds 

5.1. Importance of Security in Multi-Cloud Integration 

In today’s enterprise ecosystem, APIs and integration 
flows represent one of the most critical attack surfaces, 
frequently targeted by malicious actors. Research 
indicates that more than 40% of data breaches stem from 
compromised APIs or integration points. In a vendor-
agnostic, multi-cloud environment, this risk becomes even 
more pronounced because integration traffic often spans 
multiple clouds, networks, and identity domains. To 
effectively mitigate these risks, a secure integration 
framework must embed zero-trust principles, regulatory 
compliance, and end-to-end encryption directly into its 
design treating security as a foundational architectural 
element rather than a secondary consideration.

 
Figure 3: End-to-End O2O Flow with Boomi and SAP BTP Across Multi-Cloud 
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Table 1: Boomi and SAP BTP Strengths 

Dimension Boomi Strengths SAP BTP 
Strengths 

Connectivity 2,000+ connectors 
for SaaS, ERP, 
CRM, legacy apps 

Pre-built SAP 
integration 
packages for 
S/4HANA, 
SuccessFactors, 
Ariba 

Flow 
Development 

Low-code, drag-
and-drop interface 
for rapid 
prototyping 

Deep SAP 
process 
orchestration 
with event-
driven 
integration 

Deployment 
Flexibility 

Atoms/Molecules 
can run on AWS, 
GCP, OCI, or on-
premises 

Tight SAP 
ecosystem 
integration, 
optimized for 
SAP workloads 

B2B/EDI Native support for 
AS2, X12, 
EDIFACT, and 
partner 
onboarding 
templates 

Limited; 
typically 
extends via 
Boomi or third-
party connectors 

API 
Management 

Lightweight 
gateway for 
publishing APIs 

Enterprise-
grade API 
management 
with 
monetization, 
throttling, and 
governance 

Event-Driven Integrates with 
cloud-native 
messaging (SQS, 
Pub/Sub, OCI 
Streaming) 

 

This Figure 4 illustrates a secure, identity-driven multi-
cloud integration model where centralized identity 
providers such as Okta, Azure AD, and AWS IAM Identity 
Center enforce unified identity federation and access 
governance. Using OAuth 2.0 and mTLS, authorized data 
flows move between Boomi Integration Runtime, SAP 
BTP, and backend API gateways or microservices. From 
SAP BTP, secure integrations extend across AWS, GCP, 
and OCI using their respective cloud-native services API 

Gateway, Lambda, Kubernetes/EKS on AWS; Apigee, 
Cloud Functions, and GKE on GCP; and OCI API 
Gateway, Functions, and OKE on OCI. Overall, the 
architecture emphasizes end-to-end secure orchestration, 
centralized identity control, and consistent authorization 
across all clouds and integration platforms. 

5.2. Zero-Trust Architecture (ZTA) 

The zero-trust model operates on the principle that no 
user, device, or network should be inherently trusted, 
regardless of location or prior verification. Within 
integration environments, zero trust translates into 
identity-centric security controls, where every API call 
and message exchange is both authenticated and 
authorized using industry standards such as OAuth 2.0, 
OpenID Connect, or JWT. Micro-segmentation ensures 
that integration runtimes such as Boomi Atoms and SAP 
Cloud Integration tenants are securely isolated within 
private virtual networks (VPCs) across AWS, GCP, and 
OCI. Mutual TLS (mTLS) is used to enforce bidirectional 
authentication between Boomi runtimes [18], [19], SAP 
BTP, and external APIs. Additionally, just-in-time access 
mechanisms ensure that credentials and tokens are short-
lived and dynamically managed through services such as 
AWS STS, GCP IAM, and OCI Identity Federation, thereby 
minimizing the risk of credential compromise [20]. 

5.3. Data Protection and Privacy 

In regulated industries such as healthcare, finance, and 
the public sector, data protection and privacy are 
paramount in any integration strategy. All data must be 
encrypted at rest using AES-256 and in transit using TLS 
1.3 to maintain confidentiality and integrity. Cloud-native 
key management services including AWS KMS, Google 
Cloud KMS, and OCI Vault enable centralized control 
over encryption key lifecycles. Furthermore, tokenization 
and data masking techniques safeguard sensitive 
information such as social security numbers, credit card 
details, and patient identifiers during data exchange. Data 
residency and sovereignty requirements are addressed 
through intelligent workload placement, where OCI may 
be chosen for jurisdictional control, AWS for global 
scalability, and GCP for analytics and AI-driven insights. 
This selective deployment strategy ensures that data 
governance and regulatory obligations are met without 
compromising performance or accessibility. 

5.4. Regulatory Compliance Across Clouds 

Because integration flows often span multiple 
geographies, they must adhere to differing regional and 
sector-specific compliance requirements. A vendor-
agnostic framework must harmonize these obligations. 
For example, GDPR mandates rights such as data access 
and the right to be forgotten, which can be implemented 
through centralized API governance. HIPAA  compliance  
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Figure 4: Zero-Trust Security Model for Vendor-Agnostic Integration 

for U.S. healthcare requires encryption of protected health 
information, robust access logging, and detailed audit 
trails within Boomi and SAP BTP flows. In the financial 
sector, PCI DSS mandates tokenization of payment data 
and stringent logging of transaction flows. Government 
and defense use cases require compliance with FedRAMP 
and SOC 2 standards, ensuring that Boomi runtimes and 
SAP BTP tenants align with federal security baselines. 
Both Boomi and SAP BTP offer pre-certified compliance 
templates, while AWS, GCP, and OCI provide cloud-
native attestations such as ISO 27001 and SOC 2 Type II, 
enabling enterprises to inherit compliance assurances 
from their underlying infrastructure 

5.5. Governance and Auditability 

Strong governance mechanisms are essential for ensuring 
that security and compliance policies are not only 
enforced but also continuously monitored. Centralized 
API governance frameworks establish consistent policy 
controls for rate limiting, throttling, and SLA enforcement 
across multiple clouds. Federated observability powered 
by tools such as Splunk, Datadog, AWS CloudWatch, 
GCP Operations, or OCI Monitoring provides unified, 
real-time visibility into compliance posture and 
operational health. Detailed audit trails record and time-
stamp every integration transaction, supporting 
traceability for internal and external audits. Additionally, 
adopting policy-as-code principles enables organizations 
to codify security and compliance standards within 
Infrastructure-as-Code (IaC) templates, ensuring 
consistent implementation and reducing manual errors 
across distributed environments. 

6. Performance, Scalability, and Observability 

6.1. Importance of Performance in Multi-Cloud Integration 

Enterprises require integration flows to deliver low 
latency, high throughput, and predictable reliability. For 
critical workflows such as Opportunity-to-Order (O2O) or 
ERP-to-CRM synchronization, even minor delays can 
result in revenue loss, compliance violations, or negative 
customer experiences. In a vendor-agnostic, multi-cloud 
environment, performance optimization becomes more 
complex, requiring careful tuning of network paths, 
runtime deployments, and workload distribution 
strategies [21]. 

This Figure 5 shows how Boomi Molecules achieve 
horizontal scaling by distributing workloads across 
multiple cloud platforms AWS, GCP and OCI. Each cloud 
provides both serverless and Kubernetes-based execution 
environments, such as AWS Lambda and EKS, GCP Cloud 
Functions and GKE, and OCI Functions and OKE. By 
leveraging these cloud-native scaling mechanisms, Boomi 
services can run in a geo-distributed and highly available 
architecture, ensuring resilient performance and 
continuity across regions and cloud providers.  

6.2. Scalability Models 

Multi-cloud integrations must be capable of 
dynamically scaling to accommodate fluctuating business 
demands.  

Four key scalability models are commonly adopted. 
Horizontal scaling involves scaling Boomi Molecules and 
SAP BTP tenants across Kubernetes clusters such as 
Amazon EKS, Google GKE, Azure GKE or Oracle OKE to 
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Figure 5: Scalability Model for Vendor-Agnostic Integration 

handle increased transaction volumes. Vertical scaling 
supports resource-intensive processes such as large EDI 
file transformations by provisioning higher-capacity 
instances in OCI Compute or AWS EC2. Elastic scaling 
leverages serverless compute, including AWS Lambda, 
GCP Cloud Functions, and OCI Functions, to 
automatically adjust workloads in response to traffic 
spikes, thereby reducing costs for bursty processes. 
Finally, geo-distributed scaling reduces latency by 
deploying runtimes closer to users or enterprise systems 
for instance, running Boomi runtimes in AWS Virginia for 
Salesforce workloads while deploying another runtime in 
OCI Frankfurt for SAP S/4HANA. 

6.3. Performance Optimization Techniques 

Ensuring optimal throughput and minimal latency 
requires a set of complementary performance techniques. 
Data caching improves response times by storing 
frequently accessed reference data, such as product 
catalogs and price lists, in caching solutions like AWS 
ElastiCache, GCP Memory store, or OCI Redis. Payload 
optimization reduces cross-cloud data transfer overhead 
by performing transformations close to the data source for 
example, running SAP BTP runtimes adjacent to SAP 
S/4HANA workloads. Batch versus real-time tuning 
differentiates between large-scale data migrations, which 
are more efficient as batch processes, and transactional 
updates, which benefit from event-driven streams for 
responsiveness. Additionally, network acceleration 
minimizes latency and jitter through private interconnects 
such as AWS Direct Connect, Google Cloud Interconnect, 
and OCI Fast Connect. 

6.4. Observability in Multi-Cloud Integration 

Observability goes beyond simple monitoring, 
enabling enterprises to predict failures, optimize flows, 

and ensure compliance across distributed environments. 
A vendor-agnostic integration framework requires 
federated observability that spans Boomi, SAP BTP, and 
the underlying cloud providers. Core components include 
metrics monitoring, where throughput, latency, and error 
rates are tracked using AWS CloudWatch, GCP Cloud 
Monitoring, and OCI Monitoring, unified within 
centralized dashboards like Splunk or Datadog. 
Distributed tracing powered by Open Telemetry enables 
root-cause analysis across Boomi Atoms and SAP BTP 
flows in multi-cloud environments. Log aggregation 
consolidates integration and API logs into platforms such 
as Splunk or ELK pipelines, ensuring holistic visibility. 
Finally, AI-driven anomaly detection tools, such as GCP 
Vertex AI and AWS Lookout, predict unusual traffic 
patterns or potential integration failures before they 
impact business operations. 

The Figure 6 shows a unified observability architecture 
where logs, metrics, and traces from Boomi integrations, 
SAP BTP events, and multi-cloud telemetry from AWS, 
GCP, Azure and OCI feed into a centralized observability 
platform such as Elastic Stack, Grafana, or Splunk. By 
aggregating these insights into a single pane of glass 
dashboard, the system enables real-time monitoring, 
cross-platform visibility, and AI-driven operational 
insights across all integration and cloud environments. 

6.5. Benchmarking Across Clouds 

To validate scalability and reliability in a vendor-agnostic 
model, enterprises must conduct performance 
benchmarks across AWS, GCP, and OCI. Benchmarking 
involves measuring latency, ensuring API response times 
remain below 200 milliseconds for real-time ERP queries; 
throughput, with Boomi Molecule clusters sustaining over 
5,000 transactions per minute; elasticity, where  serverless
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Figure 6: Federated Observability Model 

runtimes seamlessly scale from 10 to 10,000 requests 
without downtime; and error recovery, which ensures 
automatic retries and failover within 30 seconds during 
regional outages. 

6.6. Benefits of Performance-Aware Vendor-Agnostic 
Integration 

Embedding scalability and observability into 
integration design yields significant enterprise benefits. 
High availability is achieved through seamless failover 
between AWS, GCP, and OCI regions. Operational 
efficiency improves as workloads are dynamically 
optimized, reducing infrastructure costs. Predictive 
reliability is enhanced through AI-driven observability, 
which prevents outages before they occur. Finally, 
business agility is maximized, as mission-critical 
workflows such as O2O remain resilient and responsive, 
even during peak load conditions. 

7. Case Studies and Comparative Analysis 

7.1. Case Study 1: Opportunity-to-Order (O2O) Migration 

A global cybersecurity enterprise executed a large-
scale migration of its Opportunity-to-Order (O2O) 
workflows [18] from legacy Oracle SOA middleware to a 
vendor-agnostic, multi-cloud architecture built on Boomi 
and SAP BTP. The primary challenge was that legacy 
middleware introduced significant latency, with 
Salesforce CPQ-to-SAP order flows exceeding two 
seconds, and lacked flexibility during merger and 
acquisition-driven divestitures. The adopted solution 
positioned Boomi as the primary integration engine for 

Salesforce CPQ to SAP S/4HANA interactions, while SAP 
BTP orchestrated downstream SAP modules. Runtime 
scaling was distributed across AWS for Salesforce 
workloads, GCP for analytics, and OCI for SAP. The 
migration achieved an outcome where API response times 
were reduced to under 250 milliseconds, elastic scaling 
absorbed seasonal spikes such as fiscal year-end activity, 
and compliance was maintained for both GDPR and SOX 
audit requirements. 

7.2. Case Study 2: ERP-to-CRM Real-Time Synchronization 

A healthcare provider required real-time 
synchronization of patient and billing data between SAP 
S/4HANA as the ERP backbone and Salesforce Health 
Cloud as the CRM system. Data silos in the legacy model 
created inconsistencies that not only jeopardized HIPAA 
compliance but also impaired billing accuracy. The 
solution involved Boomi managing bidirectional 
mappings between SAP IDocs and Salesforce objects, 
while SAP BTP’s Event Mesh broadcasted updates to 
downstream analytics hosted in GCP. The result was a 
dramatic reduction in synchronization latency, decreasing 
from several hours to less than one minute, thereby 
ensuring accurate real-time updates and full compliance 
with HIPAA logging and auditability requirements. 

7.3. Case Study 3: B2B Partner Onboarding in Supply Chain 

A high-tech manufacturer faced challenges in 
onboarding new global distribution partners such as 
Ingram Micro, Arrow, and Carahsoft. Traditional 
onboarding with EDI/X12 transaction support required 
weeks of custom development, delaying supply chain 
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responsiveness. The solution utilized Boomi’s B2B/EDI 
accelerators, which streamlined document mapping and 
provided reusable partner onboarding templates. SAP 
BTP validated purchase orders against SAP S/4HANA 
business rules, while GCP Pub/Sub handled real-time 
partner notifications and OCI Object Storage provided 
resilient archiving. The outcome was a 70% reduction in 
onboarding time, a doubling of transaction throughput, 
and significant improvements in supply chain visibility 
through unified dashboards. 

The Figure 7 depicts an end-to-end integration flow 
where partner systems send data through the Boomi 
Integration Platform, which acts as both an EDI and API 
gateway. Boomi routes and processes the data into SAP 
BTP for orchestration before it reaches the SAP S/4HANA 
ERP system. Along the way, GCP Cloud Notifications can 
be triggered based on integration events, and once 
processed in S/4HANA, archival data is securely stored in 
OCI Object Storage. Overall, the architecture demonstrates 
a streamlined multi-cloud integration pipeline with event 
notifications and cloud-based archival support. 

7.4. Comparative Cloud Capabilities for Integration 

To further contextualize these case studies, a 
comparative analysis of AWS, GCP, and OCI highlights 

each provider’s strengths in vendor-agnostic integration 
as shown table 2 below. 

8. Challenges and Lessons Learned 

While vendor-agnostic integration offers crucial 
flexibility and portability, its implementation introduces 
significant architectural and operational complexity. A 
key challenge is the integration complexity itself; 
designing flows across Boomi, SAP BTP, and three distinct 
cloud environments (AWS, GCP, OCI) requires deep, 
fragmented expertise across diverse runtimes and APIs. 
This complexity is amplified by the inherent conflict 
between pure vendor neutrality and the benefits of deep 
cloud-native optimization were using a provider's native 
services (like AWS Step Functions) might offer better 
performance than a neutral, cross-provider component. To 
counter these issues, enterprises must establish a 
centralized Integration Competency Center (ICC) to 
enforce standards and adopt a hybrid strategy that 
selectively leverages cloud-native services for mission-
critical scenarios while maintaining neutrality for general 
portability. 

 

 
Figure 7: B2B Onboarding Flow Across Clouds 

Table 2: Cloud Capability Dimensions 

Capability 
Dimension 

AWS GCP OCI 

Strength Elastic compute, serverless 
(Lambda), mature security 
(IAM, PrivateLink) 

AI/ML (Vertex AI), API 
Management (Apigee X), 
BigQuery [22], [23] 

Enterprise ERP workloads, cost-
effective high-performance 
compute 

Networking VPC Peering, Direct 
Connect 

Cloud Interconnect, Private 
Service Connect 

Fast Connect, low-latency 
interconnects 

Serverless/Runtime Lambda, ECS, EKS for 
Boomi runtimes 

Cloud Run, GKE, Functions 
for event-driven 

Functions, OKE for SAP 
workloads 

Data/Analytics Redshift, Kinesis BigQuery, Pub/Sub, Looker Autonomous Database, Data 
Flow 

Compliance 
Certifications 

FedRAMP, HIPAA, SOC 2, 
PCI DSS 

GDPR, HIPAA, ISO 27001, 
AI ethics frameworks 

GDPR, SOX, PCI DSS, data 
sovereignty focus 

Best-Fit Use Cases Real-time ERP-CRM sync, 
scalable O2O flows 

Analytics-driven workflows, 
partner notifications 

SAP-heavy workloads, B2B/EDI 
flows, regulated industries 
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Operational execution in this model also presents 
obstacles related to latency and governance. Cross-cloud 
traffic, even with dedicated interconnects, introduces 
performance overhead, particularly for synchronous ERP-
to-CRM workflows. Simultaneously, enforcing zero-trust 
security and maintaining compliance audit trails across 
diverse IAM models and monitoring tools introduces 
substantial governance overhead. To mitigate these 
performance and security risks, teams must design 
latency-aware architectures by geo-distributing runtimes 
and prioritizing asynchronous flows, while standardizing 
on policy-as-code (using tools like Terraform and OPA) 
and implementing federated observability dashboards for 
unified visibility. Finally, managing cost optimization 
trade-offs and organizational change is paramount. The 
risk of cost inefficiencies from duplicate resources must be 
addressed by embedding FinOps practices and strategic 
workload placement, while the shift to multi-cloud 
operating models necessitates early investment in cross-
training, certifications, and governance playbooks to 
ensure seamless adoption by integration teams. As shown 
in the Table 3, key lesson learned. 

Table 3: Key Challenges and Lessons Learned 

Challenge Lesson Learned 

Integration 
Complexity 

Establish a centralized 
Integration Competency Center 
(ICC). 

Vendor Neutrality 
vs. Depth 

Hybrid strategy: balance 
portability with cloud-native 
optimizations. 

Latency & Network 
Overheads 

Deploy runtimes closer to data 
sources; adopt async flows. 

Security & 
Governance 

Standardize policy-as-code and 
federated observability. 

Cost Optimization Apply FinOps, auto-scaling, 
and workload placement 
strategies. 

Organizational 
Change 

Provide training, certifications, 
and governance playbooks. 

9. Future Directions 

The future of vendor-agnostic integration is poised to 
be transformed by the convergence of artificial intelligence 
(AI), automation, multi-agent orchestration, federated 
observability, and quantum-inspired security. Emerging 
platforms such as Boomi and SAP BTP are increasingly 
embedding machine learning capabilities that can 
recommend mappings, auto-generate integration flows, 
and predict performance bottlenecks. These 

advancements are paving the way for self-healing 
integration pipelines that autonomously detect anomalies, 
reroute traffic, and optimize performance without human 
intervention. The evolution toward multi-agent 
orchestration will further enable autonomous, agent-
driven runtimes where intelligent agents monitor health, 
performance, and compliance, negotiate workloads across 
AWS, GCP, Azure, and OCI, and dynamically collaborate 
to form adaptive, context-aware integration pipelines. 
Complementing this evolution, federated observability 
augmented by AI insights will unify telemetry across 
multi-cloud ecosystems, enabling predictive maintenance, 
automated compliance monitoring, and proactive root-
cause analysis. As quantum computing advances, 
enterprises will also adopt quantum-resistant encryption 
and AI-assisted key rotation to secure API payloads and 
enhance resilience. In parallel, generative AI particularly 
through large language models (LLMs) will revolutionize 
the developer experience, enabling natural language-
driven integration design, AI copilots for real-time 
recommendations, and automated documentation for 
governance and audit readiness. Collectively, these 
innovations will redefine integration as a self-optimizing 
digital nervous system capable of autonomous adaptation, 
regulatory alignment, and continuous improvement 
ushering in an era of intelligent, future-proof architectures 
that seamlessly operate across AI- and quantum-enabled 
multi-cloud environments. 

This Figure 8 illustrates an intelligent, self-optimizing 
multi-cloud integration model where AI agents within 
Boomi Integration Runtime and SAP BTP autonomously 
orchestrate workloads across AWS, GCP, Azure, and OCI. 
These AI agents perform autonomous negotiation, 
adaptive routing, and continuous monitoring to decide 
the best cloud environment such as AWS EKS/Lambda, 
GCP GKE/Cloud Functions, or OCI OKE/Functions for 
executing integration tasks. Through real-time feedback 
loops, the system dynamically balances workloads, 
improves performance, and optimizes resource utilization 
across clouds. 

10. Conclusion 

The adoption of multi-cloud strategies has 
fundamentally redefined enterprise integration, 
compelling organizations to move away from vendor-
proprietary middleware toward vendor-agnostic, cloud-
portable frameworks. This paper has successfully 
demonstrated how the synergistic deployment of Boomi 
and SAP BTP Integration Suite across AWS, GCP, and OCI 
can deliver the scalable, secure, and interoperable flows 
necessary for modern digital transformation. The 
proposed architectural framework, detailed across five 
critical layers Connectivity, Integration Runtime, 
API/Event Management, Security and Governance, and 
Observability provides a practical blueprint for navigating 
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Figure 8: Future-State Multi-Agent Orchestration 

heterogeneous multi-cloud environments. Through 
practical design examples such as the Opportunity-to-
Order (O2O) workflow, ERP-to-CRM synchronization, 
and B2B partner onboarding, we validated that vendor 
neutrality is both technically feasible and strategically 
advantageous. Key contributions include the 
development of a unified reference architecture that 
abstracts integration logic from underlying cloud 
dependencies, and the identification of practical 
integration patterns orchestration, choreography, and 
hybrid approaches that balance centralized control with 
operational agility. Furthermore, the research provided a 
comprehensive view of security, compliance, and zero-
trust enforcement strategies for multi-cloud integrations, 
supported by a comparative analysis of AWS, GCP, and 
OCI capabilities, and emphasized the value of federated 
monitoring for performance and observability. While the 
study acknowledged challenges related to architectural 
complexity, governance overhead, and cost optimization 
trade-offs, it suggested mitigation through centralized 
governance, policy-as-code, FinOps, and proactive change 
management. Looking forward, the future of enterprise 
integration will be shaped by innovations in AI-driven 
automation, multi-agent orchestration, and quantum-
inspired security, transforming integration into a self-
optimizing and intelligent ecosystem. Ultimately, this 
paper positions vendor-agnostic integration not merely as 
a technical approach, but as a strategic enabler of 
enterprise resilience and agility in a complex multi-cloud 
era. 
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ABSTRACT:  To study the behavior of metal oxide surge arresters at short-circuit current, this paper 
presents an experimental study on four pieces of 36 kV, 10 kAR.M.S  and 20 kAR.M.S surge arresters at 
different values of short-circuit current. Prior to the experiments, each surge arrester was electrically 
pre-faulted with a power frequency overvoltage without any physical modification. The tests were 
conducted under severe conditions at the rated short-circuit current, and the peak value of the first 
half-cycle of the actual arrester current was at least √2  times the RMS value of the rated short-circuit 
current. The arrester is one of the most effective means of limiting the lightning surge to the 
transmission line insulator string and tower head air gap. When an arc occurs, the arrester acts quickly 
to relieve the high pressure generated by combustion, preventing serious accidents and protecting 
equipment and maintenance personnel. The purpose of this paper is to experimentally demonstrate 
whether this type of arrester can prevent cracking and rupture of the enclosure caused by internal 
arcing effects, thus preventing sudden breakage and dispersal of components outside a controlled area. 
The arresters were able to extinguish open flames in less than 2 minutes after the test was completed. 
The paper is important to both arrester designers and end users because it provides an analysis of their 
short circuit behavior and related phenomena that cannot be adequately simulated. 

KEYWORDS: Surge Arrester, Short-Circuit Current, Transmission Line, Metal Oxide.  

 

1. Introduction  

Surge arresters are electrical devices designed to pro-
tect against electrical surges, which can be classified 
according to their source: atmospheric surges. Surges of 
atmospheric origin can be divided into three categories: 
surges due to direct lightning strikes, surges due to static 
loads and surges due to indirect lightning strikes; the 
amplitude of these surges does not depend on the 
operating voltage. 

Switching surges are due to changes in the network 
configuration and are most often caused by: open circuit 
of a line, open circuit of a transformer, resonance phe-
nomena, interruption of a short circuit, arcing to ground. 

The frequency of these voltages depends on the 
inductance and capacitance of the circuit and is generally 
much higher than the operating frequency of the net-
work. The amplitude of these surges will be reduced if the 
neutral of the system or transformer is grounded. 

The article presents experiments that demonstrate the 
ability of arresters to withstand high currents for several 
milliseconds, allowing this type of arrester to protect 
installations against both atmospheric surges and 
switching voltages. 

Electrical surge arresters are designed to limit at-
mospheric and switching surges in an electrical instal-
lation, protecting equipment in electrical substations such 
as transformers, circuit breakers, disconnectors, current 
transformers and voltage transformers. They are 
connected in parallel with the equipment to be protected 
and are installed at the entrance to the substation, between 
phase and earth, and at points where the line changes its 
characteristic impedance. Their purpose is to safely 
dissipate surge energy to ground and ensure that the 
voltage at the terminals remains low enough to protect 
equipment insulation from the effects of surges.  
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Most surge arresters used in modern high-voltage 
systems are of the metal oxide (MO) varistor type. 

Surge arresters are designed to keep the voltage below 
the withstand voltage (the highest voltage that can be 
applied to equipment without damaging it) and provide 
an adequate safety margin. However, they cannot limit 
transient overvoltages (TOV) of frequency or oscillating 
power. Therefore, they must be designed to withstand 
these transient overvoltages as well as the maximum 
system operating voltage without damage. 

The surge arrester is one of the most effective devices 
for limiting lightning surges in transmission line insulator 
strings and in the tower head air gap [1]-[4]. In the design 
process of surge arresters, the performance against short-
circuit current is an essential technical parameter [5]-[9].  

The selection of the rated and low short-circuit current 
is very important for the arrester design [10]-[12].  

If the arrester fails to interrupt the arc at the surge limit 
or is subjected to an unacceptable operating load during 
operation, the arc will cause severe vaporization and may 
burn the silicone rubber coating and internal materials 
[13]. At this point, the pressure relief valve should be able 
to act quickly to relieve the high pressure gas from the arc 
flash, prevent serious explosion accidents caused by the 
continuous increase in surge arrester internal pressure, 
and ensure the safety of nearby equipment and patrol 
personnel. 

In recent years, numerous research studies have fo-
cused on the placement of surge arresters on power 
transmission lines. Various methods have been used to 
evaluate the performance of surge arrester spacers [14]-
[18] and to analyze the use of different numbers of ar-
resters per tower [19]. 

2. Constructive Features  

If the arrester fails to interrupt the arc due to overvolt-
age, or if it encounters fault conditions, the arc can cause 
severe vaporization, burning the polymer rubber, break-
ing the porcelain, and igniting the internal materials [20]. 

When an arc occurs, the arrester quickly releases the 
high pressure generated by combustion, helping to 
prevent major accidents and ensure the safety of 
equipment and personnel.  

Figure 1 shows the wiring diagram of a typical arrester. 

 The magnetic blowout arrester used in the experi-
ments consists of a number of reignition spark gap Eas 
connected in series with a sub-assembly consisting of the 
L blowout coil and the non-linear resistor R1 and the main 
non-linear resistor R2. Each module is shunted by a non-
linear resistor R3, which ensures uniform voltage 
distribution across the modules. If there is no overvoltage, 
a current of the order of milliamperes flows through 

resistor R3. When an overvoltage occurs, it primes the Eas 
spark gaps to the priming voltage.   

 
Figure 1: Wiring diagram for surge arresters 

The discharge current flows through the shunt resistor 
R1 of coil B. No high value current can pass through it 
because its impedance to the high frequency harmonics of 
the discharge current is virtually infinite. This current also 
flows through the main non-linear resistor R2. The highest 
voltage at the arrester terminals after priming is the 
residual voltage. After the discharge electrical loads have 
been discharged to earth, the spark gaps retain their 
ionization and the associated current passes through the 
arrester, limited by the R2 resistors to a few hundred amps. 
The accompanying current, which is at a low frequency of 
50 Hz, passes through the magnetic blowout coils L. These 
cause magnetic induction in the area of the spark gaps, 
resulting in Lorentz forces that push the arc into slotted 
blowout chutes with cold walls. The intense cooling of the 
arc increases its combustion/maintaining voltage and 
eventually extinguishes it. The accompanying current is 
determined by the source voltage and the impedance of 
the short circuit loop, which includes the arc resistance in 
the spark gaps and the main resistance R2 [21]. 

The Type B surge arrester used in the experiments is 
shown in Figure 2 and Figure 3 shows a Type A porcelain-
encapsulated MO surge arrester. 

Figure 2 shows the general arrangement drawing of the 
arrester used in the experiments. In this type of arrester, 
there is no air gap in the MO.  

The MO resistors, which form the active part, are 
stacked in the centre of the arrester. They were made from 
a mixture of zinc oxide (ZnO) and other metallic powders, 
which were then pressed into cylindrical discs. The 
diameter of each disc determines its ability to withstand 
surges. 

The diameter of the MO is 60 mm. Its main charac-
teristic is the voltage current non-linearity. 

http://www.jenrs.com/


 C.E. Sălceanu et al., Experimental study of the short-circuit 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(12): 15-24, 2025                                            17 

The endurance capacity, which is determined by the 
arrester rated voltage, together with the switching and 
lightning protection levels, determines the height of the 
MO resistors, which are mounted with aluminum tube 
spacers to ensure uniform contact pressure distribution. 
The MO resistance column is supported by multiple fi-
berglass-reinforced plastic support rods and mounting 
plates. Axial pressure is maintained by a spring located at 
the top of the arrester. The sealing device is integrated into 
the cemented flanges at both ends of the arrester. 

 
Figure 2: General drawing of the arrester used in the tests 

 
Figure 3: Drawing of the arrester used in the tests - MO detail (1 - metal 

cover, 2 - MO resistors, 3 - porcelain housing) 

The endurance capacity, which is determined by the 
arrester rated voltage, together with the switching and 
lightning protection levels, determines the height of the 
MO resistors, which are mounted with aluminum tube 
spacers to ensure uniform contact pressure distribution. 
The MO resistance column is supported by multiple fi-
berglass-reinforced plastic support rods and mounting 
plates. Axial pressure is maintained by a spring located at 
the top of the arrester. The sealing device is integrated into 
the cemented flanges at both ends of the arrester. 

This type of arrester is not directly grounded, but is 
connected in series with various monitoring devices. As 
shown in Figure 2, the bottom flange of the arrester is 
mounted with insulating feet and the ground connection 

is made via a special grounding device. This component of 
the arrester was eliminated during the short-circuit test. 

When a transmission line conductor is subjected to a 
short-circuit ground fault, the inductance L of the ground 
wire can be determined according to [1]. The distance Ds 
and the equivalent radius rm can be calculated according 
to references [1] and [3]. 

𝐿𝐿 = 𝜇𝜇0
2𝜋𝜋
�𝑙𝑙𝑙𝑙 1.8514

𝐷𝐷𝑠𝑠�2𝜋𝜋𝜋𝜋𝜇𝜇0𝜎𝜎
+ 4ℎ�𝜋𝜋𝜋𝜋𝜇𝜇0𝜎𝜎

3
�                  (1) 

                              𝐷𝐷𝑠𝑠 = �1.414213𝑟𝑟𝑚𝑚𝑑𝑑𝑛𝑛𝑛𝑛−1
𝑛𝑛                          (2) 

𝑟𝑟𝑚𝑚 = 𝑒𝑒
1
4𝑟𝑟 = 0.779𝑟𝑟                               (3) 

where: L - pole inductance under phase to earth fault 
(H/m); µ0 - vacuum permeability (H/m); Ds - cable length; 
σ - earth conductivity (S/m); f- frequency (Hz);                                       
r- equivalent cable radius (m). 

On the other hand, the electromotive induction force 
generated by the short-circuit current through an 
inductive connection on a line can be calculated as follows: 

𝐸𝐸 = ∑ 𝜔𝜔𝑀𝑀𝑖𝑖𝑙𝑙𝑖𝑖𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
𝑖𝑖=1                           (4) 

where: E- line inductance (V); ω - apparent frequency 
(rad/s); Mi - mutual inductance (H/km); li - line distance in 
km; Is - sum of the frequency components of the short-
circuit current (A). Given the line voltage Ud, we can 
calculate the short-circuit current Isc in (A): 

𝐼𝐼𝑠𝑠𝑠𝑠 = 𝑈𝑈𝑑𝑑
𝜔𝜔
� 1
𝐿𝐿𝑑𝑑+∑ 𝑙𝑙𝑖𝑖𝐿𝐿

𝑛𝑛
𝑖𝑖=0

+ 𝑘𝑘𝑓𝑓 ∑ 𝑙𝑙𝑖𝑖
𝑛𝑛
𝑖𝑖=0

𝐿𝐿𝑑𝑑𝑙𝑙
�                   (5) 

assuming that the structural coefficient of the line kf is 0.25. 

Ld is the inductance of the circuit (H) and l is the total 
length of the transmission line (km). 

The next section analyzes the arrester's ability to re-
duce pressure in the event of a short circuit. Tests have 
confirmed the arrester's effectiveness in protecting nearby 
equipment. According to the source (5), the short-circuit 
current varies according to the position of the arrester. 
When it is close to the transformer, the short-circuit 
current reaches a maximum of 20 kA and decreases to 12 kA 
or 6 kA as the distance increases. After a certain distance, 
the variations become insignificant and the current value 
stabilizes in the range of 600 ± 200 A. 

3. Short Circuit Tests 

Experiments were conducted on identical specimens, 
as shown in Figure 2, to determine whether an arrester 
malfunction could cause a violent burst of the enclosure 
and whether the flames generated could be extinguished 
in a controlled manner within a predetermined time 
interval. The arrester was not equipped with additional 
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devices to replace conventional overpressure 
mechanisms. 

According to [19], the arrester is classified as type "B", 
made of polymeric material, with a solid construction and 
without a closed gas volume. When MO (metal oxide) 
resistors fail electrically, an internal arc is formed, 
resulting in accelerated vaporization and eventual ignition 
of the case and materials inside. 

The purpose of this paper is to experimentally demon-
strate whether this type of arrester can control the crack-
ing and rupture process of the enclosure caused by inter-
nal arcing effects, thus preventing violent rupture and 
dispersion of components beyond a welldefined area.  

The circuit used for the experiments, shown in Figure 4, 
was designed according to the applicable standards [19], 
taking into account the most unfavorable installation 
conditions of arresters in electrical substations. 

Type A arresters have a volume of air greater than 50% 
along the active side and are prepared for short-circuit 
testing with a fusible wire connected between their ends. 

Type B arresters, which have less than 50% air volume 
around the active part, are prepared for short-circuit 
testing by a pre-fault process. This process consists of 
applying a voltage characteristic of each type of arrester. 
The purpose of pre-fault is to provide sufficient electrical 
conductivity to allow the short-circuit current to pass at a 
voltage below the rated voltage [22]. 

 
Figure 4: Circuit used for short-circuit testing 

In the first stage, the arresters 36 kV, 10 kA were 
subjected to an electrical pre-fault process by applying an 

industrial-frequency surge voltage without any special 
preparation. 

 
Figure 5: Pre-fault oscillographic recording 

Figure 5 shows the oscilloscope reading for the first 
arrester, the others are similar. The circuit was previously 
calibrated to 18 AR.M.S and 43 kVR.M.S. 

 For example, the voltage applied until the arrester pre-
failed was 43 kVR.M.S for 47.27 seconds, after which a 
current of 18.65 A R.M.S. occurred and was maintained for 
1.41 seconds [22]. 

For the short-circuit tests, the arrester was mounted as 
shown in Figure 4, with the lower end of the arrester flush 
with a 1.8 m wide square enclosure. The base used for the 
experiment was made of insulating material and placed on 
an insulating platform. 

In the first test, conducted at rated short-circuit current, 
the applied voltage was less than 77% of the arrester's 
rated voltage. To meet the test conditions, the circuit pa-
rameters were adjusted so that the RMS value of the 
symmetrical current component was at least equal to the 
required current level. This resulted in the oscillographic 
recording shown in Figure 6. 

 
Figure 6: Oscillographic recording of the rated short-circuit current test 

Parameters obtained: applied voltage U=22.1 kVR.M.S.; 
peak current Ipeak=50.2 kA; short-circuit current  
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Isc= 20.9 kAR.M.S; voltage drop Udrop=1.78 kVR.M.S and arc 
duration t=0.21 s. 

It is observed that the peak value of the current in the 
first half-cycle exceeds √2𝐼𝐼R.M.S. , these values being 
difficult to obtain under normal conditions for polymer 
type B arresters. In order to achieve these values in a high 
power laboratory, a short-circuit generator with a capacity 
of 2500 MVA was used, together with precise excitation 
control. 

To maintain optimal test conditions, the test was 
performed less than 15 minutes after the pre-fault process 
to prevent the arrester from cooling.  

The experiment was considered successful otherwise it 
should have been repeated, ensuring a sufficiently low 
arrester impedance by applying a pre-fault current no 
more than 2 seconds before applying the short-circuit 
current. As part of the pre-fault process, it is permissible 
to increase the short-circuit current up to 300 AR.M.S. In this 
case, the maximum duration, depending on the 
magnitude of the current, must not exceed the following 
value: 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 ≤
𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟
𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟

                                    (6) 

In (6), trpf is the pre-fault time in seconds; 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 is the pre-
fault load = 60As; Irpf is the pre-fault current in amps. 

Further tests were conducted at reduced currents, 
applying a voltage of less than 77% of the arrester's rated 
voltage. The circuit parameters have been set so that the 
RMS value of the symmetrical current component is at 
least equal to the required current level. 

According to [19], for arresters with a rated current of 
10 kAR.M.S and a rated short-circuit current of 20 kAR.M.S, the 
discharge current is 20, 10 or 5 kAR.M.S and the reduced 
short-circuit currents have the following values: 
12000±10%, 6000±10% and 600±200 AR.M.S. 

 
Figure 7: Oscillographic recording of reduced short-circuit current test 

Parameters obtained on another arrester, previously 
pre-faulted, under the same conditions, on the 
oscilloscope recording in Figure 7 for an assumed current 
of 12000 AR.M.S: applied voltage U=19.8 kVR.M.S; peak 
current Ipeak = 26.7 kA; short-circuit current Isc =12.4 kAR.M.S; 
voltage drop  Udrop=1.83 kVR.M.S and arc duration t=0.22 s. 

 
Figure 8: Oscillographic recording of reduced short-circuit current test 

Parameters obtained on another arrester, previously 
pre-faulted, under the same conditions, on the 
oscilloscope recording in Figure 8 for an assumed current 
of 6000 AR.M.S: applied voltage U=22.8 kVR.M.S; peak current 
Ipeak=12.5 kA; short-circuit current Isc= 6.1 kAR.M.S; voltage 
drop Udrop=1.48 kVR.M.S and arc duration t=0.22 s. 

 
Figure 9: Oscillographic recording of the low short-circuit current test 

Parameters obtained on another arrester, previously 
pre-faulted, under the same conditions, on the 
oscilloscope recording in Figure 9 for an assumed current 
of 600 AR.M.S: applied voltage U=20.5 kVR.M.S; peak current 
Ipeak=1.02 kA.; short-circuit current Isc= 0.59 kAR.M.S, 0.1 
seconds after a short-circuit has occurred; voltage drop 
Udrop=1.48 kVR.M.S,  and arc duration t=1.04 s. 

In all the tests carried out, the arresters were installed 
and the conductors laid under the most unfavorable op-
erating conditions. Figure 10 show photos taken before 
and after tests. 
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The earth conductor has been oriented in the opposite 
direction to the incoming conductor (Figure 10), so the arc 
will remain close to the arrester for the duration of the 
short-circuit current, creating the most unfavorable 
conditions in terms of fire risk. 

    
Figure 10: Photos taken before  and after tests 

The research continued on a 36 kV, 20 kA to establish 
the traceability of the experiments. The experiments were 
performed in the same conditions as previous, according 
to [19], presented in Figure 4. 

The surge arrester was pre-failed in the same 
conditions as the previous one. The experiments were 
made at 24 kV applied voltage, measured between 
phases. Experiments performed: rated Short-Circuit 
current 20 kA, reduced short-circuit current 12 kA, 
reduced short-circuit current 6 kA and short-circuit low 
current 600 A. 

After circuit calibration, the Rated current short-circuit 
test on first sample was performed with structural failure 
on upper part, all parts remained inside the enclosure.  

 
Figure 11: Oscillographic recording of the rated short-circuit current test 

Parameters obtained in the oscilographic recording 
presented in Figure 11 are: applied voltage U= 24.1 kVR.M.S; 
peak current Ipeak= 52.1 kA; short-circuit current Isc= 20.9 kAR.M.S; 
voltage drop Udrop=2.83 kVR.M.S, and arc duration t= 0.2 sec.   

Next experiment is reduced current short-circuit test 
on different sample, where structural failure on upper and 
lower part, all parts remained inside the enclosure.  

Parameters obtained in the oscilographic recording 
presented in Figure 12 are: applied voltage U= 24.1 kVR.M.S; peak 
current Ipeak= 26.1 kA.; short-circuit current Isc= 12.1 kAR.M.S; 
voltage drop Udrop= 3.42 kVR.M.S, and arc duration t= 0.2 sec.  

 
Figure 12: Oscillographic recording of reduced short-circuit current test 

Next experiment is reduced current short-circuit test 
on different sample, where structural failure on upper and 
lower part, all parts remained inside the enclosure.   

 
Figure 13: Oscillographic recording of reduced short-circuit current test 

Parameters obtained in the oscilographic recording 
presented in Figure 13 are: applied voltage U= 24,2 kVR.M.S; peak 
current Ipeak= 12.1 kAR.M.S.; short-circuit current  Isc= 6.1 kAR.M.S; 
voltage drop Udrop= 4.1 kVR.M.S, and arc duration t= 0.2 sec.  

Next experiment is low current short-circuit test new 
sample. The open flames resulted after test self-extinguish 
in less than 1 minute.   

Parameters obtained in the oscilographic recording 
presented in Figure 14 are: applied voltage U= 24.1 kVR.M.S; 
peak current Ipeak= 1.3 kA.; short-circuit current Isc= 0.6 kAR.M.S; 
voltage drop Udrop= 0.9 kVR.M.S, and arc duration t= 1 sec. 
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Considering the results obtained we can conclude that 
this value of short-circuit current is the maximum value 
that can be applied on this type of construction. Even tho 
according to [21], the results are considered fulfilled, we 
consider the parts that detached might endanger the 
personal. 

 
Figure 14: Oscillographic recording of the low short-circuit current test 

Photos from the experiments are presented in figures 15 
to 17. 

     

Figure 15: Aspect of the surge arrester before and after short-circuit test 
at 20 kA 

  
Figure 16: Aspect of the surge arrester before and after  short-circuit 

test at 12 kA 

  

Figure 17: Aspect of the surge arrester before and after short-circuit test 
at 25 kA 

4. Discussions and Conclusions 

The electricity transmission system is essential to 
ensure a continuous and stable flow of electricity to 
consumers. However, extreme weather conditions, 
voltage fluctuations, or equipment failures can affect the 
safety and reliability of this system. One of the most 
effective technical solutions for protecting electrical 
infrastructure and preventing major disturbances is surge 
arresters, which can make a significant contribution to 
improving the reliability of electrical grids. In this context, 
it is important to understand their role and impact on the 
protection of the transmission system. 

Surge arresters are devices designed to protect elec-
trical equipment from surges that can occur for a variety 
of reasons, such as lightning strikes, switching equipment 
maneuvers, or network faults. They are installed in power 
grids, both in substations and at various points in 
distribution networks. Surge arresters work by absorbing 
and dissipating the extra energy generated by a surge, 
protecting transformers, cables and other equipment from 
serious damage. 

Lightning is a major cause of power surges in electrical 
grids. These can cause sensitive equipment such as 
transformers and circuit breakers to fail quickly. Surge 
arresters are essential to protect these components from 
the damaging effects of lightning by quickly absorbing 
and dissipating the excess energy generated during a 
lightning strike. This prevents serious malfunctions that 
could lead to major power losses and prolonged power 
outages. 

Surges can be caused not only by natural phenomena, 
but also by equipment switching maneuvers or network 
faults. In these situations, surge arresters provide 
immediate protection and limit the negative impact on 
equipment. By intervening quickly when voltage exceeds 
safe limits, these devices help ensure continuous system 
operation without costly interruptions or failures. 

Another significant benefit of using surge arresters is 
the extended life of electrical equipment. Frequent and 
irregular power surges can accelerate component wear 
and lead to premature component failure. By protecting 
equipment from these voltages, surge arresters reduce the 

I

 1.911 kA

-2.0 kA

U

 8.93 kV

-10.63 kV
Sweep#: 1 200.0 ms/div0.30 s 1.46 s
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frequency of maintenance and parts replacement, helping 
to optimize power system operating costs and minimize 
downtime. 

A reliable power transmission system must be able to 
respond quickly to voltage fluctuations and prevent them 
from spreading throughout the network. Surge arresters 
play a critical role in maintaining the stability of power 
systems by ensuring that local surges do not propagate 
and cause cascading failures. This helps reduce the risk of 
long-term power outages and protects the integrity of the 
entire transmission system. 

Surge arresters are essential tools for improving the 
reliability of the power transmission system. By pro-
tecting electrical networks and equipment from danger-
ous surges, these devices help prevent failures, extend 
equipment life and maintain the stability of electrical 
networks. The effective integration of surge arresters into 
the power infrastructure is therefore an important step 
towards a safer, more reliable and more resilient power 
transmission system. 

Installing surge arresters increases the reliability of the 
power transmission system, but requires additional 
capital investment. To determine the most efficient and 
cost-effective arrangement of surge arresters in a pro-
tected transmission line, it is suggested that the arresters 
be placed according to the resistance characteristic of the 
transmission line tower foot, so that the entire 
transmission line can be divided into several line sections. 
Each line section consists of towers of similar resistance. 
As proposed in [22], two different concepts are considered 
for lightning protection: 

(a) Install a different number of surge arresters on se-
lected phases of each tower;  

(b) Install arresters on all selected tower phases.  

By varying the number of towers to be equipped or the 
number of phases to be equipped with surge arresters, the 
threshold voltage is used to evaluate different surge 
arrester installation configurations. 

As mentioned in [20], towers are more likely to be built 
on ridges to facilitate construction. Therefore, it is not very 
effective to reduce the tower ground impedance at the top 
of the ridge, where the tower foot impedance is generally 
highest. Thus, it is very likely that the ground resistances 
of towers on a ridge will be different from the resistances 
at the base of adjacent towers. The resistance of the base 
has a significant effect, both positive and negative, on the 
insulator voltage in different situations. For towers with 
high resistance at the base, it is recommended to install 
surge arresters with better energy dissipation capacity. In 
addition, if the resistance at the base of the towers varies, 
the negative effect of the base resistance on lightning 
performance cannot be neglected. 

Therefore, if the towers have different resistances at the 
base near the boundaries of each protected section, it is 
recommended that surge arresters be installed on each 
tower to prevent damage. Within each line section, 
different arrester configurations are used to improve 
performance. One configuration model is to install a 
varying number of arresters on selected phases of all 
towers. For this type of design, simulation results show 
that the insulators on the upper phase are most susceptible 
to flashover. Therefore, it is recommended that arresters 
be installed on the upper phases. The effect of the number 
of arresters per tower is studied in the literature using 
three different configurations. A proper and more efficient 
arrester configuration can be determined using the voltage 
diagram and voltage threshold as a function of base 
resistance. 

The main difference between the surge behavior of 
high-voltage and medium-voltage MO arresters is the 
energy absorbed during the discharge period when sub-
jected to different types of surges. High-voltage MO 
arresters are particularly stressed by switching surges, 
which cause a large portion of the electrical load to pass 
through the arrester during the entire surge period. On the 
other hand, medium-voltage arresters are mostly stressed 
by direct lightning strikes in the vicinity of the protected 
object. For high-voltage MO surge arresters, there are 
standard methods for determining the energy absorption 
capacity based on estimating the line discharge energy. 

The energy absorbed by the medium-voltage arrester 
due to lightning discharges can be estimated by analytical 
methods. 

Experimental energy absorption capacities of arresters 
for AC and impulse currents are presented in [22]. The 
product “Ixt” was found to be constant, where I is the 
current and „t” is the pulse duration. Due to the increase 
in residual voltage as the applied current increases, the 
energy absorption capacity also increases, almost tripling 
when large pulses of lightning impulse are applied instead 
of small, long duration currents. 

Tests show favourable behaviour after the occurrence 
of a short-circuit current. The performance achieved was 
largely determined by the non-linearity of the resistors 
and the accuracy of spark gap ignition and quenching. 
Since the resistances are non-linear, the conduction of 
electric charges to earth in the form of impulse current is 
faster, and in the final stage of electric charge transport, the 
resistance reaches high values that favour the extinction of 
the electric arc.  

During the tests, there was no violent breakage, and no 
part of the arrester, such as pieces of polymer materials or 
MO resistors, was found outside the test enclosure. 
Electrical arresters were able to extinguish naked flames 
within 2 minutes of the end of each test 
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ABSTRACT: We investigated whether post-hoc calibration improves the trustworthiness of heart-
disease risk predictions beyond discrimination metrics. Using a Kaggle heart-disease dataset (n = 
1,025), we created a stratified 70/30 train-test split and evaluated six classifiers, Logistic Regression, 
Support Vector Machine, k-Nearest Neighbors, Naive Bayes, Random Forest, and XGBoost. 
Discrimination was quantified by stratified 5-fold cross-validation with thresholds chosen by Youden’s 
J inside the training folds. We assessed probability quality before and after Platt scaling, isotonic 
regression, and temperature scaling using Brier score, Expected Calibration Error with equal-width 
and equal-frequency binning, Log Loss, reliability diagrams with Wilson intervals, and Spiegelhalter’s 
Z and p. Uncertainty was reported with bootstrap 95% confidence intervals, and calibrated versus 
uncalibrated states were compared with paired permutation tests on fold-matched deltas. 

Isotonic regression delivered the most consistent improvements in probability quality for Random 
Forest, XGBoost, Logistic Regression, and Naive Bayes, lowering Brier, ECE, and Log Loss while 
preserving AUC ROC in cross-validation. Support Vector Machine and k-Nearest Neighbors were best 
left uncalibrated on these metrics. Temperature scaling altered discrimination and often increased Log 
Loss in this structured dataset. Sensitivity analysis showed that equal-frequency ECE was 
systematically smaller than equal-width ECE across model-calibration pairs, while preserving the 
qualitative ranking of methods. Reliability diagrams built from out-of-fold predictions aligned with 
the numeric metrics, and Spiegelhalter’s statistics moved toward values consistent with better absolute 
calibration for the models that benefited from isotonic regression. The study provides a reproducible, 
leakage-controlled workflow for evaluating and selecting calibration strategies in structured clinical 
feature data. 

KEYWORDS: Heart disease prediction, Machine learning, Probability calibration, Isotonic regression, 
Platt scaling, Temperature scaling, Uncertainty quantification, Expected calibration error (ECE), Brier 
score, Log loss, Spiegelhalter’s test, Reliability diagram, Post hoc calibration. 

 

1. Introduction 

1.1. Background 

Heart disease continues to be the major leading 
cause of death globally. It was recorded that heart disease 

was responsible for an estimated 19.8 million deaths in 
2022 [1]. However, early and accurate prediction plays a 
significant role in the prevention of adverse results and 
reduction in healthcare costs. Machine learning (ML) 
models are increasingly adopted for diagnostic and 
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prognostic tasks in cardiology due to their ability to 
uncover complex patterns in large clinical datasets [2].  

Early ML research on heart disease cohorts primarily 
focused on classification accuracy, with studies routinely 
reporting performance above 97% using supervised 
classifiers [3]. These models have the capacity to learn 
non-linear relationships and high-dimensional 
interactions between contributing factors such as age, 
cholesterol, blood pressure, and electrocardiogram 
results. For example, algorithms such as Random Forest 
and Gradient Boosting have demonstrated superior 
performance to identify subtle indicators of 
cardiovascular abnormalities compared to traditional 
rule-based systems [4]. This makes them powerful 
techniques for risk stratification and preventive care. 

However, there could be possibility that the models 
often provide high predictive performance, while 
probabilistic outputs can be poorly calibrated. That is, the 
confidence scores they assign do not always align with 
actual probabilities of disease presence [5]. In high-stakes 
domains such as healthcare system, well-calibrated 
predictions are more important to guide the appropriate 
treatment decisions and manage clinical risks efficiently. 
Miscalibrated models may lead to overconfident or 
underconfident decisions, ultimately compromising 
patient safety [6].  This has prompted a growing interest 
in uncertainty quantification and post hoc calibration 
methods, which can adjust the model's output 
probabilities without retraining the original model [7]. 
The importance of these methods has increased in 
response to an increasing demand for transparent and 
trustworthy AI systems in clinical settings, particularly 
with the rise of explainable AI initiatives [8]. 

Furthermore, recent research has proven that visual 
tools such as reliability diagrams and calibration metrics 
such as Expected Calibration Error (ECE), Brier score, and 
log loss are important in evaluating how well a model is 
calibrated [9]. While accuracy and AUROC (Area Under 
the Receiver Operating Characteristic curve) remain 
popular metrics for model evaluation, they are 
insufficient for assessing how well a model estimates 
uncertainty. These metrics provide both quantitative and 
visual representations of uncertainty and prediction 
quality, which are vital for gaining the confidence of 
clinical stakeholders. 

1.2. Motivation and Problem Statement 

One of the major challenges faced by the medical 
health sector is the inability to detect early stages of 

problems related to the heart. When making decisions in 
the clinical sector, uncalibrated predictions may be 
misleading. For example, if a model predicts that a patient 
has a 90% chance of developing heart disease, clinicians 
must trust that this probability truly reflects clinical 
reality, otherwise this could lead to incorrect decisions 
and poor outcomes for the patient. 

In many studies, calibration and uncertainty 
quantification in medical AI systems are often 
overlooked, leading to a gap between predictive 
performance and clinical trust [6]. However, this paper 
addresses that gap by evaluating the calibration of several 
popular classifiers using post hoc techniques.  

1.3. Scope and Contributions 

This study aims to evaluate and compare uncertainty 
estimation of heart disease prediction models. The 
research is guided by the following questions: 

1. How do post-hoc calibration methods (Platt scaling, 
temperature scaling and isotonic regression) affect 
the uncertainty, calibration quality, and prediction 
confidence of machine learning models for heart 
disease classification? 

2. What are the baseline levels of calibration and 
uncertainty (ECE, Brier score, log loss, sharpness, 
Spiegelhalter’s Z-score) for heart disease prediction 
before and after post-hoc calibration? 

3. How does each model (e.g., Random Forest, XGBoost, 
SVM, KNN and Naive Bayes) perform in terms of 
probability calibration for heart disease before and 
after applying post hoc calibration? 

Below, we delineate the contributions of this work in 
light of the research questions above. We conduct a 
systematic, model-agnostic evaluation of post-hoc 
calibration for heart-disease prediction, quantifying how 
Platt (sigmoid) and isotonic mapping alter probability 
quality without retraining the base models. Beyond 
headline discrimination metrics, we emphasize clinically 
relevant probability fidelity, calibration, sharpness, and 
statistical goodness-of-fit. This study makes four (4) 
contributions, summarized as follows:  

1. A side-by-side pre/post analysis of six machine 
learning classifiers using reliability diagrams plus 
Brier, ECE, log loss, Spiegelhalter’s Z/p, and 
sharpness to provide complementary views of 
probability quality for heart disease prediction. 

http://www.jenrs.com/


 P. A. Odesola et al., Model Uncertainty Quantification: A Post Hoc 
 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(12): 25-54, 2025                                            27 
 

2. Empirical demonstration that isotonic calibration 
most consistently improves probability estimates, 
whereas Platt and temperature scaling helps some 
models but can worsen others.  

3. Despite perfect test-set discrimination for some 
model, reliability diagrams reveal overconfidence 
pre-calibration, demonstrating why discrimination 
alone is insufficient for clinical use. 

4. Analysis of variance in predicted probabilities shows 
calibration-induced smoothing and overconfidence 
correction, clarifying confidence reliability trade-offs 
relevant to clinical interpretation. 

1.4. Related Works 

1.4.1. Machine Learning in Heart Disease Prediction: 
Calibration and Reliability Considerations  

Machine learning (ML) techniques have been widely 
applied to predict cardiovascular disease outcomes, 
typically using patient risk factor data to classify the 
presence or risk of heart disease. For example, in heart 
disease prediction using supervised machine learning 
algorithms: Performance analysis and comparison, [10] 
evaluated several classifiers (KNN, decision tree, random 
forest, etc.) on a Kaggle heart disease dataset. They 
reported perfect performance with random forests 
achieving 100% accuracy (along with 100% sensitivity and 
specificity). However, their evaluation emphasized 
accuracy and did not include any probability calibration 
or uncertainty quantification. Similarly, [11] evaluation of 
Heart Disease Prediction Using Machine Learning 
Methods with Elastic Net Feature Selection compared 
logistic regression (LR), KNN, SVM, random forest (RF), 
AdaBoost, artificial neural network (ANN), and 
multilayer perceptron on the Kaggle dataset used in this 
study. They found RF to attain ~99% accuracy and 
AdaBoost ~94% on the full feature set and observed SVM 
performing best after SMOTE class-balancing and feature 
selection. Like [10], this study focused on accuracy 
improvements and other discrimination metrics, with no 
model calibration applied. 

Another work by [12], they also utilized the Kaggle 
dataset we explored. They evaluated a wide range of 
classifiers including RF, decision tree (DT), gradient 
boosting (GBM), KNN, AdaBoost, LR, ANN, QDA, LDA, 
SVM and reported extremely high accuracy for ensemble 
methods. In fact, their RF model reached 100% training 
accuracy (and ~99% under cross-validation). Despite 
reporting precision, recall, F1-score, and ROC-AUC for 

each model, this work too did not report any calibration 
metrics or uncertainty estimates; the focus remained on 
discrimination performance. 

Beyond the popular Kaggle/UCI datasets, researchers 
have explored ML on other heart disease cohorts. For 
instance, [13] in A Machine Learning Model for Detection 
of Coronary Artery Disease applied ML to the Z-Alizadeh 
Sani dataset (303 patients from Tehran’s Rajaei 
cardiovascular center). They employed six algorithms 
(DT, deep neural network, LR, RF, SVM, and XGBoost) to 
predict coronary artery disease (CAD). After Pearson-
correlation feature selection, the best results were 
achieved by SVM and LR, each attaining 95.45% accuracy 
with 95.91% sensitivity, 91.66% specificity, F1≈0.969, and 
AUROC ≈0.98. Notably, although this study achieved 
excellent discrimination, it did not incorporate any post-
hoc probability calibration or uncertainty analysis, the 
evaluation centered on accuracy and ROC curves alone. 

In [14], the authors took a different approach by 
leveraging larger, real-world data. In an interpretable 
LightGBM model for predicting coronary heart disease: 
Enhancing clinical decision-making with machine 
learning, they trained a LightGBM model on a U.S. CDC 
survey dataset (BRFSS 2015) and validated on two 
external cohorts (the Framingham Heart Study and the Z-
Alizadeh Sani data). The LightGBM achieved about 90.6% 
accuracy (AUROC ~81.1%) on the BRFSS training set, 
with slightly lower performance on Framingham (85% 
accuracy, ~67% AUROC) and Z-Alizadeh (80% accuracy). 
While [14] prioritized model interpretability (using SHAP 
values) and reported standard metrics like accuracy, 
precision, recall, and AUROC, they did not report any 
calibration-specific metrics (e.g. no ECE, Brier score, or 
reliability diagrams), nor did they apply Platt scaling or 
isotonic regression in their pipeline. Several recent studies 
have pushed accuracy to very high levels by combining 
datasets or using advanced ensembles, yet still largely 
ignore calibration. In [15], the authors proposed a hybrid 
approach for predicting heart disease using machine 
learning and an explainable AI method, where they 
combined a private hospital dataset with a public one and 
used feature selection plus ensemble methods. Their best 
model (an XGBoost classifier on a selected feature subset 
SF-2) achieved 97.57% accuracy with 96.61% sensitivity, 
90.48% specificity, 95.00% precision, F1=92.68%, and 98% 
AUROC. Despite this impressive performance, no 
probability calibration was mentioned; the study’s 
contributions focused on maximizing accuracy and 
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explaining feature impacts (via SHAP) rather than 
assessing prediction uncertainty.  

Using a clinical and biometric dataset (n=571) with a 
man-in-the-loop paradigm for assessing coronary artery 
disease, [16] compared standard ML classifiers; best 
accuracy reached ≈83% with expert input, but the work 
emphasized explainability over probabilistic calibration. 
To address the need for diverse and comprehensive 
research, we conducted a lightweight systematic review 

and surveyed a range of peer reviewed studies on ML for 
heart disease prediction in the last 5–10 years with focus 
on a minimum of 5,000 cohort patients built into the 
experimental setup. Table 1 summarizes key studies, 
including their data sources, ML approaches, and 
whether model calibration was evaluated (and how). 
Each study is cited with its year and reference number 
(e.g., 2025 [17] means the study was published in 2025 and 
is reference [17] in the reference list).

Table 1: Recent ML-based heart disease prediction studies (2017-2025) - Summary of data, methods, and calibration evaluation. (Calibration metrics: 
HL = Hosmer–Lemeshow test; ECE = Expected Calibration Error; O/E = observed-to-expected ratio; Brier = Brier score.) 

Year 
[Ref] 

Data (Population / 
Dataset) 

ML Approach & Key Results Calibration (Evaluation & 
Metrics) 

2025 
[17] 

Japanese Suita cohort 
(n=7,260; ~15-year follow-
up; ages 30-84). 

Risk models (LR, RF, SVM, XGB, LGBM) 
for 10 year CHD; RF best (AUC ~0.73); 
SHAP identified key factors. 

Yes - Calibration curves and O/E 
ratios; RF ~1:1 calibration. 

2025 
[18] 

NHANES (USA; ~37,000). PSO ANN - particle swarm optimized 
neural net; ~97% accuracy; surpassed LR 
(~95.8%); feature selection + SMOTE. 

No - Calibration not reported. 

2024 
[19] 

Simulated big dataset + 
UCI. 

AttGRU HMSI deep model; ~95.4% 
accuracy; emphasis on big data 
processing and feature selection. 

No - Calibration not reported. 

2023 
[20] 

UK Biobank (n≈473,000; 10 
year follow up). 

AutoPrognosis AutoML; AUC ≈0.76; 10 
key predictors discovered. 

Yes - Brier ~0.057 (good 
calibration). 

2023 
[21] 

China EHR (Ningbo; 
n=215,744; 5 year follow 
up). 

XGBoost vs Cox; C index 0.792 vs 0.781. Yes - HL χ² ≈0.6, p=0.75 in men; 
non significant HL (good 
calibration). 

2023 
[22] 

Stanford ECG datasets; 
external validation at 2 
hospitals. 

SEER CNN using resting ECG; 5 yr CV 
mortality AUC ~0.80 - 0.83; ASCVD AUC 
~0.67; reclassified ~16% low risk to higher 
risk with true events. 

No - Calibration not reported. 

2022 
[23] 

China hypertension cohort 
(n=143,043). 

Ensemble (avg RF/XGB/DNN); AUC 
0.760 vs LR 0.737. 

No - Calibration not reported. 

2021 
[24] 

Korea NHIS (n≈223k) + 
external cohorts. 

ML vs risk scores for 5 yr CVD; simple 
NN improved C stat (0.751 vs 0.741). 

Yes - HL χ² baseline 171 vs 15-86 
for ML (p>0.05). Brier ~0.031 - 0.032 
(good calibration). 

2021 
[25] 

NCDR Chest Pain MI 
registry (USA; n=755,402; 
derivation 564k; validation 
190k). 

In hospital mortality after MI; 
ensemble/XGBoost/NN vs logistic; 
similar AUC (~0.89). 

Yes - Calibration slope ~1.0 in 
validation; Brier components & 
recalibration tables reported. 

2021 
[26] 

Faisalabad Institute + 
Framingham + South 
African Hearth dataset & 
UCI (Cleveland n=303). 

Feature importance with 10 ML 
algorithms; XAI focus. 

No - Calibration not reported. 

2020 
[27] 

Eastern China high risk 
screening (n=25,231; 3 year 
follow up). 

Random Forest; AUC ≈0.787 vs risk charts 
≈0.714. 

Yes - HL χ²=10.31, p=0.24 (good 
calibration). 
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2019 
[28] 

UK Biobank subset 
(n=423,604; 5-year follow-
up). 

AutoPrognosis ensemble; AUC ≈0.774 vs 
Framingham ≈0.724; +368 cases identified. 

Yes - Pipeline includes calibration 
(e.g., Platt scaling [sigmoid]); good 
agreement of predicted vs 
observed risk. 

2017 
[29] 

UK CPRD primary care 
(n=378,256; 10 year follow 
up; 24,970 events). 

Classic ML vs ACC/AHA score; NN best 
(AUC ≈0.764) vs 0.728; improved 
identification. 

No - Calibration not reported. 

 

1.4.2. Gaps in Research 

Despite abundant work on ML-based heart disease 
prediction, there are clear gaps in the literature regarding 
probability calibration and uncertainty quantification. 
First, most studies prioritize discriminative performance 
(accuracy, F1, AUROC, etc.) and devote little or no 
attention to how well the predicted probabilities reflect 
true risk. As shown above, prior works seldom report 
calibration metrics like ECE or Brier score, nor do they 
plot reliability diagrams. For example, none of the 10+ 
studies reviewed applied calibration methods such as 
Platt scaling or isotonic regression to their classifiers, 
except for only one study [28]. This indicates a lack of 
focus on calibration quality, an important aspect if these 
models are to be used in clinical decision-making where 
calibrated risk predictions are crucial. 

Second, there is a lack of unified evaluation across 
multiple models and calibration techniques. Prior 
research typically evaluates a set of ML models on a 
dataset (as in comparative studies) but stops at reporting 
raw performance metrics. No study to date has 
systematically taken multiple classification models for 
heart disease and evaluated them before and after post-
hoc calibration. This means it remains unclear how 
different algorithms (e.g. an SVM vs. a random forest) 
compare in terms of probability calibration (not just 
classification accuracy), and whether simple calibration 
methods can significantly improve their reliability. 
Furthermore, the interplay between model uncertainty 
(e.g. variance in predictions) and calibration has not been 
explored in this domain. Third, most heart disease 
prediction papers do not report uncertainty metrics or 
advanced calibration statistics.  Metrics such as the Brier 
score (which combines calibration and refinement), the 
ECE (Expected Calibration Error), or even more domain-
specific checks like Spiegelhalter’s Z-test for calibration, 
are virtually absent from prior studies. Sharpness (the 
concentration of predictive distributions) and other 
uncertainty measures are also not discussed. This leaves 
a research gap in understanding how confident we can be 

in these model predictions and where they might be over 
or under-confident. For instance, none of the reviewed 
studies provide reliability diagrams to visually inspect 
calibration; as a result, a model claiming 95% accuracy 
might still make poorly calibrated predictions 
(overestimating or underestimating risk).  

To the best of our knowledge, no prior work has 
offered a comprehensive evaluation of pre and post-
calibration metrics across multiple models on the specific 
Kaggle heart disease dataset (1,025 records) used in this 
study. While several papers have used this or similar data 
for model comparison, none have examined calibration 
changes (ECE, log-loss, Brier, sharpness, Spiegelhalter’s 
Z-test, calibration curves) resulting from post-hoc 
calibration methods (Platt scaling, isotonic regression). In 
short, existing studies have left a critical question 
unanswered: if we calibrate our heart disease prediction 
models, do their confidence estimates become more 
trustworthy, and how does this vary by model? 
Addressing this gap is the focus of our work. We provide 
a thorough assessment of multiple classifiers before and 
after calibration, using a suite of calibration and 
uncertainty metrics not previously applied in this context, 
thereby advancing the evaluation criteria for heart 
disease ML models beyond conventional accuracy-based 
measures.  

2. Materials and Methods 

2.1. Research Methodology Overview  

This study employs a structured machine learning 
workflow to predict heart disease risk based on clinical 
and demographic variables. As outlined in Figure 1, the 
process begins with the heart disease dataset, followed by 
data preprocessing, model selection and training, 
performance evaluation, and post-hoc calibration. Three 
(3) calibration techniques (i.e Platt Scaling, Isotonic 
Regression and Temperature scaling) are applied to refine 
probabilistic outputs, with effectiveness assessed. 
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Figure 1: Workflow Diagram for Heart Disease Prediction and 
Calibration Pipeline 

2.2. Description of the Dataset  

The Heart Disease dataset used in this study was 
sourced from Kaggle. It was originally sourced by 
merging data from four medical centers Cleveland, 
Hungary, Switzerland and VA Long Beach, bringing the 

sample size to 1,025 records, including 713 males (69.6%) 
and 312 females (30.4%), ages ranging between 29 - 77 
years (median age ~56). The dataset contains 14 variables 
encompassing demographic, clinical and diagnostic test 
features. Descriptions of the dataset are outlined in Table 
2.  

The dataset was inspected for missing values and 
none was identified. The target variable (heart disease) 
was approximately balanced, with 51.3% of records 
labelled Presence of Disease and 48.7% labelled absence 
of Disease as shown in Figure 2. The target was binarised 
as heart disease = 1 and absence = 0, retained as an integer. 
Any re-coding of the target labels was not required for the 
present analysis. 

 

Figure 2: Heart disease distribution 

Table 2: Data description for heart disease dataset 

Feature Description Data Type Values / Range 

Age (Years)  Age of the patient Integer 29-77 

sex Sex (1 = male, 0 = female) Categorical 0, 1 

cp Chest pain type Categorical 1: typical angina, 2: atypical angina, 3: non-
anginal pain, 4: asymptomatic 

trestbps(mmHg)  Resting blood pressure (on 
admission to the hospital) 

Integer 94-200 

chol(mmol/L) Serum cholesterol Integer 126-564 

Fbs (mmol/L)  Fasting blood sugar > 120 mg/dl (1 = 
true, 0 = false) 

Categorical 0, 1 

restecg Resting electrocardiographic results Categorical 0: normal, 1: ST-T abnormality, 2: left 
ventricular hypertrophy 

thalach Maximum heart rate achieved Integer 71-202 

http://www.jenrs.com/


 P. A. Odesola et al., Model Uncertainty Quantification: A Post Hoc 
 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(12): 25-54, 2025                                            31 
 

exang Exercise induced angina (1 = yes, 0 = 
no) 

Categorical 0, 1 

oldpeak ST depression induced by exercise 
relative to rest 

Real 0.0-6.2 

slope Slope of the peak exercise ST 
segment 

Categorical 1: upsloping, 2: flat, 3: downsloping 

ca Number of major vessels (0-3) 
colored by fluoroscopy 

Integer 0-3 

thal Thalassemia test result Categorical 3: normal, 6: fixed defect, 7: reversible 
defect 

num Presence of heart disease (target: 0 = 
no, 1-4 = disease) 

Categorical 0, 1, 2, 3, 4 

2.3. Data Preprocessing  

In this study, the dataset was separated into 13 
predictors (i.e patient risk factors) and the 1 outcome 
feature (i.e the presence or risk of heart disease). 
Predictors were further divided into two groups: 
numerical features (e.g Age, RestingBP, Cholesterol) and 
categorical features (e.g ChestPainType, RestingECG, 
Thalassemia, Sex). We scale numerical features using a 
RobustScaler approach, which centres values around the 
median and spreads them according to the interquartile 
range. This method was selected due to it being less 
sensitive to outliers and skewness [30]. For categorical 
features, a One-Hot Encoding approach was applied, 
converting each category into binary (0/1) variables. This 
ensured that all categories were represented in a machine-
readable format.  

To prevent information leakage, all preprocessing 
steps were fit on training data only and were 
implemented inside the model pipelines. Within each 
cross-validation fold, imputation, scaling, and encoding 
were learned on the fold’s training split and then applied 
to the corresponding validation split. The same rule was 
followed for the final 70/30 train-test split, where 
transformers were fit on the 70% training partition and 
then applied to the held-out 30% test set. Where missing 
values occurred, numerics were imputed by the median 
and categoricals by the most frequent level before scaling 
or encoding. The outcome remained binary as integers 
throughout the workflow. 

 

 

2.4. Model Selection 

In this work, we benchmark six models (spanning 
linear, non-linear and ensemble model architectures) to 
classify patients based on the presence or absence of heart 
disease. The selected models include Logistic Regression 
(LR), Support Vector Machines (SVM), Random Forest 
(RF), Extreme Gradient Boosting (XGBoost), K-Nearest 
Neighbors (KNN), and Naive Bayes (NB). Using training 
(70%) and testing (30%) sets, we trained each model on 
the preprocessed training data and evaluated it on the 
held-out test data. 

Logistic Regression (LR): Logistic Regression is a 
supervised machine learning model well-suited for 
binary classification, such as determining the presence or 
absence of heart disease.  LR calculates the probability of 
a class (e.g., disease or no disease) by applying a sigmoid 
function to a weighted sum of predictor variables. Its 
strengths include simplicity, efficiency, and the ability to 
interpret coefficients as odds ratios, which is valuable in 
clinical settings for understanding feature importance 
and risk factors. Logistic Regression has a proven track 
record in medical research for risk stratification and is 
easily calibrated for probability estimation [31]. 

Support Vector Machines (SVM): Support Vector 
Machines are powerful, supervised classification models 
that work by finding the optimal hyperplane that 
separates classes in the feature space. SVMs excel at 
handling high-dimensional data and can model nonlinear 
relationships through kernel tricks, making them highly 
effective for complex medical datasets. Their ability to 
maximize the margin between classes reduces the 
likelihood of misclassification, which is especially useful 
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when distinguishing subtle differences between patients 
with and without heart disease. SVMs are known for their 
robustness in real-world clinical prediction tasks [32]. 

Random Forest (RF): Random Forest is an ensemble 
algorithm that builds multiple decision trees during 
training and aggregates their outputs via majority voting 
for classification. It is especially effective at capturing 
nonlinear relationships and interactions among risk 
factors in heart disease prediction. The ensemble nature 
of RF mitigates overfitting and variance, providing more 
reliable and stable predictions on diverse patient 
populations. Its embedded feature importance scores 
help clinicians identify key predictors of heart disease, 
further supporting its use in healthcare analytics [33]. 

Extreme Gradient Boosting (XGBoost): XGBoost is a 
gradient boosting framework that creates a series of weak 
learners (usually decision trees) and optimizes them 
sequentially. It is renowned for combining high 
predictive accuracy with speed and efficiency, making it 
a top performer in medical classification challenges. 
XGBoost handles missing data gracefully and is robust to 
outliers, both of which are common in clinical datasets. Its 
sophisticated regularization techniques reduce 
overfitting, and its model interpretability tools are 
advantageous for validating results in heart disease risk 
prediction [34]. 

K-Nearest Neighbors (KNN): K-Nearest Neighbors is 
a non-parametric classification method that predicts the 
class of a sample based on the majority class among its k 
closest neighbors in feature space. KNN is intuitive, easy 
to implement, and doesn’t assume data distribution, 
making it suitable for heterogeneous clinical datasets. 
KNN is effective at leveraging local patterns, which can 
help identify at-risk heart disease patients by matching 
them to previously observed cases. However, it can be 
sensitive to feature scaling and less efficient with 
extensive datasets [35]. 

Naive Bayes (NB): Naive Bayes is a probabilistic 
classification algorithm that applies Bayes’ theorem, 
assuming feature independence. Its simplicity and 
computational efficiency make it attractive for medical 
tasks with many categorical variables. Despite its “naive” 
independence assumption, NB often performs 
surprisingly well for heart disease prediction because it 
can handle missing values, is robust with noisy data, and 
quickly estimates posterior probabilities. This makes it 

valuable for real-time risk assessment and decision 
support in clinical environments [36]. 

2.5. Model Tuning Strategy 

In this study, GridSearchCV was used as the primary 
hyperparameter-tuning strategy due to its structured and 
reproducible approach [37], [38]. GridSearchCV works by 
exhaustively evaluating all possible combinations of 
predefined hyperparameters for a given algorithm [37], 
[38]. For each candidate configuration, the model is 
trained and validated using 5-fold cross-validation, 
ensuring stable performance estimates; this setup is 
widely recommended for clinical prediction models and 
has been applied to heart-disease prediction tasks [39], 
[40]. This is particularly important in healthcare datasets 
such as heart disease prediction, where sample sizes may 
be limited and class distributions may be imbalanced [40], 
[41]. By systematically exploring the parameter space, 
GridSearchCV helps identify the configuration that yields 
an appropriate balance between accuracy and 
generalisation performance [37], [38], [39]. In our heart-
disease model, we used GridSearchCV to improve the 
stability of probability outputs before applying post-hoc 
calibration techniques. Table 3 summarises the parameter 
grid and chosen parameters for each model trained in this 
experiment. 

2.6. Cross-validated discrimination 

To measure discrimination outside one held-out test 
split, we used stratified 5-fold cross-validation on the 70% 
training set. In every outer fold, the full preprocessing 
pipeline and the classifier were fitted only on that fold’s 
training partition, then applied to the corresponding 
validation partition. This guards against information 
leakage from scaling or encoding into validation data. 

Threshold-dependent metrics used a single, data-
driven cutpoint per model based on Youden’s J index. For 
a given threshold ton predicted probabilities, 
J(t) = Sensitivity(t) + Specificity (t) - 1 and the selected cut 
point is t = arg max t J(t), [42]. Within each outer-fold 
training partition we ran an inner 5-fold CV to estimate t 
using only the inner validation predictions, then fixed t 
and applied it to the outer-fold validation data to 
compute Accuracy and F1. AUC ROC was computed 
from continuous scores and did not use a threshold. 
Using J focuses the operating point where both sensitivity 
and specificity are jointly maximized in the training data, 
a practice with well-studied statistical properties for 
cutpoint selection [43]. 
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Table 3: Hyperparameter Grids and Selected Best Settings by Model 

Model Parameter grid Best parameter 

K-Nearest 
Neighbors 

Minkowski p: 1, 2; Number of neighbors: 3, 5, 7, 9; 
Weights: uniform, distance 

Minkowski p: 1; Number of neighbors: 9; 
Weights: distance 

Random Forest Number of trees: 200, 300, 400; Max depth: None, 5, 
10; Min samples per leaf: 1, 2, 4; Max features: sqrt, 
log2 

Number of trees: 200; Max depth: None; 
Max features: sqrt; Min samples per leaf: 1 

XGBoost Number of trees: 200, 300; Learning rate: 0.03, 0.05, 
0.1; Max depth: 3, 4, 5; Subsample: 0.8, 1.0; Column 
sample by tree: 0.8, 1.0 

Number of trees: 200; Learning rate: 0.05; 
Max depth: 4; Subsample: 1.0; Column 
sample by tree: 0.8 

Support Vector 
Machine 

Kernel: rbf, linear; Regularization strength (C): 0.1, 1, 
10; Gamma: scale, auto 

Kernel: rbf; Regularization strength (C): 10; 
Gamma: scale 

Logistic 
Regression 

Regularization strength (C): 0.1, 1, 10; Solver: lbfgs, 
liblinear; Class weight: None, balanced 

Regularization strength (C): 10; Solver: 
lbfgs; Class weight: None 

Naive Bayes Variance smoothing: 1e-09, 1e-08, 1e-07 Variance smoothing: 1e-07 

 

This nested procedure helps control overfitting and 
preserves statistical validity. The threshold is chosen 
strictly inside the training portion of each outer fold, 
never on the outer validation or test data, which avoids 
optimistic bias and the circularity that arises when model 
selection and error estimation are performed on the same 
data [44]. When comparing uncalibrated and calibrated 
variants, the identical t learned within the outer-fold 
training data was applied to both sets of probabilities for 
that fold. This preserves a paired design, reduces variance 
in fold differences and maintains the validity of 
subsequent significance testing based on matched 
resamples [45]. 

2.7. Model Performance Metrics 

We evaluated classification performance using 
Accuracy, ROC-AUC, Precision, Recall, and F1-score. Let 
TP, FP, TN, and FN denote true positives, false positives, 
true negatives, and false negatives, respectively. 

Accuracy. Defined as ( TP+TN
TP+FP+TN+FN

), accuracy reflects the 
share of correctly classified cases in the test set. In clinical 
screening contexts where disease prevalence may be low 
accuracy depends on the decision threshold and can mask 
deficiencies under class imbalance, yielding seemingly 
strong performance while missing many positive cases 
[46]. 

ROC-AUC. The receiver-operating-characteristic area 
summarizes discrimination across all thresholds; it equals 
the probability that a randomly selected positive receives 
a higher score than a randomly selected negative and 
ranges from 0.5 (no discrimination) to 1.0 (perfect). ROC-
AUC is broadly used in clinical prediction for its 
threshold-agnostic view of separability, though it does 
not reflect calibration or the clinical costs of specific error 
types [47]. 

Precision. Given by ( TP
TP+FP

), quantifies how reliable 
positive alerts are among patients flagged as having heart 
disease, the fraction truly positive. As thresholds are 
lowered to capture more cases, precision typically 
decreases, illustrating the trade-off clinicians face 
between false alarms and case finding [48]. 

Recall. Defined as ( TP
TP+FN

), measures the proportion of 
truly diseased patients the model detects (sensitivity). 
Raising recall generally requires a lower threshold, which 
increases false positives and reduces precision; selecting 
an operating point should therefore reflect clinical 
consequences and disease prevalence [49]. 

F1-score. The harmonic mean �Precision x Recall 
Precision+Recall

� ∗ 2, 

provides a single summary when both missed cases and 
false alarms matter. F1 is commonly reported in 
imbalanced biomedical tasks, though its interpretation 
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should be complemented by other metrics given known 
limitations under skewed prevalence [50]. 

These metrics establish a consistent baseline for cross-
model comparison and inform our subsequent calibration 
and uncertainty quantification analysis. 

2.8. Post-Hoc Calibration and Evaluation 

2.8.1. Selected Calibration Techniques 

Post-hoc calibration refers to techniques applied after 
model training that map raw scores to probabilities 
without changing the underlying classifier. In clinical 
settings where decisions hinge on risk estimates, these 
procedures use a held-out calibration set to fit a simple, 
typically monotonic mapping so that predicted 
probabilities better match observed event rates [9], [51], 
[52]. In this study, calibration was fit strictly on training-
only validation data inside cross-validation and applied 
to the corresponding validation folds, then to the held-out 
test split, which avoids information leakage and 
optimistic bias as recommended in prior work [5], [7], [9], 
[51].  

In clinical text or imaging pipelines for heart-disease 
prediction, this is attractive, one can retain the trained 
model and its operating characteristics, then calibrate its 
outputs to yield probabilities that are more trustworthy 
for downstream decision thresholds, alerts, or shared 
decision-making [51], [52]. For this study, we applied 
three post-hoc calibration methods, Platt scaling, isotonic 
regression, and temperature scaling, to adjust model 
outputs into well-calibrated probabilities [5], [7]. 

1) Platt scaling works by fitting a smooth S-shaped 
sigmoid curve to the model’s scores using a separate 
validation set, so that predicted probabilities better 
match actual outcomes. This method is simple and 
efficient but assumes that the relationship between 
scores and probabilities follows a logistic pattern [9], 
[53]. In our pipeline, the sigmoid mapping was 
learned on training-only validation folds and then 
applied to their matched validation sets. 

2) Isotonic regression is a more flexible, non-parametric 
method that does not assume any specific shape. 
Instead, it fits a step-like monotonic curve that can 
adapt to complex patterns in the data [54]. While this 
flexibility can better capture irregular relationships, it 
can also lead to overfitting if the validation dataset is 
small, hence our use of cross-validated, training-only 
fits to mitigate instability [5], [7], [51]. 

3) Temperature scaling applies a single global 
temperature T > 0 to sharpen or soften probabilities 
via pT = σ (logit(p)/T). We estimated T on training-
only out-of-fold predictions by minimizing negative 
log loss, then applied the learned T to the 
corresponding validation folds and the held-out test 
split. Temperature scaling is lightweight and widely 
used to correct overconfident scores without altering 
class ranking [5]. 

In practice, Platt scaling is most useful when a 
sigmoid relationship is expected, isotonic regression is 
preferred when the calibration pattern is unknown or 
more complex [9], and temperature scaling provides a 
simple, global adjustment of confidence that can be 
effective when miscalibration is primarily due to score 
overconfidence rather than shape distortions [5]. Using all 
three methods provides a robust calibration toolbox, 
ensuring reliable probability estimates across different 
models, while our training-only fitting approach 
addresses concerns about leakage and preserves valid 
evaluation. 

2.8.2. Model Uncertainty Quantification and Calibration 
Evaluation Metrics 

In this study, we measure the uncertainty of the 
models using these key calibration evaluation metrics: 
Reliability diagram, Brier Score, Expected Calibration 
Error (ECE), Log Loss and Sharpness. A combination of 
these metrics provides a holistic understanding of each 
model's effectiveness in quantifying model uncertainty. 

Reliability diagram, calibration plot. A reliability 
diagram visualizes how predicted probabilities align with 
observed event rates by plotting, across confidence bins, 
the empirical outcome frequency against the mean 
predicted probability. A perfectly calibrated model traces 
the 45-degree diagonal line, while systematic deviations 
reveal over or under-confidence [9]. Reliability diagrams 
are standard in forecast verification and machine-
learning calibration, and they provide a visual check of 
probability accuracy while preserving discrimination. 
Practical caveats include sensitivity to binning and 
sample size, and the fact that the plot alone does not 
indicate how many samples fall into each bin, often 
addressed by adding a companion confidence histogram 
[5], [55], [56]. We experiment with two binning strategies 
(i.e equal-width bins and equal-frequency bins). A 
rolling-mean curve over the predicted probabilities was 
added to stabilise visual trends without changing the bin 
statistics. 
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Brier Score - The Brier Score measures the mean 
squared difference between predicted probabilities and 
the actual binary outcomes. Unlike accuracy which 
reduces predictions to “yes/no” and ignores the 
uncertainty behind probability values the Brier Score 
penalizes poorly calibrated or overly confident 
predictions. This makes it more informative for model 
uncertainty quantification, especially in clinical settings 
were knowing the probability of heart disease (and not 
just a binary label) aids risk discussions and decision-
making. Lower Brier Scores indicate better calibrated and 
more reliable probability forecasts, a key aspect of clinical 
utility [57]. 

Expected Calibration Error (ECE). ECE summarizes 
how closely a model’s predicted probabilities match the 
observed frequencies of outcomes. It divides predictions 
into probability bins and measures the mismatch between 
average predicted probability and the actual outcome rate 
in each bin. In heart disease prediction, ECE helps verify 
if model confidence reflects real-world risks, ensuring 
patients with a predicted 70% heart disease risk, for 
example, actually face that risk. Lower ECE values 
indicate better calibrated models, which is crucial for 
trusted clinical decision support [5]. In this work, we 
report two ECE variants to assess robustness to binning: 

equal-width bins with K = 10 and equal-frequency bins 
with K = 10; the latter balances counts per bin and often 
yields more stable estimates on modest sample sizes [5], 
[56]. 

Log Loss - Log Loss (or cross-entropy loss) evaluates 
the uncertainty of probabilistic outputs by heavily 
penalizing confident but incorrect predictions.  Log Loss 
is sensitive to how far predicted probabilities diverge 
from the actual class, providing a continuous measure of 
model reliability. For heart disease prediction, low Log 
Loss means the model rarely makes wildly overconfident 
errors, promoting safer, uncertainty-aware clinical 
interpretation [58]. 

Sharpness (variance of predicted probabilities) - 
Sharpness measures the spread or concentration of 
predicted probabilities, independent of whether they’re 
correct. High sharpness means the model often predicts 
risks near 0 or 1, indicating confident, decisive forecasts. 
For heart disease prediction, greater sharpness is 
desirable only if paired with good calibration confident 
predictions should be correct. Thus, sharpness reveals 
how much intrinsic uncertainty the model expresses, 
helping physicians judge whether predictions are 
actionable or too vague for clinical use [55].

Table 4: Pipeline decisions for Baseline Classification Performance & Calibration - summary of experiment setup, evaluation choices, and 
preprocessing decisions 

Component Description 

Test Split 30% of dataset (~306 instances), stratified by target class 

Cross-Validation 5-fold StratifiedKFold with shufflingpercent 

Scaling RobustScaler for numeric variables 

Encoding OneHotEncoder for nominal categorical fields 

Models Logistic Regression, SVM, Random Forest, XGBoost, KNN, Naive Bayes 

Development Environment Google Colab 

Python libraries Sklearn, matplotlib, scipy, numpy, pandas, seaborn 

Model Evaluation Metrics Accuracy, ROC-AUC, Precision, Recall, and F1 Score 

Uncertainty Quantification 
Metrics 

Brier Score, Expected Calibration Error (ECE), Log Loss, Spiegelhalter’s Z-score & p-
value, Sharpness, Reliability diagram  

Train/test split ratio  70% training: 30% testing 
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2.9. Confidence intervals and statistical tests 

Confidence intervals. For test-set discrimination 
metrics, we computed 95% bootstrap percentile intervals 
with 2,000 resamples, using stratified resampling to 
preserve class balance and skipping resamples with a 
single class for AUROC [59]. For cross-validated 
summaries we formed per-fold estimates, then 
bootstrapped across the out-of-fold units to obtain fold-
aware 95% intervals for Brier score, ECE, Log Loss, and 
sharpness. For reliability diagrams we reported Wilson 
95% intervals for bin-wise observed event rates to 
stabilize proportions in modest bin counts [60]. 

Spiegelhalter’s Z-score & p-value - Spiegelhalter’s Z-
score tests overall calibration by comparing predicted 
probabilities to actual outcomes, normalized by their 
variance. A non-significant p-value suggests the model is 
well-calibrated; otherwise, the probabilistic forecasts may 
be systematically over or under-confident. This 
calibration test is especially important in health 
applications, assuring clinicians that model probabilities 
are statistically valid reflections of true outcome chances 
[61]. 

Permutation p-tests on fold-matched deltas. To 
compare calibrated to uncalibrated states we used paired 
permutation tests on fold-matched differences, for 
example Δ = metriccal - metricuncal. Within each model, we 
repeatedly flipped the signs of fold-level deltas to 
generate the null distribution that the median delta equals 

zero, using 10,000 permutations, two sided. We report the 
observed delta, its bootstrap 95% interval, and the 
corresponding permutation p-value, which answers 
whether the improvement is larger than expected by 
chance under the paired design [62], [63]. 

Wilcoxon signed-rank tests. For the equal-width 
versus equal-frequency ECE comparison, we also report 
paired Wilcoxon signed-rank tests on fold-matched 
differences, alongside bootstrap intervals for the median 
delta, to summarize direction and robustness of the 
binning effect without distributional assumptions [64]. 

3. Baseline model performance 

Six classifiers were trained and evaluated on the held-
out test set. Table 5 reports Accuracy, F1, and ROC AUC 
with 95% bootstrap confidence intervals alongside 
precision and recall. Four models achieved very high 
scores across metrics, with KNN, Random Forest, 
XGBoost, and SVM, each reaching high test scores. For 
example, KNN achieved 99.0% Accuracy, 99.0% F1, and 
100.0% ROC AUC, while Random Forest, XGBoost, and 
SVM were in the 97.1% to 99.6% range across these 
metrics. Logistic Regression was lower, with 86.0% 
Accuracy, 86.6% F1, and 94.3% ROC AUC. Naive Bayes 
was lowest, with 80.2% Accuracy, 77.8% F1, and 88.4% 
ROC AUC. Confidence intervals are tight for the top four 
models, as shown in Figures 3 to 5 and wider for Logistic 
Regression and Naive Bayes, indicating greater sampling 
uncertainty for the latter pair.

Table 5: Performance metrics of baseline classification models (before calibration) with 95% confidence interval (CI) bootstrap 
 (number of boots = 2,000) 

Model 
Accuracy 
(%) 

Accuracy 95% CI 
(Lower - Upper) 

F1 
(%) 

F1 95% CI 
(Lower - 
Upper) 

ROC 
AUC 
(%) 

ROC AUC 95% 
CI (Lower - 
Upper) 

Precision 
(%) 

Recall 
(%) 

KNN 99 98.1 - 100.0 99 97.9 - 100.0 100 100.0 - 100.0 100 98.1 

RF 98.1 96.4 - 99.4 98.1 96.4 - 99.4 99.6 99.1 - 100.0 100 96.2 

XGB 98.1 96.4 - 99.4 98.1 96.5 - 99.4 99.2 98.5 - 99.8 98.1 98.1 

SVM 97.1 95.1 - 98.7 97.1 95.1 - 98.8 98.6 96.9 - 100.0 98.1 96.2 

LR 86 82.1 - 89.6 86.6 82.3 - 90.3 94.3 91.7 - 96.7 85.3 88.0 

NB 80.2 75.6 - 84.4 77.8 71.9 - 82.9 88.4 84.2 - 92.1 91.5 67.7 
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Figure 3: Test Accuracy with 95% Confidence Intervals 

 
Figure 4: Test F1 with 95% Confidence Intervals 

 
Figure 5: Test ROC AUC with 95% Confidence Interval 

To quantify discrimination metric without relying on 
a single partition, we used stratified 5-fold cross-
validation, fitting preprocessing and models within each 
training fold. We selected the decision threshold by 
Youden’s J using inner cross-validation, then applied that 
fixed threshold to the outer validation fold. Following 
best practice, we tuned the decision threshold in each fold 
on the training predictions, selecting the cut-point that 
maximized Youden’s J, rather than using a fixed 0.5 
threshold [65], while still maintaining statistical 
significance [66]. Table 6 reports the fold means for 
Accuracy, F1, and ROC AUC for the uncalibrated models 
optimized via Youden J, side by side with baseline 
performance from Table 5. 

Discrimination was strongest for four models, with 
consistently high values. Random Forest and KNN reach 
99.60% Accuracy and 99.60% F1, with ROC AUC at 
100.00%. SVM attains 99.0% Accuracy, 99.1% F1, and 
100% ROC AUC. XGBoost follows closely with 99.0% 
Accuracy, 99.0% F1, and 100% ROC AUC. Logistic 
Regression and Naive Bayes remain well below this 
cluster, with 86.8% and 83.8% Accuracy, 87.5% and 84.7% 
F1, and 94.0% and 89.5% ROC AUC, respectively. 

These results reflect two effects. First, ROC AUC 
values confirm very strong class separability on this 
dataset. Second, optimizing the threshold on training data 
via Youden’s J raises fold-wise Accuracy and F1 
compared with a fixed cutpoint, which explains the 
higher values relative to our earlier fixed-threshold point 
estimate summaries [67]. The Youden J optimised values 
in Table 6 serve as the discrimination baseline for all later 
comparisons, where we examine how post-hoc 
calibration changes calibration metrics while tracking any 
movement in Accuracy and F1 relative to these 
uncalibrated, Youden-J estimates. 

 

Table 6: Uncalibrated Cross-validated Accuracy, F1, and ROC AUC with tuned parameters 

Model 

Baseline model performance + 
Hyperparameter tuning 

Baseline model performance + Hyperparameter tuning + Cross 
validation (CV=5) Out of fold (OOF) + Inner 5-fold for Youden J 

Accuracy F1 ROC AUC Accuracy F1 ROC AUC 
KNN 99.0 99.0 100 99.6 99.6 100 
RF 98.1 98.1 99.6 99.6 99.6 100 
XGB 98.1 98.1 99.2 99.0 99.0 100 
SVM 97.1 97.1 98.6 99.0 99.1 100 
LR 86.0 86.6 94.3 86.8 87.5 94.0 
NB 80.2 77.8 88.4 83.8 84.7 89.5 
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3.1. Reliability Plots 

We plot reliability diagrams to visualise calibration 
effects using out-of-fold predictions from stratified 5-fold 
cross-validation. Given a test set of 306 instances (30% of 
the 1,025-record dataset), predicted probabilities were 
partitioned into ten equal-frequency bins so each bin 
contained a similar number of cases, which stabilizes bin 
estimates. This choice balances resolution and stability in 
modest samples, consistent with guidance that 
discourages aggressive binning when counts per bin 
become small [56]. For each bin we plot the bin mean 
against the observed event rate with Wilson 95% intervals 
with a thin rolling mean over the sorted predictions. 
Figures 6 to 9 present the six models for the uncalibrated 
outputs and for Platt, Isotonic, and Temperature 
calibration. 

Before calibration (Figure 6), Logistic Regression and 
XGBoost track the diagonal closely through most of the 

probability range, with small departures near the 
extremes. Random Forest shows overconfidence in the 
upper tail, where predicted risks exceed observed 
frequencies. SVM tracks the diagonal in the mid-range 
but is less reliable at the extremes. KNN exhibits a flat, 
underconfident shape over much of the scale. Naive 
Bayes displays the familiar S-shape, underestimating risk 
at intermediate probabilities and overshooting near 1, 
consistent with prior reports of miscalibration for these 
families of models [7], [9], [53]. 

Platt scaling (Figure 7) improves Logistic Regression, 
SVM and Naive Bayes, drawing curves toward the 
diagonal where deviations were approximately 
monotonic, but it leaves clear residual error for Random 
Forest and KNN, likely due to its monotonic, logistic-
form constraint [68][69]. XGBoost shows little gain and, in 
places, mild distortion relative to its already good pre-
calibration fit.

 

 

Figure 6: Reliability diagrams, uncalibrated outputs, equal-frequency bins K = 10. Each panel shows bin means with Wilson 95% intervals and a 
rolling mean curve. 
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Figure 7: Reliability diagrams after Platt scaling, equal-frequency bins K = 10. 

 

 

Figure 8: Reliability diagrams after Isotonic regression, equal-frequency bins K = 10. 
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Figure 9: Reliability diagrams after Temperature scaling, equal-frequency bins K = 10. 

Isotonic regression (Figure 8) provides the largest and 
most consistent improvements. Naive Bayes becomes 
markedly more tightly positioned across the range, and 
SVM tightens around the diagonal with narrower 
uncertainty bands. Random Forest is corrected at high 
probabilities, reducing overconfidence. KNN remains 
relatively unstable, with small bins at the extremes still 
showing variance. These findings suggest that while 
sigmoid calibration is suitable for models with nearly 
linear miscalibration, isotonic regression better handles 
complex, non-monotonic distortions in probabilistic 
estimates [70], [71].  

Temperature scaling (Figure 9) yields modest, mostly 
uniform shifts in confidence. It reduces the top-end 
overconfidence for Random Forest and XGBoost, but its 
effect is smaller than isotonic and, as expected for a single-
parameter rescaling, it does not correct non-linear 
distortions. 

The reliability plots show three consistent themes. 
First, calibration needs are model-specific, with 
ensembles tending to be overconfident near 1, Naive 
Bayes showing S-shaped error, and Logistic Regression 
close to calibrated at baseline. Second, isotonic is the most 
effective general-purpose post-hoc adjustment on this 

dataset, while Platt helps when deviations are nearly 
logistic in form. Third, confidence intervals make 
departures from perfect calibration most apparent at the 
extremes of the probability scale, where data are sparse.  

3.2. Sensitivity of ECE to binning choice 

We assessed the stability of ECE using two binning 
strategies with K = 10, equal-width and equal-frequency. 
For each model, calibration state, and fold, we computed 
the paired difference [ΔECE = ECE {uniform} – ECE {quantile}]. 
Positive values indicate smaller ECE when bins carry 
similar counts. The paired summaries are presented in 
Table 7 below, and we plot per-model medians with 95 % 
CIs in Figure 10. 

Across all models and calibration states combined, 
equal-frequency binning produced smaller ECE values. 
As shown in Table 7, the overall median ΔECE was 0.0069 
with a 95 % CI 0.0056 to 0.0089 and a Wilcoxon p value 
4.87×10⁻⁸, with 74.2% of paired fold comparisons favoring 
equal frequency. The largest effects occur for the tree-
based ensembles. For XGBoost the median ΔECE was 
0.0115 (95 % CI 0.0074 to 0.0149, p 9.54×10⁻⁶), and for 
Random Forest it was 0.0098 (95 % CI 0.0057 to 0.0119, p 
2.61×10⁻⁴). These two bars are the tallest in Figure 10, 
matching the entries in Table 7. 
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Table 7: Paired comparison of ECE with K = 10 using equal-width and equal-frequency bins over CV folds. CIs are 95% CIs bootstrap (number of 
boots = 10,000). Paired Wilcoxon tests on fold-matched deltas. 

Section Sub section Number of 
pairs 

Median 
Δ ECE 

95% 
Median 
CI Low 

95% 
Median CI 
High 

Mean 
Δ ECE 

Wilcoxon p 
Frac 
quantile 
< uniform 

Overall ---- 120 0.0069 0.0056 0.0089 0.0054 4.87×10⁻⁸ 0.7417 

By model 

XGB 20 0.0115 0.0074 0.0149 0.011 9.54×10⁻⁶ 0.9 

RF 20 0.0098 0.0057 0.0119 0.0099 0.000261 0.95 

SVM 20 0.0066 0.0007 0.01 0.006 0.009436 0.8 

LR 20 0.0061 -0.0044 0.008 0.0024 0.2774 0.6 

KNN 20 0.0053 0.0017 0.0074 0.0066 0.000655 0.75 

NB 20 -0.0024 -0.0093 0.013 -0.0037 0.7841 0.45 

By 
calibration 

Uncalibrated 30 0.0069 0.0012 0.0119 0.0078 8.09×10⁻⁵ 0.7333 

Isotonic 30 0.0068 0.0048 0.0083 0.0069 0.00073 0.8667 

Platt 30 0.0073 0.0016 0.0108 -0.0004 0.2534 0.7 

Temperature 30 0.0064 0.0004 0.0147 0.0072 0.005383 0.6667 

 

 

Figure 10: Per-model median ΔECE with 95 % CIs bootstrap (number of boots = 10,000). 

SVM and KNN show smaller but consistent gains. As 
seen in Table 7, SVM has median ΔECE 0.0066 (95 % CI 
0.0007 to 0.0100, p 9.44×10⁻³), and KNN has 0.0053 (95 % 
CI 0.0017 to 0.0074, p 6.55×10⁻⁴). Logistic Regression 
shows a modest median with a CI that crosses zero, 0.0061 
(95 % CI -0.0044 to 0.0080, p 0.277). Naive Bayes shows no 
advantage for equal-frequency, -0.0024 (95 % CI -0.0093 to 
0.0130, p 0.784). These patterns are visible in Figure 10, 

where LR has a short bar with wide whiskers and NB dips 
slightly below zero. 

By calibration method, the same direction holds. As 
shown in Table 7, the median ΔECE is 0.0069 for 
Uncalibrated (95 % CI 0.0012 to 0.0119, p 8.09×10⁻⁵), 0.0068 
for Isotonic (95 % CI 0.0048 to 0.0083, p 7.30×10⁻⁴), and 
0.0064 for Temperature (95 % CI 0.0004 to 0.0147, p 
5.38×10⁻³). Platt shows a positive median 0.0073 with a 
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non-significant p value 0.253, which is consistent with its 
shorter bar and wide CI in Figure 10. 

This sensitivity analysis indicates that ECE is lower 
on average with equal-frequency bins, as shown in Table 
7 and Figure 10. We therefore report both ECE variants 
throughout and treat the quantile-based ECE as a 
robustness check rather than as evidence of intrinsically 
better calibration. 

3.3. Calibration metrics by model and calibration method 

Table 8 reports fold means for Accuracy, F1, AUC 
ROC, Brier score, ECE with equal-width bins at K = 10, 
ECE with equal-frequency bins at K = 10, and Log Loss for 
each model under Uncalibrated, Platt, Isotonic, and 
Temperature. We identify the best calibration per model 
using the rule “best” equals the minimum Brier, the 
minimum of each ECE variant, and the minimum Log 
Loss. 

Across models, Isotonic most often provides the 
strongest calibration. This pattern is consistent with the 
reliability plots where a monotone nonparametric map 
aligns S-shaped or overconfident regions while 
preserving ordering. Platt is competitive when deviations 
are close to a logistic shift, and Temperature yields 
smaller, uniform corrections that can trim overconfidence 
without altering rank. 

Two models, KNN and SVM, are best uncalibrated 
across the calibration metrics in this dataset. For these 
models, applying Platt, Isotonic, or Temperature does not 
improve Brier, ECE, or Log Loss relative to the 
uncalibrated scores in Table 8, and in places calibration 
slightly worsens these quantities. This matches the 
reliability plots, which show limited systematic 
miscalibration for SVM and persistent variance for KNN 
that calibration does not correct. 

Table 8: Cross-validated means for Accuracy, F1, AUC ROC, Brier, ECE (uniform, 10), ECE (quantile, 10), and Log Loss by model and calibration 
method. Bold, per model, the method achieving the minimum for Brier, each ECE variant, and Log Loss. 

Model Calibration 
Accura
cy 

F1 

RO
C 
AU
C 

Brier 
Score 

Log 
Loss 

ECE 
(unifo
rm, 10) 

ECE 
(quantile, 
10) 

Sharpness 
(Var) 

Z-
Score 

Z p-
value 

KNN 
  
  
  

Isotonic 99.6 99.6 100 0.0044 0.0211 0.0146 0.0094 0.2396 0.9252 0.5618 
Platt 99.6 99.6 100 0.0054 0.0388 0.0308 0.0237 0.2231 0.6622 0.5969 
Temperature 96.7 96.7 99 0.0258 0.1228 0.0287 0.0148 0.2295 1.0477 0.3933 
Uncalibrated 99.6 99.6 100 0.0026 0.007 0.0039 0.0039 0.2487 0.9849 0.6608 

LR 
  
  
  

Isotonic 87.3 87.8 94.4 0.0905 0.3018 0.055 0.0482 0.1639 -0.1645 0.5713 
Platt 86.7 87.5 94 0.0957 0.3182 0.0567 0.0645 0.1394 -0.0513 0.6791 
Temperature 85.1 85.7 93.6 0.0975 0.3259 0.0593 0.056 0.1504 0.4082 0.4916 
Uncalibrated 86.8 87.5 94 0.0944 0.3171 0.0646 0.0571 0.1565 0.021 0.577 

NB 
  
  
  

Isotonic 83.8 84.7 90.7 0.1196 0.3839 0.0621 0.0534 0.1344 -0.0773 0.5412 
Platt 83.7 84.7 90.1 0.1291 0.4222 0.0545 0.0942 0.1023 -0.1822 0.6847 
Temperature 81.2 80.1 89.9 0.1248 0.4487 0.0741 0.0689 0.1656 -0.0968 0.6696 
Uncalibrated 83.8 84.7 89.5 0.1492 1.51 0.146 0.1348 0.2292 -3.1409 0.2343 

RF 
  
  
  

Isotonic 99.6 99.6 100 0.0042 0.0201 0.0144 0.0098 0.2387 0.8125 0.5283 
Platt 99.6 99.6 100 0.0048 0.0366 0.0331 0.0223 0.2217 0.5198 0.6463 
Temperature 97 97 99 0.0242 0.1024 0.0318 0.0201 0.2264 0.9775 0.4323 
Uncalibrated 99.6 99.6 100 0.0058 0.0484 0.0449 0.0322 0.2109 0.6992 0.506 

SVM 
  
  
  

Isotonic 99.1 99.1 100 0.0087 0.0442 0.0337 0.0268 0.2228 0.4598 0.4639 
Platt 98.8 98.9 99.9 0.0125 0.075 0.0594 0.0452 0.1991 0.3284 0.5607 
Temperature 95.6 95.7 98.2 0.0365 0.1675 0.0426 0.0411 0.2074 0.6681 0.4894 
Uncalibrated 99 99.1 100 0.0065 0.0376 0.0226 0.0214 0.2316 0.0207 0.3804 

XGB 
  
  
  

Isotonic 99.2 99.2 100 0.007 0.0311 0.0241 0.0147 0.2313 0.4402 0.5234 
Platt 99.4 99.4 100 0.0092 0.0534 0.0438 0.0307 0.2125 0.2697 0.7105 
Temperature 96.9 96.9 98.1 0.0308 0.1453 0.0385 0.0311 0.2142 0.7084 0.4043 
Uncalibrated 99 99 100 0.0135 0.0764 0.0639 0.0497 0.1964 0.2525 0.8046 
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Random Forest shows its clearest gains under 
Isotonic. Brier, both ECE variants, and Log Loss are 
lowest with Isotonic, mirroring the correction of high-
probability overconfidence seen in the reliability plots. 
Accuracy and F1 remain close to the uncalibrated 
Youden-J values, and AUC ROC is essentially unchanged. 
XGBoost starts close to calibrated. Differences among 
methods are small, with Isotonic producing the best Log 
Loss and competitive ECE values. Accuracy and F1 shift 
only marginally relative to the uncalibrated Youden-J 
baseline. Logistic Regression is already well 
behaved.  Isotonic yields the best Log Loss, ECE, with 
discrimination metrics essentially unchanged. Naive 
Bayes shows the largest calibration gains with Isotonic. 
Brier, both ECE variants, and Log Loss drop, consistent 
with the straightening of the S-shaped reliability curve. 
AUC ROC remains constant, and Accuracy and F1 may 
change slightly without a systematic direction. 

On the calibration-discrimination balance, 
Temperature does not behave as neutral. In your fold 
means, Temperature shifts Accuracy and F1 for every 

model, and AUC ROC also changes rather than remaining 
fixed. Isotonic and Platt tend to preserve AUC ROC 
within small deltas while improving Brier, ECE, and Log 
Loss, but Temperature’s global rescaling can move 
operating points and ranking enough to register in 
discrimination metrics. Consequently, when 
discrimination stability is a priority, Isotonic is generally 
preferred for RF, XGB, LR, and NB, Uncalibrated is 
preferred for SVM and KNN, and Temperature should be 
used with caution because of its measurable impact on 
Accuracy, F1, and sometimes AUC ROC as reflected in 
Table 8. 

3.4. Calibration metrics with uncertainty 

We report cross-validated calibration performance 
for Uncalibrated, Platt, Isotonic, and Temperature using 
Brier score, ECE with equal-width bins, K = 10, ECE with 
equal-frequency bins, K = 10, and Log Loss. Table 9 
presents per-model means with 95% bootstrap CIs across 
folds. These tabulated intervals anchor the comparisons 
that follow and are the source for the error bars in the 
grouped plots. 

Table 9: Calibration metrics with 95% bootstrap confidence intervals by model and calibration state, number of boots = 2000  

Model Calibration Brier 

Brier 
95% CI 
(Lower - 
Upper) 

ECE 
(uniform, 
10) 

ECE 
(uniform,10) 
95% CI 
(Lower - 
Upper) 

ECE 
(quantile, 
10) 

ECE 
(quantile,10) 
95% CI 
(Lower - 
Upper) 

Log 
Loss 

Log 
Loss 
95% CI 
(Lower - 
Upper) 

KNN 
  
  
  

Uncalibrated 0.0026 
0.0 - 
0.0075 

0.0039 0.0 - 0.01 0.0039 0.0 - 0.01 0.007 
0.0 - 
0.0192 

Platt 0.0054 
0.0019 - 
0.0114 

0.0308 0.0263 - 0.0352 0.0237 0.0185 - 0.029 0.0388 
0.0274 - 
0.0537 

Isotonic 0.0044 
0.0009 - 
0.0108 

0.0146 0.0083 - 0.0211 0.0094 0.0036 - 0.0162 0.0211 
0.0088 - 
0.0393 

Temperature 0.0258 
0.0199 - 
0.0326 

0.0287 0.0206 - 0.0388 0.0148 0.0102 - 0.0193 0.1228 
0.068 - 
0.1916 

RF 
  
  
  

Uncalibrated 0.0058 
0.0046 - 
0.0078 

0.0449 0.0422 - 0.049 0.0322 0.0316 - 0.0328 0.0484 
0.0449 - 
0.054 

Platt 0.0048 
0.0027 - 
0.0083 

0.0331 0.0289 - 0.0374 0.0223 0.0195 - 0.0256 0.0366 
0.0303 - 
0.0442 

Isotonic 0.0042 
0.0012 - 
0.0095 

0.0144 0.0104 - 0.0184 0.0098 0.0071 - 0.0133 0.0201 
0.0111 - 
0.0329 

Temperature 0.0242 
0.017 - 
0.0306 

0.0318 0.0257 - 0.0378 0.0201 0.0109 - 0.0308 0.1024 
0.076 - 
0.1339 

XGB 
  
  
  

Uncalibrated 0.0135 
0.0119 - 
0.0152 

0.0639 0.0592 - 0.069 0.0497 0.046 - 0.0534 0.0764 
0.0716 - 
0.0812 

Platt 0.0092 
0.0074 - 
0.0112 

0.0438 0.0382 - 0.0496 0.0307 0.0261 - 0.0371 0.0534 
0.0484 - 
0.0574 

Isotonic 0.007 
0.0044 - 
0.0096 

0.0241 0.0204 - 0.0294 0.0147 0.011 - 0.0194 0.0311 
0.0248 - 
0.0372 
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Temperature 0.0308 
0.0216 - 
0.04 

0.0385 0.0317 - 0.0444 0.0311 0.0268 - 0.0388 0.1453 
0.1089 - 
0.1871 

SVM 
  
  
  

Uncalibrated 0.0065 
0.002 - 
0.0132 

0.0226 0.0157 - 0.0307 0.0214 0.0133 - 0.0299 0.0376 
0.0204 - 
0.061 

Platt 0.0125 
0.0094 - 
0.0174 

0.0594 0.0512 - 0.0664 0.0452 0.0312 - 0.0567 0.075 
0.0668 - 
0.0861 

Isotonic 0.0087 
0.0056 - 
0.0128 

0.0337 0.0309 - 0.0365 0.0268 0.0221 - 0.0313 0.0442 
0.0376 - 
0.052 

Temperature 0.0365 
0.0304 - 
0.0412 

0.0426 0.0368 - 0.0484 0.0411 0.0322 - 0.05 0.1675 
0.1266 - 
0.2111 

LR 
  
  
  

Uncalibrated 0.0944 
0.088 - 
0.1002 

0.0646 0.0575 - 0.0745 0.0571 0.0505 - 0.0637 0.3171 
0.2912 - 
0.34 

Platt 0.0957 
0.0906 - 
0.1007 

0.0567 0.0446 - 0.0693 0.0645 0.0546 - 0.0746 0.3182 
0.3001 - 
0.3352 

Isotonic 0.0905 
0.0842 - 
0.0962 

0.055 0.0511 - 0.0589 0.0482 0.0415 - 0.0539 0.3018 
0.2784 - 
0.3194 

Temperature 0.0975 
0.0922 - 
0.1027 

0.0593 0.0497 - 0.0697 0.056 0.0462 - 0.0655 0.3259 
0.3062 - 
0.3455 

NB 
  
  
  

Uncalibrated 0.1492 
0.1365 - 
0.1634 

0.146 0.1314 - 0.1649 0.1348 0.1191 - 0.148 1.51 
1.2434 - 
1.7586 

Platt 0.1291 
0.1201 - 
0.1381 

0.0545 0.0407 - 0.0715 0.0942 0.0759 - 0.1117 0.4222 
0.4009 - 
0.4453 

Isotonic 0.1196 
0.1105 - 
0.1308 

0.0621 0.0498 - 0.0784 0.0534 0.0425 - 0.0637 0.3839 
0.3556 - 
0.4166 

Temperature 0.1248 
0.1134 - 
0.1382 

0.0741 0.0542 - 0.0893 0.0689 0.057 - 0.0771 0.4487 
0.3869 - 
0.5153 

As shown in Figure 11, Brier score with 95% CIs, tree 
ensembles benefit the most from Isotonic. For Random 
Forest, Brier drops from 0.0058 uncalibrated to 0.0042 
with Isotonic, while Platt and Temperature are higher at 
0.0048 and 0.0242. For XGBoost, Brier improves from 
0.0135 uncalibrated to 0.0070 with Isotonic, with Platt 

0.0092 and Temperature 0.0308. Naive Bayes shows a 
large reduction relative to its baseline, 0.1492 uncalibrated 
to 0.1196 with Isotonic. Support Vector Machine and K-
Nearest Neighbors are best Uncalibrated on Brier at 
0.0065 and 0.0026 respectively, and Temperature is the 
worst state for both. 

 
Figure 11: Brier score across models and calibration states with 95% CIs 
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Turning to Figure 12, ECE (equal-width, K = 10), 
Random Forest falls from 0.0449 uncalibrated to 0.0144 
with Isotonic, and XGBoost from 0.0639 to 0.0241. Naive 
Bayes improves from 0.146 to the 0.055-0.062 range under 
Platt or Isotonic. KNN is already very low uncalibrated at 
0.0039, and all calibrators increase uniform-ECE. SVM 
shows mixed behavior, with Temperature giving a lower 
uniform-ECE than Platt, yet Brier and Log Loss still favor 
the uncalibrated state. 

The sensitivity of ECE to the binning approach is clear 
in Figure 13, ECE (equal-frequency, K = 10). Absolute 
values are smaller and intervals are tighter because bins 
carry similar counts. Random Forest improves from 
0.0322 (uncalibrated) to 0.0098 with Isotonic, and 
XGBoost improves from 0.0497 to 0.0147. Naive Bayes 
drops from 0.1348 to 0.0534 with Isotonic, while Platt sits 

near 0.0942. KNN remains best uncalibrated at 0.0039, 
with Isotonic 0.0094 and Temperature 0.0148 above that. 
SVM is lowest Uncalibrated at 0.0214 and rises under 
calibration, Isotonic 0.0268, Temperature 0.0411, Platt 
0.0452. 

Likelihood trends in Figure 14, Log Loss with 95% 
CIs, reinforce the Brier score pattern with Temperature 
worsening on most of the models. Random Forest moves 
from 0.0484 uncalibrated to 0.0201 with Isotonic. XGBoost 
drops from 0.0764 to 0.0311. Naive Bayes is most erratic, 
1.51 uncalibrated to 0.3839 with Isotonic and 0.4222 with 
Platt. KNN and SVM are best Uncalibrated at 0.0070 and 
0.0376; Temperature increases loss across models. 
Logistic Regression improves modestly, 0.3171 
uncalibrated to 0.3018 with Isotonic.

 
Figure 12: Expected Calibration Error with equal-width bins, K = 10, across models and calibration states with 95% CIs. 

 
 Figure 13: Expected Calibration Error with equal-frequency bins, K = 10, across models and calibration states with 95% CIs.  
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Figure 14: Log Loss across models and calibration states with 95% CIs 

The statistical check in Figure 15, Spiegelhalter’s Z 
and p, complements the aggregate metrics. Values near Z 
= 0 with p > 0.05 indicate no detectable miscalibration at 
fold scale. Random Forest stays near zero across states 
with p ≈ 0.50-0.65, and XGBoost shows Z ≈ 0.25-0.71 with 
p ≈ 0.40-0.81. Naive Bayes improves from Z = -3.14, p = 
0.234 uncalibrated to Z ≈ -0.08 to -0.18 with p ≈ 0.54-0.69 
after calibration, consistent with its large reductions in 
Brier and Log Loss. KNN sits around Z ≈ 0.66-1.05 with p 
≈ 0.39-0.66, which matches its already strong Brier and 
Log Loss when uncalibrated and the lack of benefit from 
calibration. SVM shows Z ≈ 0.02-0.67 and p ≈ 0.38-0.56, 
again echoing the mixed ECE behavior and the preference 

for the uncalibrated state. Logistic Regression remains 
close to zero, Z from -0.16 to 0.41 with p ≈ 0.49-0.68, in line 
with small but consistent gains under Isotonic. 

We further conducted a statistical comparison test 
using permutation P-values between pre and post-
calibration metrics, setting the number of permutations to 
20,000 and the number of bootstraps to 2,000. Table 10 
reports changes calculated as calibrated minus 
uncalibrated for each metric, where negative deltas 
indicate improvement, with permutation p-values 
computed on fold-matched resamples. 

 

 

Figure 15: Heatmaps of Spiegelhalter’s Z-score and p-value across models and calibration states. Values near zero with p above 0.05 indicate no 
detectable miscalibration 
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Table 10: Statistical comparison tests using Permutation P between pre and post-calibration metrics. 

Model 
Calibration 
vs 
Uncalibrated 

Brier 
Δ (Cal 
- 
Uncal) 

Permutation 
p (Brier) 

ECE 
(uniform, 
10) Δ 
(Cal - 
Uncal) 

Permutation 
p (ECE 
(uniform, 
10) 

ECE 
(quantile, 
10) Δ (Cal 
- Uncal) 

Permutation 
p (ECE 
(quantile, 
10) 

Log 
Loss Δ 
(Cal - 
Uncal) 

Permutation 
p (Log Loss) 

KNN 

Platt 0.0028 0.0626 0.0269 0.0632 0.0198 0.0624 0.0318 0.0682 
Isotonic 0.0018 0.0608 0.0107 0.0684 0.0055 0.0638 0.0141 0.0624 

Temperature 0.0232 0.0633 0.0248 0.0637 0.0109 0.1284 0.1158 0.0618 

RF 

Platt -0.001 0.2537 -0.0119 0.0601 -0.0099 0.0566 
-
0.0118 0.0637 

Isotonic 
-
0.0016 0.3717 -0.0305 0.0612 -0.0224 0.0604 

-
0.0283 0.0664 

Temperature 0.0184 0.0611 -0.0131 0.0605 -0.0121 0.1826 0.054 0.0604 

XGB 

Platt 
-
0.0043 0.0654 -0.0202 0.0624 -0.019 0.0605 

-
0.0231 0.0611 

Isotonic 
-
0.0065 0.0613 -0.0398 0.064 -0.0349 0.0625 

-
0.0453 0.0612 

Temperature 0.0173 0.0616 -0.0254 0.0642 -0.0185 0.1278 0.0688 0.0632 

SVM 

Platt 0.006 0.06 0.0368 0.0626 0.0238 0.0637 0.0374 0.0625 
Isotonic 0.0022 0.3037 0.0111 0.0618 0.0054 0.1889 0.0065 0.4374 

Temperature 0.03 0.0622 0.02 0.1236 0.0197 0.1863 0.1299 0.0634 

LR 

Platt 0.0013 0.0637 -0.0079 0.1285 0.0074 0.1236 0.0011 1 

Isotonic 
-
0.0039 0.0644 -0.0096 0.0611 -0.0089 0.1241 

-
0.0153 0.0637 

Temperature 0.0031 0.1859 -0.0053 0.5643 -0.0011 0.8708 0.0088 0.0625 

NB 

Platt 
-
0.0201 0.0589 -0.0915 0.0619 -0.0406 0.0632 

-
1.0878 0.0628 

Isotonic 
-
0.0296 0.0589 -0.0838 0.063 -0.0814 0.0599 -1.126 0.0612 

Temperature 
-
0.0244 0.0609 -0.0719 0.0662 -0.0659 0.0633 

-
1.0613 0.0622 

For Random Forest, Isotonic delivers coherent gains 
across all metrics, for example ECE with equal-width bins 
falls by 0.0305 and ECE with equal-frequency bins by 
0.0224 with p about 0.06, and Log Loss drops by 0.0283 
with similar uncertainty.XGBoost shows the same 
direction with larger magnitudes, ECE with equal-width 
bins by 0.0398, ECE with equal-frequency bins by 0.0349, 
and Log Loss by 0.0453, all with p near 0.06.Naive Bayes 
exhibits the largest changes in this study, moving from 
poor raw calibration to materially lower error after 
Isotonic, Brier decreases by 0.0296, ECE with equal-width 
by 0.0838, ECE with equal-frequency by 0.0814, and Log 
Loss by 1.126, again with p around 0.06. 

In contrast, K-Nearest Neighbors and Support Vector 
Machine are best left uncalibrated, since all calibrators 

raise error on most metrics, for example KNN Log Loss 
increases by 0.0318 with Platt and by 0.1158 with 
Temperature, while SVM ECE with equal-width increases 
by 0.0368 with Platt and by 0.020 with Temperature. 
Logistic Regression shows only small, mostly favorable 
shifts under Isotonic, for example ECE with equal width 
decreases by 0.0096 and Log Loss by 0.0153, while Platt 
and Temperature are mixed or neutral. The p-values 
cluster near 0.06, so the direction and coherence across 
metrics carry the interpretation. Where effects are large 
and consistent, as in Naive Bayes and the two ensembles 
with Isotonic, the conclusion is strong. Where effects are 
small or mixed, as in Logistic Regression, claims should 
be conservative. 
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To explore the relationship between calibration and 
prediction quality, we plotted Expected Calibration Error 
(ECE) against the Brier Score for all model-calibration 
combinations (Figure 16-17). Ideally, well-calibrated and 
accurate models should lie close to the diagonal line, 
where ECE and Brier Score are proportionally aligned. 
We plotted ECE (uniform, K = 10) against the Brier score 
for every model-calibration pair, with a 45° reference line 
for proportional agreement (Figure 16). Points in the 
lower left indicate both low Brier and low ECE. XGBoost 
and Random Forest cluster close to this region under 
isotonic and Platt, consistent with the grouped bar results 
that showed small Brier and small ECE after calibration. 
Logistic Regression sits mid-left, where Brier is modest 
and ECE varies by method, with isotonic typically lowest. 
K-Nearest Neighbors and Support Vector Machine show 
larger spread, and their uncalibrated states lie below the 
diagonal with small Brier but noticeably higher ECE, 
matching their reliability curves that showed local 
miscalibration at low and mid probabilities. Naive Bayes 

forms the upper-right cloud, reflecting both high Brier 
and high ECE when uncalibrated, with clear leftward and 
downward shifts after calibration. 

Repeating the plot with quantile binning reduces ECE 
values across most points while preserving the relative 
ordering (Figure 17). This mirrors the sensitivity analysis 
where quantile ECE was systematically lower than 
uniform ECE. Tree models remain in the lower-left 
quadrant, Logistic Regression is slightly shuffled & 
moves closer to the diagonal under isotonic, and KNN 
continues to show higher ECE than its Brier alone would 
suggest in the uncalibrated and Platt states. Naive Bayes 
still separates from the rest, but calibration methods shift 
it downward and left. The consistency of these patterns 
across both binning schemes supports the conclusion that 
models with better Brier also tend to have better 
calibration, while ECE exposes cases where apparently 
small Brier can hide meaningful miscalibration.

 
Figure 16: Calibration comparison, Brier score vs ECE (uniform, K = 10). Each point represents one model-calibration pair. The dashed line marks 

proportional equality between the two metrics. 

 
Figure 17: Calibration comparison, Brier score vs ECE (quantile, K = 10). Equal-frequency binning 
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3.5. Sharpness of predicted probabilities 

Sharpness, measured as the variance of predicted 
probabilities, summarizes how concentrated a model’s 
probabilities are. Larger variance means more confident 
predictions; smaller variance means flatter, more 
conservative outputs. 

Across all conditions, KNN is the sharpest. The 
uncalibrated KNN attains the highest variance at 0.249, 
and remains high after calibration, 0.240 with isotonic and 
0.230 with temperature, with a modest reduction under 
Platt to 0.223. Tree ensembles are also highly sharp, but 
their behavior differs by calibration method. Random 
Forest rises from 0.211 uncalibrated to 0.239 with isotonic, 
with smaller values for Platt (0.222) and temperature 
(0.226). XGBoost shows a similar pattern, 0.196 
uncalibrated, 0.231 isotonic, 0.214 temperature, 0.212 
Platt. These results indicate that isotonic leaves ensemble 
predictions are confident, while Platt and temperature 
introduce mild smoothing. 

For margin-based and linear models, calibration 
tends to smooth more. SVM drops from initial 0.232 
uncalibrated to 0.223 with isotonic, 0.207 with 
temperature, and 0.199 with Platt. Logistic Regression 
falls from 0.157 uncalibrated to 0.164 isotonic, 0.150 
temperature, and 0.139 Platt. Naive Bayes exhibits the 
largest reduction, from 0.229 uncalibrated to 0.166 
temperature, 0.134 isotonic, and 0.102 Platt, consistent 
with its strong decrease in ECE and Log Loss in Table 9. 

Isotonic often preserves or slightly increases 
sharpness for the ensembles while reducing ECE and Log 
Loss, suggesting better-positioned confidence without 

blunting predictions. Also, Platt and temperature 
systematically soften LR, SVM, and NB, which can be 
desirable when the uncalibrated model is overconfident, 
as evidenced by their reliability curves in Figure 6-9 and 
Spiegelhalter’s statistics in Figure 15. 

4. Interpretation of Results 

This study demonstrates the impact of post-hoc 
calibration methods on model confidence, calibration 
quality, and statistical reliability in heart disease 
prediction. Isotonic regression remained the most 
effective calibrator for several models, but its advantage 
was model-dependent. In our cross-validated analysis, 
Random Forest, XGBoost, Logistic Regression, and Naive 
Bayes showed consistent improvements under isotonic 
calibration across Brier, ECE, and Log Loss, while 
Support Vector Machine and K-Nearest Neighbors were 
best left uncalibrated on the calibration metrics and 
likelihood, with temperature scaling often worsening 
discrimination. These conclusions are supported by the 
grouped calibration plots with 95% confidence intervals 
and the permutation tests that compare calibrated to 
uncalibrated fold by fold (Tables 8-10, Figures 11-15). As 
an illustration, Random Forest’s ECE and Log Loss 
decrease substantially under isotonic relative to 
uncalibrated in the grouped plots, and Naive Bayes 
exhibits the largest drops among all models. These effects 
are mirrored by near-zero Spiegelhalter Z with higher p 
after calibration in several models, which indicates no 
detectable miscalibration at fold scale while recognizing 
that non-significant p does not prove perfect calibration 
[61].

 
Figure 18: Sharpness of predicted probabilities (variance) across models and calibration methods. 
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These findings support the theory that sigmoid 
calibration is most suitable when miscalibration is close to 
a logistic shift, whereas isotonic regression can correct 
more complex, monotone distortions [7], [9]. 
Temperature scaling provides a single-parameter softness 
control, but it shifts Accuracy and F1 across all models 
and frequently increased Log Loss, so it should be applied 
with caution here [5]. The comparative nature of our 
analysis is crucial. We based inferences on cross-validated 
fold means with confidence intervals, and on paired 
permutation tests that quantify whether calibrated 
metrics are better than uncalibrated under the matched 
fold design, directly addressing requests for statistical 
comparison rather than isolated point estimates. 

In clinical applications, where predicted risks inform 
communication and thresholds, miscalibrated models can 
convey inappropriate levels of confidence, complicating 
risk discussions and the consistency of threshold-based 
decisions without necessarily improving patient-level 
utility. For example, Naive Bayes before calibration 
produced extreme probabilities with poor alignment to 
outcomes, which post-calibration corrected, lowering 
Brier and Log Loss and improving Z and p toward values 
consistent with good calibration. This highlights the need 
for calibration pipelines in AI-assisted diagnostics to 
improve trustworthiness and reduce the risk that 
probability outputs misrepresent uncertainty [72]. 
Reliability diagrams built from out-of-fold predictions 
with Wilson intervals and per-bin counts further illustrate 
these corrections while avoiding test-set leakage [5][56]. 
Together with the sharpness analysis, this shows when 
confidence is well in line with observed risk and when it 
is not. 

A key methodological contribution is the joint use of 
multiple calibration summaries, guidance on clinical 
presentation of calibration and reporting practices 
supports this multi-metric approach [52]. Previous work 
often reported only one metric such as Brier or ECE [5], 
[73]. We combined Brier, ECE, Log Loss, Spiegelhalter’s 
Z, p-value, and Sharpness across six classifiers, and we 
visualized their relationships with grouped plots and 
Brier versus ECE scatterplots. The scatterplots show that 
points move down and left after isotonic for the tree 
ensembles and Naive Bayes, indicating lower calibration 
error and lower probabilistic loss, while SVM and KNN 
tend to cluster closer to their uncalibrated states, 
consistent with their preference to remain uncalibrated. 
The ECE sensitivity analysis confirms that equal-
frequency binning yields smaller ECE than equal-width 

on average, with a positive median difference and a 
paired test p below conventional threshold. We therefore 
report both ECE variants, interpret their magnitudes 
cautiously, and base primary claims on the convergence 
of multiple metrics rather than a single summary [5], [56]. 

Another contribution of this work is a reproducible 
evaluation framework for post-hoc calibration in binary 
heart disease prediction that couples strict leakage control 
with fold-conscious uncertainty and paired comparative 
testing. Some models, notably Naive Bayes and Random 
Forest, benefit substantially from isotonic calibration, 
while others, such as KNN and SVM, do not. By 
introducing sharpness alongside calibration, we examine 
correctness and the confidence dispersion, which is 
essential for risk stratification and model auditability [74]. 
Throughout, all preprocessing, threshold selection by 
Youden’s J inside an inner loop, and calibration were fit 
on training data only, never on the test set, which reduces 
optimistic bias and supports statistically valid inference 
[44], [75], [76]. 

From an operational standpoint, the calibration 
procedures used here are lightweight and feasible to 
maintain. Platt and temperature scaling add negligible 
compute at inference and only a small fit cost on held-out 
training predictions, while isotonic regression remains 
inexpensive at structured clinical feature data. For 
integration, the same nested cross-validated approach can 
be embedded in routine retraining to provide continuous 
calibration as data drift is detected, for example by 
monitoring ECE and Log Loss on recent cases and 
triggering recalibration when control limits are exceeded. 
Because probability calibration can change subgroup 
error profiles, fairness should be checked pre and post-
calibration, for instance by reporting calibration curves, 
ECE, and Brier stratified by demographic groups, and by 
tracking stability under distribution shift. In our setting, 
the per-model recommendations are actionable, isotonic 
for tree ensembles and Naive Bayes, uncalibrated for 
SVM and KNN, and cautious use of temperature scaling. 
This preserves inference speed and aligns with a periodic 
recalibration policy that is straightforward to implement 
in clinical pipelines. 

This study is limited by the size of the dataset 
(N=1,025), which can increase variability in binned 
metrics and in Z, even with Wilson intervals and cross-
validated designs. We did not include an external cohort, 
so generalizability remains to be confirmed on 
independent populations. We focused on Platt, Isotonic, 
and Temperature, leaving alternatives such as beta 
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calibration or Bayesian binning to future work. We also 
did not include decision-curve analysis in the main 
results, which would connect calibrated probabilities to 
clinical net benefit and we did not integrate model 
interpretability or explainability analysis. Future research 
should extend the framework to external and temporal 
validation, add decision-curve analysis under fixed 
thresholds selected by Youden’s J, evaluate alternative 
calibrators, and incorporate explainability to link 
calibrated risk with feature attributions in support of 
clinical review. 

5. Conclusion 

This study evaluated the calibration performance of 
six classification models for heart disease prediction using 
post-hoc techniques and multiple uncertainty metrics. 
While several models achieved strong discrimination, 
their probability estimates were not always aligned with 
observed outcomes. This confirms the need to assess 
probability quality in addition to accuracy and AUC 
ROC. 

Across methods and models, post-hoc calibration 
improved probability alignment in a model-dependent 
way. Isotonic regression yielded the most consistent gains 
in Brier score, ECE, and Log Loss for Random Forest, 
XGBoost, Logistic Regression, and Naive Bayes, with 
effects verified under cross-validated estimation, 
bootstrap intervals, and paired permutation tests. 
Spiegelhalter’s Z and p provided complementary 
evidence for absolute calibration, interpreted cautiously 
given sample size. In contrast, Support Vector Machine 
and K-Nearest Neighbors were best left uncalibrated on 
these metrics. Temperature scaling was included for 
completeness, but in this setting, it often increased Log 
Loss and affected discrimination. 

The study contributes a reproducible calibration-
evaluation framework for structured clinical predictors. 
Preprocessing, threshold selection via Youden’s J, and all 
calibrators were fit on training data within cross-
validation, then applied to matched validation folds and 
only finally to the held-out test set. Reliability diagrams 
were built from out-of-fold predictions with Wilson 
intervals and bin counts. ECE was reported in two 
variants, equal-width and equal-frequency, and a paired 
sensitivity analysis showed lower values under quantile 
binning without changing the qualitative ranking. 
Sharpness was reported alongside calibration to 
characterize confidence concentration, helping to 

interpret when improvements reflect better aligned 
probabilities rather than simple smoothing. 

These results indicate that isotonic calibration is a 
strong default for tree ensembles and Naive Bayes under 
this workflow, that Logistic Regression benefits from 
Isotonic, and that SVM and KNN may not require 
calibration. The framework balances calibration and 
discrimination by using a single threshold per model 
chosen with Youden’s J inside the training folds, which 
mirrors a stable operating policy. The overall 
recommendation is to evaluate calibration routinely with 
fold-aware uncertainty, to select the calibration method 
by empirical evidence on the target data, and to deploy 
periodic recalibration with monitoring for drift. 
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