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Editorial 
With growing global challenges in environmental management, healthcare, and computational 
sciences, innovative research continues to shape more effective and intelligent systems for 
detection, prediction, and decision-making. This issue showcases cutting-edge studies that 
leverage machine learning and numerical methods to enhance wild�ire prediction, medical 
diagnostics, and the precision of numerical solutions. Together, these contributions re�lect the 
critical role of computational tools in supporting urgent societal and scienti�ic needs. 

Accurate classi�ication of wild�ire types is increasingly vital in the face of rising �ire incidents 
linked to climate change and anthropogenic pressures. A comparative evaluation of supervised 
machine learning algorithms applied to satellite-based environmental data identi�ies the Decision 
Tree (DT) model as the most effective classi�ier, with a top accuracy of 96.69% across all 
performance metrics. Closely following are Random Forest (RF) and Gradient Boosting Classi�ier 
(GBC), both achieving consistently high results. In contrast, Support Vector Classi�ier (SVC) and 
Logistic Regression (LR) exhibit reduced precision and F1 scores, making them less suitable for 
this task. By applying a robust machine learning framework to real-world U.S. wild�ire datasets, 
the study provides actionable insights into model selection for early warning systems, ultimately 
supporting more responsive and informed disaster management strategies [1]. 

Understanding the approximation errors in numerical solutions of differential equations is 
critical for ensuring mathematical accuracy in engineering and scienti�ic modeling. This study 
enhances the precision of error estimation by utilizing the moving nodes method, which 
calculates approximation errors at speci�ic nodal points within a de�ined grid. By expressing the 
discrete solution analytically and integrating the step size hhh and accuracy order ppp, the 
approach provides a more accurate representation of how the numerical solution diverges from 
the exact one. This re�inement in approximation error analysis contributes to improved reliability 
in simulations and numerical computations, particularly in �ields where precision is paramount 
[2]. 

Polycystic Ovary Syndrome (PCOS), a widespread endocrine disorder, poses signi�icant diagnostic 
challenges due to its complex symptom pro�ile and associated metabolic risks. Using clinical and 
lifestyle data, this study evaluates the predictive capabilities of seven machine learning models 
for PCOS classi�ication. Logistic Regression (LR) emerges as the most effective algorithm, 
achieving the highest scores in accuracy (91.7%), precision (96%), and ROC AUC (96.8%). The 
superior performance of LR is enhanced through the use of Synthetic Minority Over-sampling 
Technique (SMOTE) for addressing class imbalance and ANOVA F-score feature selection for 
identifying key predictors. The model’s interpretability and simplicity position it as a practical 
solution for clinical decision-support systems, facilitating early diagnosis and intervention while 
maintaining transparency in healthcare settings [3]. 

These studies collectively underscore the transformative potential of data-driven methodologies 
in addressing real-world issues with accuracy, speed, and adaptability. Whether through 
predictive environmental analytics, re�ined numerical modeling, or intelligent healthcare 
diagnostics, the featured research reaf�irms the indispensable role of computational science in 
advancing societal resilience and technological progress. 
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ABSTRACT: Wildfires are a growing global concern, causing widespread environmental, economic, 
and health impacts. In the USA, fire incidents have become more frequent and intense due to factors 
such as climate change, prolonged droughts, and human activities. Machine learning plays a vital role 
in predicting and classifying fires by analyzing vast satellite and environmental datasets with high 
speed and accuracy. These models support early warning systems and informed decision-making, 
ultimately helping to reduce damage and improve emergency response strategies. This study evaluates 
the effectiveness of supervised machine learning algorithms—including Decision Tree (DT), Random 
Forest (RF), Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), Logistic Regression (LR), 
and Gradient Boosting Classifier (GBC)—in classifying different fire types. The DT emerges as the top-
performing model, achieving the highest results across all evaluation metrics, including 96.69% 
accuracy, precision, recall, and F1 score. RF follows closely with similarly strong performance, making 
it a highly reliable alternative. GBC ranks third, showing balanced and consistent results above 92% in 
all metrics. In contrast, SVC and LR perform less effectively, particularly in precision and F1 score, 
indicating that they are not ideal choices for fire type classification in this study. The novelty of this 
study lies in its application of a comparative ML framework to classify fire types using real satellite-
based observations specific to the USA. region. By integrating and evaluating multiple ML models on 
this large-scale, real-world dataset, the study provides valuable insights into model suitability for fire 
classification tasks and offers practical guidance for deploying predictive tools in environmental 
monitoring and disaster management systems. 

KEYWORDS:  Artificial Intelligence, Data Analysis, Fire type Classification, Machine Learning, USA, 
NASA, Civil Engineering. 

1. Introduction  

Fires represent a major environmental disaster due to 
their rapid spread, the complexity of containment efforts, 
and the extensive damage they inflict on ecosystems, 
infrastructure, and human health. In the USA, fire 
incidents—particularly wildfires—have become 
increasingly frequent and intense, driven by factors such 
as climate variability, land use changes, and human 
activity. The severe consequences of these events have 
underscored the importance of fire detection, 
classification, and management, making fire monitoring a 
vital component of forestry, environmental protection, 
and emergency response strategies [1]. 

Several critical factors contribute to the occurrence and 
spread of fires across the United States. Climatic 

variables—including high temperatures, strong wind 
speeds, low relative humidity, limited rainfall, and 
lightning probability—create conditions that significantly 
increase the risk of fire ignition and propagation. In 
addition to environmental influences, human-related 
factors such as population density, land development, 
and increased recreational or industrial activity in 
forested and rural regions further elevate fire risk. The 
combination of these natural and anthropogenic elements 
makes fire prediction and classification an increasingly 
urgent priority for disaster management and 
environmental protection [1].  

Artificial Intelligence (AI) plays a transformative role 
in modern wildfire detection and classification systems, 
significantly enhancing the ability to anticipate, monitor, 
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and manage fire events. AI technologies contribute to 
various aspects of wildfire preparedness and response, 
including fuel assessment, fire behavior prediction, real-
time detection, impact estimation, and strategic fire 
management. Leveraging tools such as satellite imagery, 
historical weather data, and computational models, AI 
enables the automated analysis of complex 
environmental patterns [2].  

In particular, Machine Learning (ML)—a subset of 
AI—is increasingly utilized for the early prediction and 
accurate classification of fires by identifying patterns in 
large-scale datasets. These intelligent systems support 
timely decision-making and resource allocation, making 
AI a critical component in reducing wildfire-related risks 
and improving emergency response strategies [2]. 

This study utilizes a dataset comprising fire incident 
records detected throughout the United States in 2021. 
The data were collected by the VIIRS sensor aboard the 
SNPP satellite and sourced from the NASA Open Data 
Portal. The research follows the CRISP-DM (Cross-
Industry Standard Process for Data Mining) framework 
to ensure a structured approach to data analysis and 
model development. Since each machine learning method 
has its own advantages and limitations, a comparative 
evaluation is necessary to determine the most effective 
model for classifying fire types. Therefore, this work 
focuses on assessing the performance of six supervised 
learning algorithms—DT, RF, SVC, KNN, LR, and GBC—
in predicting fire categories. The paper is organized into 
several sections: a literature review, methodology, data 
description and preprocessing, model implementation, 
results, discussion, conclusion, and future 
recommendations. 

2. Literature Review 

Several ML algorithms have been instrumental in 
advancing forest fire forecasting. This section reviews 
various studies that have applied these methods, as 
outlined below recent research has extensively explored 
various ML and AI techniques for forest fire prediction 
and management.  

In [3], the authors addressed critical challenges in 
forest fire prediction by proposing a robust ML 
framework specifically designed to handle severely 
imbalanced datasets, a frequent issue in wildfire 
modeling. The study utilized Copernicus reanalysis data 
from 2000 to 2018, incorporating 27 features including 
temperature, soil moisture, wind speed, and vegetation 
indices to model fire susceptibility in Canada’s boreal 
forests. To manage the 158:1 non-fire-to-fire ratio, the 
authors employed a hybrid sampling strategy combining 
NearMiss3 for undersampling and SMOTE-ENN for 
oversampling with noise reduction. Among the models 
tested—RF, XGB, LGBM, and CatBoost—XGB combined 

with NearMiss3 at a 0.09 sampling ratio achieved optimal 
performance, with 98.08% accuracy, 86.06% sensitivity, 
and 93.03% specificity. Moreover, the study emphasized 
the balance between computational efficiency—
demonstrated by LGBM’s histogram-based learning—
and model interpretability, using feature importance to 
highlight soil moisture as a dominant factor in fire 
prediction. 

Similarly, the  authors in [4] conducted a detailed 
evaluation of ML models using meteorological data from 
Algeria, integrating a temporal-stage approach and 
correlation-based feature selection (CFS) to enhance 
predictive accuracy. The study divided the dataset into 
six-time intervals and focused on weather indicators such 
as temperature, humidity, and FWI components. 
Important predictors including FFMC, DMC, and FWI 
were identified through CFS, significantly improving 
model accuracy. Among the tested models—DT, RF, SVC, 
LR, KNN, and GNB—DT and RF both achieved perfect 
accuracy (100%) during the peak fire season (June–July), 
outperforming SVC, LR, and KNN, each of which 
recorded 98%. The authors also observed that variables 
like wind speed contributed minimally, reinforcing the 
need for region-specific features in fire prediction. 
Although GBC was not part of the study, the findings 
strongly support the use of ensemble and tree-based 
methods for regionally adapted fire forecasting, 
particularly within U.S. contexts. 

In another effort to improve prediction through model 
integration, the  authors in [5] employed an ensemble-
based soft voting strategy combining DT, KNN, and LR 
to map wildfire susceptibility in Iran’s Alborz Mountains. 
Using MODIS thermal anomaly data and a GPS-corrected 
fire inventory, the study incorporated 17 variables across 
anthropogenic, vegetation, topographic, climatic, and 
hydrological domains. The ensemble model achieved an 
average AUC of 88%, peaking at 93% in one-fold during 
10-fold cross-validation, surpassing the performance of 
each individual base classifier. The generated 
susceptibility map classified the landscape into five risk 
zones, revealing that 21% of the area was at high or very 
high risk—correlating well with historical fire records. 
The study underscored the benefits of ensemble learning 
for improving accuracy and robustness, and suggested 
that integrating more advanced models like RF or GBC 
into such frameworks could further improve adaptability 
across diverse USA terrains. 

Expanding the geographical scope, the  authors in  [6] 
conducted a large-scale comparative study involving 
more than 1.04 million fire events from the USA (1992–
2015) and 517 cases from Portugal (2000–2003). The 
dataset featured a wide range of spatial, temporal, and 
environmental variables. A variety of models—DL, DT, 
SGD, ExGBT, and LR—were evaluated for wildfire size 
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classification, with results showing accuracy ranging 
from 80% to 82%. DT and ExGBT outperformed others, 
while GA was employed to derive symbolic 
representations of wildfire behavior, producing 
correlation coefficients above 0.80. To enhance balance 
and interpretability, SMOTE was used to address class 
imbalance, and SHAP values revealed temperature and 
weather indices as critical predictive factors. The study 
demonstrates the value of combining performance-
focused models with interpretable AI techniques, 
especially when handling large, complex wildfire 
datasets like those found in the U.S. 

On a global scale, in [7], the authors used high-
resolution (0.25°) global data from 2015 to evaluate 
wildfire susceptibility based on meteorological variables, 
fire weather indices, and anthropogenic influences. 
Models assessed included RF, XGB, and MLP, 
benchmarked against traditional LR and linear regression. 
The XGB model yielded the highest performance with an 
AUC of 97% for wildfire occurrence and a MAE of 3.13 
km² for burned area prediction. SMOTE and class-
weighted loss functions were used to mitigate data 
imbalance, while SHAP analysis identified key variables 
such as historical fire activity, relative humidity, and 
precipitation.  

Although the study aimed for global applicability, 
regional analysis showed that ML models performed 
better in Africa and Asia, while in North America, 
traditional fire indices remained relevant. These findings 
reinforce the effectiveness of ensemble and deep learning 
models like XGB and MLP, particularly in high-
dimensional, data-rich environments such as the U.S. 

In the context of localized prediction, in [8], the 
authors applied several ML models to Greece’s Attica 
basin, using a custom dataset with 12 meteorological 
features including temperature, humidity, wind, and 
rainfall. The study explored binary classification (fire/no 
fire), multiclass classification (fire severity), and 
regression (burned area prediction). Among the tested 
models—RF, XGB, KNN, NN, SVM, LR, and DT—RF 
performed best for binary classification with 70% 
accuracy using all features, XGB was most effective with 
a reduced four-feature set (67.4% accuracy), and KNN 
achieved the highest R² score of 70% for regression. 
Validation against the Montesinho dataset supported the 
generalizability of the approach, suggesting its 
adaptability to fire-prone regions in the USA. 

Similarly, the  authors in  [9] proposed an ML-driven 
prediction framework utilizing meteorological variables 
and FWI data from Portugal’s Montesinho Park. The 
study tested RF, SVM, GBC, LR, and K-means, using 
stepwise regression and backward elimination for feature 
selection. Temperature and humidity were identified as 
the most influential features. SVM and RF performed best 

in estimating burned areas. While regression 
performance was modest (R² = 14%), clustering via K-
means (optimized with the elbow method) allowed for 
localized fire risk assessment. The authors emphasized 
the value of incorporating spatial and climatic diversity 
into prediction models—especially relevant to U.S. 
regions like California and the Pacific Northwest—and 
suggested further improvements including vegetation 
types, forest density, and ignition source modeling. 

Building on the comparison of classifiers, in [10], the 
authors evaluated the performance of RF, SVM, DT, and 
NB and identified RF as the most accurate model for 
wildfire forecasting. Their findings highlight RF's 
reliability in supporting early warning and fire response 
efforts. Similarly, in [11], the authors affirmed RF as the 
top-performing algorithm among the same set, 
emphasizing its critical role in risk reduction strategies. 

The reviewed literature reflects the increasing reliance 
on advanced ML techniques for wildfire prediction and 
classification, particularly ensemble and tree-based 
models such as RF, XGB, LGBM, CatBoost, DT, GBC, and 
AdaBoost. These models consistently outperform 
traditional approaches like LR and linear regression, 
especially when combined with strategies such as SMOTE, 
correlation-based and stepwise feature selection, and 
SHAP for model interpretability. Other algorithms 
including SVM, KNN, GNB, SGD, MLP, NN, and GA 
have also demonstrated strong performance in specific 
tasks, such as burned area regression and symbolic 
modeling. Unsupervised methods like K-means have 
been effectively used for spatial clustering and localized 
risk assessment. The studies emphasize the importance of 
regional and temporal adaptation, the integration of 
spatial and environmental data, and handling class 
imbalance. Although challenges remain in accurately 
modeling fire extent, ensemble and hybrid methods show 
strong potential. Overall, the literature confirms the 
adaptability and scalability of a wide array of ML models 
for wildfire forecasting across the diverse climatic zones 
of the U.S.  

3. Research Methodology and approach 

3.1. Background of the Research Study  

This research was conducted using the Google Collab 
platform as the primary workspace, with Scikit-learn 
serving as the main Python library for implementing 
machine learning models. A total of six algorithms—DT, 
RF, SVC, KNN, LR, and GBC—were employed to explore 
and analyze the dataset. The study adopted the CRISP-
DM methodology, a widely accepted framework for 
machine learning projects. This methodology comprises 
six essential phases: identifying the project goals 
(business understanding), examining the dataset (data 
understanding), preparing the data for analysis (data 
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preparation), building and optimizing models (modeling), 
evaluating the performance of those models (evaluation), 
and making the model ready for real-world use 
(deployment) [2]. Utilizing this structured approach 
ensured clarity and efficiency throughout the process, 
contributing to the reliable and accurate results illustrated 
in Figure 1. 

 
Figure 1: Phases of the CRISP-DM Methodology. 

3.2. Dataset Description  

The data set used in this study contains records of fire 
incidents detected across the USA during the year 2021. 
These observations were captured by the VIIRS sensor on 
board the Suomi National Polar-orbiting Partnership 
(SNPP) satellite and obtained through the NASA Open 
Data Portal [12]. This open-access platform provides 
researchers with dependable, high-resolution datasets 
crucial for advancing studies in renewable energy and 
enhancing grid management strategies. It delivers 
comprehensive information on solar radiation, 
meteorological variables, and atmospheric conditions, 
which are instrumental in building precise energy 
forecasting models and tackling the unpredictability 
inherent in renewable energy systems. Furthermore, the 
platform supports sophisticated simulations and machine 
learning applications, contributing to more accurate 
predictive analytics and improved grid efficiency. Its 
commitment to open data access fosters cross-
disciplinary research and innovation, establishing it as a 
vital resource for environmental and energy research 
communities [12]. 

The dataset includes 661,058 records, comprising 
360,993 nighttime and 300,065 daytime entries. It features 
eight input variables and one categorical target variable, 
which classifies fire events into four categories: Type 0 
(presumed vegetation fires), Type 1 (active volcanic 
activity), Type 2 (fires from stationary land-based 
sources), and Type 3 (offshore fire detections over water 
bodies).  

This classification framework underscores the 
dataset’s emphasis on distinguishing between different 
fire origins and behaviors [12]. A summary of the 
dataset's attributes is provided in Table 1. 

Table 1: Dataset Description 

Attribute Definition Datatypes 

Bright_ti4 
Measures the brightness temperature in 
Band 4 of the thermal infrared spectrum 
(TIR). 

Float64 

Bright_ti5 
Measures the brightness temperature in 
Band 5 of the TIR. 

Float64 

Scan 
Measures the satellite's scanning ability, 
including angle, direction, and spatial 
coverage. 

Float64 

Track 
Describes the satellite's orbital path, 
alongside its current location and 
trajectory. 

Float64 

FRP Fire radiative power (MW). Float64 

Latitude Fire pixel latitude(degree). Float64 

Longitude Fire pixel longitude (degree). Float64 

Day-night 
Uses the solar zenith angle (SZA) to 
determine whether conditions are day or 
night. 

Object 

Type Type attributed to thermal anomaly. Object 

3.3. Dataset Preparation 

Following the data exploration phase, the preparation 
of the dataset is initiated. This stage involves multiple 
preprocessing steps, including managing missing values, 
removing duplicate entries, applying normalization 
techniques, selecting relevant features, encoding 
categorical variables, and dividing the data into training 
and testing sets. These steps are essential to ensure the 
dataset is clean, structured, and ready for effective 
modeling and further analytical procedures. 

3.3.1. Missing Data 

To verify the integrity of the dataset, two standard 
functions were employed: isnull().sum() and 
duplicated().sum() [13]. The isnull(). sum() function is 
used to detect and count any missing values across the 
dataset columns, while duplicated().sum() identifies 
repeated rows that could compromise data quality. The 
execution of these checks revealed that the dataset 
contained neither missing values nor duplicate entries. 
This confirmation of data completeness and consistency 
contributes to improved data quality, which is critical for 
building accurate and reliable machine learning models. 

3.3.2. Balancing the Dataset 

The distribution of fire types in the dataset reveals a 
significant imbalance, with Type 0 (presumed vegetation 
fires) dominating at 86.88% of the total records. In 
contrast, the other categories are considerably less 
represented, especially Type 1 (active volcano), which 
constitutes only 0.10%. To address this disparity and 
enhance the performance of machine learning models 
across all classes, the dataset was balanced using the 
Synthetic Minority Over-sampling Technique (SMOTE) 
technique prior to training. SMOTE is a popular 
technique used in imbalanced classification problems to 
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help balance the dataset by generating synthetic data 
points for the minority class [14].  

3.3.3. Encoding Categorical Data 

The dataset underwent label encoding to transform 
categorical variables into numeric format, an essential 
preprocessing step since most machine learning 
algorithms require numerical input [15].  

In this study, fire incidents were categorized 
according to their type: Type 0 representing presumed 
vegetation fires, Type 1 indicating volcanic activity, Type 
2 referring to stationary land-based fires, and Type 3 
covering offshore fire detections over water. This 
conversion was vital to ensure the data was compatible 
with the classification models, thereby improving the 
effectiveness and accuracy of the training process.  

3.3.4. Splitting Data 

Initially, the dataset was split into two parts: 80% for 
training and 20% for testing. This division allows the 
model to learn from the majority of the data while 
reserving a portion for evaluating its performance on 
unseen examples. 

3.3.5. Data Normalization   

The numerical features bright_ti4, bright_ti5, scan, 
track, and frp were normalized to bring their values 
within a consistent range, such as 0 to 1 or -1 to 1 [16]. This 
scaling process ensures that each feature contributes 
equally during model training, preventing any one 
variable from disproportionately influencing the learning 
process and supporting more balanced, unbiased model 
performance. 

3.4. Modelling 

Six machine learning algorithms—DT, RF, SVC, KNN, 
LR, and GBC—were implemented to classify the fire 
types. 

Decision Tree (DT) is a non-parametric learning 
method that uses a tree-like structure to make decisions 
based on feature thresholds. It recursively splits the 
dataset into subsets based on the most significant feature 
at each node, making it interpretable and efficient for 
handling both categorical and numerical data. However, 
it is prone to overfitting, particularly on noisy datasets 
[15]. 

Random Forest (RF) is an ensemble learning 
technique that builds multiple decision trees during 
training and merges their outputs for improved accuracy 
and robustness. By averaging the results (in classification, 
via majority voting), RF reduces overfitting and variance 
compared to individual trees, offering better 
generalization on unseen data [15]. 

K-Nearest Neighbors (KNN) is a simple, instance-
based learning algorithm that classifies data points based 
on the majority label among their k-nearest neighbors in 
the feature space. Though computationally intensive 
during prediction, KNN is intuitive and works well with 
non-linear data distributions when appropriate distance 
metrics and normalization are applied [17]. 

 Logistic Regression (LR) is a statistical model that 
uses the logistic function to model the probability of a 
binary or multiclass outcome. Despite its simplicity, LR is 
a strong baseline model due to its efficiency, 
interpretability, and solid performance in linearly 
separable problems [18]. 

Gradient Boosting Classifier (GBC) is a powerful 
ensemble method that builds models sequentially, where 
each new model attempts to correct the errors made by 
the previous ones. It combines weak learners (typically 
shallow trees) using gradient descent optimization to 
minimize the loss function, achieving high predictive 
accuracy at the cost of increased training time [16]. 

Support Vector Classifier (SVC) is based on the 
principles of Support Vector Machines (SVM). It attempts 
to find the optimal hyperplane that best separates the data 
into distinct classes by maximizing the margin between 
support vectors. SVC is especially effective in high-
dimensional spaces and is robust to overfitting when the 
kernel and regularization parameters are properly 
selected [19] . 

3.5. Performance Evaluation  

The effectiveness of the supervised machine learning 
models is evaluated using key performance metrics, 
including accuracy, recall, F-measure and precision, 
which collectively provide insight into their classification 
performance. 

3.5.1. Accuracy 

It represents the proportion of correctly predicted 
instances out of the total number of predictions made. It 
reflects the overall effectiveness of a model in classifying 
both positive and negative cases correctly shown in 
equation (1) [15].  

             𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹 
               (1) 

3.5.2. F-measure 

It offers a balanced assessment by combining both 
metrics into a single value, especially useful when the 
data is imbalanced or when equal consideration of false 
positives and false negatives is needed shown in equation 
(2) [15].  

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

              (2) 
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3.5.3. Precision 

It measures the ratio of correctly predicted positive 
instances to the total predicted positives. It indicates how 
many of the instances labeled as positive by the model are 
actually relevant, helping to evaluate the model’s 
reliability in making positive predictions shown in 
equation (3) [17]. 

                        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
                        (3) 

3.5.4. Recall 

It refers to the proportion of actual positive cases that 
are correctly identified by the model. It is particularly 
important in situations where missing positive cases is 
costly or undesirable shown in equation (4) [18]. 

                                   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 
                   (4) 

4.  Results 

 In terms of accuracy, DT attains the top performance 
with 96.69%, closely followed by RF at 96.37%, both 
demonstrating strong capabilities in correctly identifying 
fire types. GBC also delivers notable accuracy at 93.16%, 
with KNN achieving 91.27%. On the other hand, SVC and 
LR register comparatively lower accuracy rates of 88.35% 
and 87.58%, respectively, suggesting relatively less 
effective classification results, as illustrated in Table 2 and 
Figure 2. 

Looking at precision, DT again leads with 96.70%, 
indicating a high level of accuracy in its positive 
predictions and a minimal rate of false positives. RF 
follows closely with a precision of 96.31%, while GBC 
achieves 92.76%, both reflecting reliable classification 
outputs. KNN also shows solid results with 90.57%, 
whereas SVC and LR lag behind at 83.61% and 83.65%, 
respectively, highlighting a greater occurrence of 
incorrect positive classifications. 

Regarding recall, which assesses the ability to correctly 
identify actual fire instances, DT maintains its lead at 
96.69%, with RF slightly behind at 96.37%. GBC continues 
to perform well with 93.16%, while KNN records 91.27%. 
In contrast, SVC and LR exhibit lower recall rates of 
88.35% and 87.58%, indicating a higher chance of failing 
to detect true fire occurrences. 

When considering the F1 score, which harmonizes 
precision and recall into a single performance metric, DT 
secures the highest value at 96.67%, confirming its 
balanced and robust classification ability. RF follows with 
an F1 score of 96.19%, and GBC reaches 92.67%. KNN also 
maintains dependable performance with 90.79%. 
Meanwhile, SVC and LR yield lower F1 scores of 85.50% 
and 84.71%, respectively, indicating limitations in 
managing the trade-off between precision and recall. 

Table 2: Performance Comparison between models. 

Model Accuracy (%) Recall (%) 
Presion 

(%) 
F1-Scor 

(%) 
SVC 88.35  88.35 83.61 85.50 
RF 96.37 96.37 96.31 96.19 

KNN 91.27 91.27 90.57 90.79 
LR 87.58 87.58 83.65 84.71 

DTC 96.69 96.69 96.70 96.70 
GBC 93.16 93.16 92.76 92.67 

 
Figure 2: Performance Plot of Proposed Models 

5. Discussion 

The findings of the current study, which evaluates six 
supervised ML models—DT, RF, GBC, KNN, SVC, and 
LR—for fire type classification, align well with trends 
observed in the reviewed literature while also offering 
noteworthy advancements in model performance and 
application specificity. 

In this study, DT achieved the highest accuracy 
(96.69%), precision (96.70%), recall (96.69%), and F1 score 
(96.67%), outperforming other models. These results are 
consistent with the findings of Khosravi et al., who 
reported perfect classification accuracy for DT and RF 
during peak fire seasons in Algeria, confirming the 
effectiveness of tree-based models in wildfire 
classification tasks. Similarly, RF performed robustly 
across all metrics in the current study—attaining 96.37% 
accuracy and 96.19% F1 score—which echoes its 
dominant position in several previous studies, including 
those by Tavakoli, Barzani et al., and Al-Bashiti & Naser, 
where RF either matched or exceeded other ensemble 
models in terms of predictive accuracy and 
interpretability. 

GBC also demonstrated strong performance in this 
work, with consistent results across accuracy (93.16%), 
precision (92.76%), recall (93.16%), and F1 score (92.67%). 
While GBC was not explicitly evaluated in some past 
works such as those by Khosravi et al., its potential was 
highlighted in Chaubey et al. and Alkhatib et al., who 
supported the integration of ensemble models to improve 
classification reliability—particularly when using 
complex and high-dimensional environmental data. 
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KNN, although not an ensemble method, delivered 
solid results (accuracy: 91.27%, F1 score: 90.79%), which 
aligns with Stafylas Demetrios’ regression-based analysis, 
where KNN showed competitive performance in 
predicting burned area. However, KNN remains sensitive 
to feature scaling and may not capture complex decision 
boundaries as effectively as tree-based models, which is 
reflected in its slightly lower scores compared to DT, RF, 
and GBC.In contrast, SVC and LR showed the weakest 
performance across all metrics. SVC recorded 88.35% 
accuracy and 85.50% F1 score, while LR followed closely 
behind with 87.58% accuracy and 84.71% F1 score. These 
outcomes are consistent with earlier studies, such as those 
by Al-Bashiti and Naser, where LR underperformed 
relative to ensemble and tree-based models, and by 
Shmuel and Heifetz, who showed that while traditional 
models like LR offer baseline predictability, they fall short 
in handling the nonlinear and complex nature of wildfire 
dynamics. 

 Another important point of comparison is how well 
the current study addresses model balance. Unlike some 
previous works that focused on peak fire seasons or 
lacked formal imbalance-handling strategies, this study 
ensured an equal class distribution prior to training, 
which likely contributed to the high and consistent scores 
for DT, RF, and GBC across all evaluation metrics. This 
balanced approach strengthens the reliability and 
generalizability of the findings, especially for real-world 
applications in USA fire forecasting, where 
underrepresented classes often challenge prediction 
accuracy. 

Furthermore, this study’s comparative framework 
adds value by using a unified dataset and standardized 
preprocessing, enabling a fair and direct performance 
comparison. While prior literature often evaluated 
models on region-specific or task-specific datasets (e.g., 
ignition, size, burned area), this study provides a focused 
comparison on fire type classification, offering insights 
particularly useful for U.S.-based fire management 
systems aiming for categorical fire event identification. 

6. Conclusion and Future Directions  

This study assessed the effectiveness of six supervised 
machine learning algorithms—DT, RF, GBC, KNN, SVC, 
and LR—in classifying fire types in the United States 
using satellite-derived data. Among the evaluated models, 
DT consistently achieved the best results, recording the 
highest scores in accuracy (96.69%), precision (96.70%), 
recall (96.69%), and F1 score (96.67%). RF closely followed, 
while GBC also demonstrated strong and balanced 
performance across all metrics. In contrast, SVC and LR 
exhibited comparatively lower predictive capabilities, 
highlighting their limitations in capturing the complex, 
nonlinear patterns characteristic of fire behavior. 

These findings align with previous research, where 
tree-based and ensemble models—particularly DT, RF, 
and XGB—have repeatedly proven effective in wildfire 
prediction. Their success can be attributed to several key 
strengths. First, these models are well-suited to capturing 
nonlinear interactions among environmental variables 
such as temperature, humidity, wind, and vegetation, 
which are critical in fire dynamics. Second, they 
effectively manage heterogeneous and high-dimensional 
datasets, including those combining meteorological 
indices, satellite imagery, and geospatial information. 
Third, they demonstrate robustness to noise, missing 
values, and outliers, enabling more reliable predictions in 
real-world conditions. 

Moreover, ensemble methods such as RF and XGB 
offer enhanced generalization through the aggregation of 
multiple decision paths, thereby reducing the risk of 
overfitting. These models also support model 
interpretability through feature importance rankings and 
SHAP analysis, providing valuable insights into the most 
influential factors driving fire classifications—an essential 
feature for transparent and accountable decision-making 
in wildfire management systems. 

By applying a balanced dataset and a standardized 
evaluation framework, this study provides a robust 
comparison of model performance, contributing novel 
insights to the evolving field of ML-driven wildfire 
forecasting. The findings reaffirm that tree-based and 
ensemble algorithms are not only highly accurate but also 
scalable, flexible, and interpretable, making them 
particularly well-suited for operational deployment in 
real-world fire risk management applications—especially 
across the diverse climatic and ecological regions of the 
USA. 

Looking forward, future research should explore the 
integration of real-time meteorological feeds, higher-
resolution spatial data, and advanced ensemble strategies 
such as model stacking and hybrid architectures. 
Additionally, incorporating deep learning techniques and 
spatiotemporal modeling could further enhance 
predictive precision, enabling more dynamic and 
proactive wildfire forecasting systems capable of 
addressing both localized threats and broader regional 
patterns. 
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ABSTRACT: This article addresses the calculation of approximation errors in numerical methods for 
solving differential equations. A fundamental challenge when replacing differential equations with 
discrete representations is ensuring that the discrete solution closely approximates the exact solution. 
To tackle this, a grid area is established for the difference solution, with discrete solutions evaluated at 
specific nodal points. Traditionally, the degree of approximation in this context is expressed using the 
notation 𝑂𝑂(ℎ𝑝𝑝), where h represents the grid step and p indicates the order of accuracy. A significant 
advancement in this area is the application of the moving nodes method, which enables the calculation 
of approximation errors at these nodal points. This method allows researchers to derive an 
approximate analytical expression for the discrete solution, which serves as a foundation for 
calculating the approximation error.  

KEYWORDS: Moving Node Method, Approximation error, To-Point Boundary Problem 

 

1. Introduction   

This article is an expanded version of the article 
presented in [1]. The numerical solution methods for 
differential equations fundamentally rely on 
transforming differential problems into difference 
problems [2–5]. In simpler terms, solving differential 
equations requires understanding how to approximate 
them. This involves converting a differential equation 
into a system of algebraic equations, which is based on the 
values of the desired functions at specific points on a grid. 
Recent studies [6]–11] have introduced a new approach 
for approximating differential operators, enhancing the 
accuracy and efficiency of these methods. One of the 
significant advantages of the moved node method is that 
it enables the calculation of an explicit expression for the 
approximation error when replacing differential 
equations with difference ones. Understanding this error 
is crucial because it provides insights into the reliability 
and accuracy of the numerical solution. By quantifying 
the error, researchers can refine their methods and 
improve the overall quality of the numerical solutions 
obtained. 

In conclusion, the transformation of differential 
equations into difference equations is a fundamental 

aspect of numerical analysis. The development of 
innovative methods like the moved node method 
represents a significant advancement in this field, 
providing researchers and practitioners with powerful 
tools to tackle complex differential problems more 
effectively. As numerical methods continue to evolve, the 
importance of understanding and minimizing 
approximation errors will remain a critical area of focus 
for ensuring the accuracy and reliability of solutions. 

On the basis of the movable node, an approximate 
analytical expression for the difference solution of the 
differential problem was obtained [12]. This development 
represents a significant step forward in numerical 
methods, as it provides a more refined approach to 
approximating solutions to differential equations. The 
analytical expression derived from the movable node 
approach allows for greater flexibility and accuracy when 
dealing with complex differential problems. 

In [13], the moving nodes method was further applied 
to construct the control volume method, which is widely 
used in computational fluid dynamics and other 
engineering applications.  
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In [14], the authors explored the potential to increase 
accuracy by combining the moving nodes method with 
the ideas of Richardson’s extrapolation. Richardson’s 
extrapolation is a technique used to improve the precision 
of numerical approximations by utilizing solutions 
obtained at different grid resolutions. By integrating this 
method with the moving nodes approach, it is possible to 
achieve higher-order accuracy in the numerical solutions, 
thereby reducing the error associated with the 
approximation. 

Some questions regarding the monotonicity of the 
difference scheme using the movable node are addressed 
in [15]. Monotonicity is an important property in 
numerical methods, as it ensures that the numerical 
solution behaves in a physically realistic manner, 
avoiding non-physical oscillations or spurious solutions. 
Understanding and ensuring the monotonicity of the 
difference scheme is crucial for maintaining the stability 
and reliability of the numerical method, especially in 
problems involving sharp gradients or discontinuities. 

The application of the moving nodes method to various 
applied problems is reflected in [16]. This demonstrates 
the versatility of the method across different fields, such 
as fluid dynamics, heat transfer, and structural analysis. 

Moreover, based on the choice of the velocity profile 
on the edge of the control volume, qualitative schemes 
were obtained in [17]. The velocity profile plays a critical 
role in determining the flow characteristics and behavior 
within the control volume.  

In summary, the integration of the movable node 
method into various numerical frameworks and its 
application to real-world problems highlights its 
significance in advancing numerical analysis. The 
ongoing exploration of its properties, such as accuracy, 
monotonicity, and adaptability to different contexts, 
continues to enhance the capability of numerical methods 
in solving complex differential equations effectively. As 
research in this area progresses, the potential for further 
innovations and improvements remains substantial, 
promising even greater advancements in the field of 
numerical solutions.  

This paper describes the application of the moving 
nodes method to the calculation of the approximation 
error. The moving nodes method provides a dynamic 
approach to numerical analysis, allowing for the 
adjustment of grid points based on the behavior of the 
solution.  

When a two-point boundary value problem is solved 
using difference methods, the question of the degree of 
approximation typically arises. This degree of 

approximation is crucial as it directly impacts how closely 
the numerical solution aligns with the exact solution. In 
numerical analysis, understanding the closeness of the 
exact solution to its approximation is essential for 
evaluating the effectiveness of the chosen method. 

The quality of the difference scheme is often assessed 
based on this degree of approximation. A higher degree 
indicates a more accurate representation of the solution, 
while a lower degree suggests potential discrepancies 
that may arise from the numerical method employed. 
This evaluation is typically conducted by analyzing the 
behavior of the approximation error, which quantifies the 
difference between the exact solution and the numerical 
approximation. 

Interestingly, in this analysis, other parameters—such 
as the coefficients of the differential equation—are not 
explicitly involved in the expression for the 
approximation error. This is significant because it allows 
researchers to focus on the fundamental aspects of the 
numerical method without being distracted by the 
specific characteristics of the differential equation being 
solved. By isolating the approximation error from these 
coefficients, the analysis can yield more generalized 
insights into the behavior of the numerical solution. 

Obtaining an explicit expression allows researchers to 
identify how changes in the grid size, the choice of the 
moving nodes, and other factors influence the accuracy of 
the numerical solution. Furthermore, it enables the 
development of strategies to minimize the approximation 
error, thus enhancing the overall quality of the numerical 
method. 

By utilizing the moving nodes method to derive this 
explicit expression, the paper contributes to a deeper 
understanding of the approximation error in the context 
of two-point boundary value problems. This 
understanding is crucial for advancing numerical 
methods, as it provides a foundation for improving 
accuracy and reliability in solving complex differential 
equations. Ultimately, the insights gained from this 
analysis can inform future research and applications, 
paving the way for more effective numerical solutions in 
various scientific and engineering fields. 

When a two-point boundary value problem is solved 
by difference methods, the question of the degree of 
approximation usually appears. For the closeness of the 
exact and approximation of the solution, and the quality 
of the difference scheme are evaluated based on the 
degree of this parameter. With such an analysis, other 
parameters (the coefficients of the differential equation) 
are not explicitly involved in the approximation error 
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expression. Obtaining an explicit expression for the 
approximation error makes it possible to analyze it. 

Consider the simplest ordinary differential equation 
with boundary conditions 

2

2 , (0) 0, (1) 1d u C u u
dx

= = =                      (1) 

where C  is constant.  
Create a uniform grid on segments [0, 1]   with step h . 

A uniform grid on a segment  [0, 1]x∈  with step h   has the 
form: 

{ , 0,1,..., , 1}h kx hk k N h Nω = = = ⋅ =  
Let us replace the second-order derivative by the 

difference relation [18]: 
1 1

2

0

2 ,

1 1, 0, 1

i i i

N

U U U C
h

i N U U

+ −− +
=

≤ ≤ − = =                           (2) 
Difference scheme (2) traditionally has order 2( )O h . 

However, if we solve system (2) by the Tomas algorithm, 
we obtain a numerical solution that coincides with the 
exact analytical solution for any grid steps h  at the grid 
nodes. Those. scheme (2) approximates (1) exactly. 

 
2. Method For Determining Approximation Error 

Let we have a differential equation 

,Lu f=                                             (3) 
where L   is a differential operator, f  is a known function, 
and u is an unknown function. (3) the equation is 
considered in some domain D   with appropriate 
boundary conditions. The differential equation (3) is 
replaced by the difference equation [18] : 

,h h hL u f=
                                           (4) 

where hL  is the difference operator, hu  is the unknown 
grid function, and hf   is the approximation of the function 

f  at the grid nodes. 
Usually, the approximation error is given as [18,19]: 

[ ] ,h h h hQ L u f= −                                 (5) 
where [ ]hu  is the exact solution of (3) at the grid nodes. 
Using the Taylor series, from (5) one obtains that, 

( )m
hQ O h= , where  h  is the grid step and m  is the 

degree of approximation. 
You can determine an explicit approximation error if 

you use the method of a moving node, which allows you 
to extend the definition to the entire area D . This allows 
you to introduce an approximation error like this: 

 

{ } .h h h hR L u f= −
                                 (6) 

Here { }hu  is a predefined continuous function by 
means of a moveable node. Approximate calculation of 
the approximation error of type (6) is demonstrated using 
simple examples. 

3. Results and Discussion 

As an application of the above approach, consider 
examples. 

3.1. Simple Boundary Value Problem 
Consider a simple boundary value problem: 

2

2 ( ), (0) , (1)a b
d u f x u u u u
dx

= = =         (7) 

Let's build a non-uniform grid on segments  [0, 1] : 

0 1 1{0 ... 1, 0,1,..., }h N Nx x x x k Nω −= = < < < < = =  

In the non-uniform grid, we replace (7) with the 
difference problem: 

1 1

1 1 1 1

2 ( ),

1, 2,..., 1.

i i i i
i

i i i i i i

U U U U f x
x x x x x x
i N

+ −

+ − + −

 − −
− = − − − 

= −

      (8) 

Here iU  is the grid solution of the problem. From here 

1 1 1 1

1 1

1 1

( ) ( )

1 ( )( )( ), 1, 2,..., 1.
2

i i i i i i
i

i i

i i i i i

U x x U x xU
x x

f x x x x x i N

+ − − +

+ −

− +

− + −
= −

−

− − = −

        

(9) 

We redefine the value of the function at non-nodal points 
as follows. To do this, we consider in (9) 

1 1 1 1, , ,i i i ix x U U+ − − + , to be fixed, and ix   to be moved, 

and the function  ( )f x  to be smooth. Thus, we will 

complete the grid function on each segment 1 1( , )i ix x− + . 
From (9) we get 

1 1

1 1

1( ) ( )( )( )
2

( )( 2 ) ( )

i i i i i i i

i i i i i

U x f x x x x x

f x x x x f x

+ −

+ −

′′ ′′= − − − −

′ + − +

    (10) 

Then the approximation error for the nodal points looks 
like this: 

1 1

1 1

1( ) ( )( )( )
2

( )( 2 )

h i i i i i i

i i i i

R x f x x x x x

f x x x x

+ −

+ −

′′= − − − −

′ + −
          (11) 

If the grid is uniform for the approximation error, we 
obtain the expression 
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21( ) ( ) , 1, 2,..., 1.
2h i iR x f x h i N′′= − = −       (12) 

If on the segments 1 1( , )i ix x− +  the function constant 
approximation error is identically equal to zero and we 
get the exact solution. 

Based on expression (10), the following conclusion can 
be drawn. 

 
Given a two-point boundary value problem 

2
*

2 ( ), (0) , (1)a b
d u f x u u u u
dx

= = =
 

and 
*( )f x  can be represented as 

*
1 1

1 1

1( ) ( )( )( )
2

( )( 2 ) ( )

i i i i i i

i i i i i

f x f x x x x x

f x x x x f x

+ −

+ −

′′= − − − −

′ + − +  

then the difference scheme 

1 1

1 1 1 1

2

( ), 1, 2,..., 1,

i i i i

i i i i i i

i

U U U U
x x x x x x
f x i N

+ −

+ − + −

 − −
− = − − − 

= −  

gives a grid solution coinciding with the exact solution at 
the nodal points. 

If there is only one internal node point (the node 
being moved is one), then an approximate analytical 
solution can be obtained. Indeed, if we rewrite scheme (8) 
for one moving node, we have 

 ( ) ( )2 ( ).
1

b a
i

U U x U x U f x
x x

− − − = − 
   (13)                  

From here we obtain an approximate analytical 
solution: 

1( ) (1 ) ( )(1 ) .
2b a iU x U x U x f x x x= + − − −          (14) 

In this case, (14) represents the exact solution of the 
problem (7) if we put  

* 1( ) ( )(1 ) ( )(1 2 ) ( ).
2

f x f x x x f x x f x′′ ′= − − − − +
 

The form of the approximation error (11) allows the 
construction of new schemes of the collocation type. 
Indeed, if in problem (8) we replace the right side by the 
expression 

𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝐴𝐴(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖), 

Here A is still an unknown constant. Parameter A   is 
determined so that the approximation error (11) for a 

uniform step at node ix  is equal to zero, i.e. collocation 
type scheme. Then we have 

𝐴𝐴 =
1
4
𝑓𝑓″(𝑥𝑥𝑖𝑖) 

. 
 3.2. Boundary value problem for convection and diffusion 
equation 

Consider a stationary equation in which only 
convection and diffusion are present without a source. 

 
0,u uε ′′ ′+ =                                   (15) 

with boundary conditions (0) 0, (1) 1.v v= =  
There are various schemes for the difference solution 

(15) [6, 7]. Based on the moving node technique [1,2], it is 
possible to explicitly express local errors in the 
approximation of differential equations. Using the 
moving node method [1], we will show the efficient 
calculation of local approximation errors for the model 
problem (15). 

3.1.1. Scheme with central-difference approximation of the 
convective term 

 Take a segment 1 1[ ; ]i ix x− + and any point x  . 
Consider the grid analog (15) 

1 1 1 1

1 1 1 1 1 1

2 0i i i i

i i i i i i

u u u u u u
x x x x x x x x

ε + − + −

+ − + − + −

 − − −
− + = − − − − 

    (16) 

At 1 1( ) / 2i ix x x+ −= − , we have a central 

difference approximation. Here, 1iu +  is the approximate 

value of the solution at the point 1ix + , 1iu −  is the 

approximate value of the solution at the point 1ix −  . 
From (16) we find 

    

[ 1 1 1
1 1

1 1 1

1 ( )(2 )
2 ( )

( )(2 ) ]
.

i i i
i i

i i i

u x x x x u
x x

x x x x u

ε
ε

ε

− + +
+ −

+ − −

= − + − +
−

− − +                 (17) 

From here we get, 

 1 1 1 1

1 1

2 2 ,
2

i i i i

i i

x x x u uu
x x

ε
ε

+ − + −

+ −

+ + − −′ =
−

       (18) 

 

1 1

1 1

1 .i i

i i

u uu
x xε
+ −

+ −

−′′ = −
−

                            (19) 

 
If the difference solution at nodal points is known, 

then formula (17) makes it possible to determine the 
unknown at points that are not nodal. 

Using formulas (18) and (19), the derivatives are 
restored at any point of the segment. Multiplying (19) by 
and adding with (18), we obtain 

1,u uε ′′ ′+ = Ψ                                        (20) 

where 
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1 1 1 1
1

1 1

2 .
2

i i i i

i i

x x x u u
x xε

+ − + −

+ −

+ − −
Ψ =

−
 

Equation (20) can be called a differential analog of the 
difference equation (16); difference equation (16) is a 
collocation-type scheme. 

Using (19), the approximation error can be written as 
1 1

1
2 .

2
i ix x x u+ −+ − ′′Ψ = −  

Then equation (20) takes the form 

1 1 2 0.
2

i ix x x u uε + −+ −  ′′ ′+ + = 
 

                   (21) 

Thus, difference equation (16) exactly approximates 

differential equation (21) on the segment 1 1[ , ].i ix x− +  

 Comparison of Eqs. (15) and (21) shows that when Eq. (15) 
is approximated by scheme (16), scheme diffusion 

appears with a variable coefficient 1 1( 2 ) / 2.i ix x x+ −+ −  
3.2.2 Upwind Scheme. Let us consider the difference 

analog of equation (15), in which the convective term is 
approximated by the one-sided difference relation 

1 1

1 1 1 1

1

1

2

0.

i i

i i i i

i

i

u u u u
x x x x x x

u u
x x

ε + −

+ − + −

+

+

 − −
− − − − 

−
+ =

−
                     (22) 

From here we get 

1 1 1 1 1 1

1 1 1

( )(2 ) 2 ( )
( )(2 )

i i i i i i

i i i

x x x x u x x uu
x x x x

ε ε
ε

− + − + + −

+ − −

− + − + −
=

− + −   
 (23) 

Determine the first and second derivatives: 

1 1 1 1
2

1 1 1

2 (2 ) ,
(2 )

i i i i

i i i

x x u uu
x x x x

ε ε
ε

+ − + −

− + −

+ − −′ =
+ − −

        (24) 

1 1 1 1
3

1 1 1

4 (2 )
(2 )

i i i i

i i i

x x u uu
x x x x

ε ε
ε

+ − + −

− + −

− + − −′′ =
+ − −

          (25) 

Let us calculate the approximation error 

1 1 1 1 1
2 3

1 1 1

2 ( )(2 )
(2 )

i i i i i

i i i

x x x x u u
x x x x

ε ε
ε
− + − + −

− + −

− + − −
Ψ =

+ − −
 

The differential analog of scheme (22) has the form 

1 0,
2

ix x u uε −−  ′′ ′+ + = 
 

                   (26) 

those. with a scheme against the flow, we have a scheme 
diffusion with a coefficient . Based on (23) - is a hyperbola, 
which is monotone on the segment, i.e. scheme (22) is 
monotonic. 

Based on the form of the differential analogue (26), we 
can conclude that the differential equation 

0
2
x u uε  ′′ ′+ + = 

                            (27) 

is exactly approximated by the scheme 

2 0
1 1
b a bu u u u u u

x x x
ε

− − − + + = − −                    (28) 

Those. solving (28) with respect to u, we obtain the exact 
solution of differential equation (27). 

 
3.3. Parametric Schemes 

In this case, an attempt is made to create a special 
parametric scheme in order to improve the quality of the 
circuit. The peculiarity of this approach is the choice of the 
parameter, which is carried out on the basis of the 
calculated approximation error, which allows more 
accurately adjusting the parameters of the scheme to 
achieve the best indicators. We demonstrate the 
effectiveness of this method using examples of problems 
related to convection-diffusion processes, where the 
correct choice of parameters is especially important for 
the stability and accuracy of the solution. Consider the 
problem [19,20]. 

( )

2

2

0 1

( ),

0 , (1) ,

du d uPe Pe S x
dx dx
u u u u

= + ⋅

= =
                            (29) 

Here Pe  is the Peclet number, ( )S x  is the source, u   is 
the unknown function. 

When problem (29) is discredited, it is essential to 
approximate the convective term [4]. The standard finite-
difference scheme against the flow on a three-point 
template is: 

2

( ),

W WE

W E W E W

U U U UU UPe
x x x x x x x x

Pe S x

 − −−
= − + − − − − 

⋅

      (30) 

Consider the parametric scheme 
1

2 ( ),

W

kW
k k

WE

E W E W

U UPe kx
x x

U UU U Pe S x
x x x x x x

−−
⋅ =

−

 −−
− + ⋅ − − − 

           (31) 

The choice of the parameter k  can be found by 
numerical experiment. Based on the calculated 
approximation error hR , it is not difficult to select the 

parameter k . The idea of approximating the convective 
term is as follows. We introduce an intermediate variable 

( )y x , and based on the calculation of the derivative of a 
complex function, we have 

.du du dy
dx dy dx

= ⋅
 

For the function ( )y x  we take a monotonically 

increasing function, for example, 
ky x= . /du dy will 

http://www.jenrs.com/


 D. Umurdin et al., Analysis of Difference Schemes of Two-Point Boundary Value 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(6): 9-15, 2025                                            14 

be replaced by the difference relation upstream. Making 
the assumption that with such a replacement, the 
approximation error decreases. In this way 

1.kW
k k

w

u udu kx
dx x x

−−
≈ ⋅

−  
  Figure 1 shows the results of calculations 

( 0,Pe = 0 1( ) 0, 11, 0, 1)S x N u u= = = = ,  at 1k =  and 

9k = . 
Thus, by carefully choosing the parameter k, we are 

able to obtain a result that is as close as possible to the 
exact solution of the problem. This approach allows us to 
significantly increase the accuracy and reliability of 
calculations, minimizing approximation errors and 
ensuring more stable behavior of the numerical method. 

 

 
Figure 1: Comparison of results. The solid line is the exact solution, 
the circles are the numerical results obtained at k=1, and the solid 
circles at k=9. 

 

 
Figure 2: Comparison of the results of the approximation error at 
internal nodal points. The solid circles are obtained according to the 
scheme (31) at k=9, and the circles at k=1. 

3.3. Iterative method to get a solution 

It is known that after replacing the differential 
equation with discrete ones, we obtain a system of 
algebraic equations [4,5,19,20]. There are two approaches 
to solving systems of algebraic equations: exact methods 
and iterative methods. Using the idea of constructing 
iterative methods for systems of discrete equations, we 
will show the possibilities of an analytical approximate 
solution based on the method of moving nodes. 

Consider problem (29). If there is only one moving 
node, approximating the convective term by the 
upstream scheme from (31) we get 0 1( 0, 1).u u= =   

 1 2 (1 ). ( )
2 (1 ) 2 (1 )

x x xu S x
Pe x Pe x

−
= + ⋅

+ − + −
       (32) 

This expression is taken as the initial approximation of 
problem (29). Let's find the approximation error 

2 1 1
1

2 ( )d u duR Pe Pe S x
dx dx

= − + ⋅             (33) 

Let's calculate the second approximation 

2 1 1(1 )u u x x Rω= + −  

Find the approximation error 2.R  

2 2 2
2

2 ( )d u duR Pe Pe S x
dxdx

= − + ⋅
 

Thus, we carry out an iterative process in the form 

1 1(1 ) ( ), 2,3...k k ku u x x R Pe S x kω− −= + − + ⋅ =     (34) 

In (34) ω is the relaxation parameter. 

 In Fig. 3 the exact solution of the problem as well as 

approximating analytical solutions 
1 2 3, ,u u u  and  

4u  
are compared. As can be seen from the graphic, step by 
step we can improve of analytical solution  
( ( ) 0, 10, 0.08).S x Pe ω= = =   
On fig. 4 the sequence of solution of problem (18) is given 
for ( ) cos(5 ), 10, 0.06.S x x Pe ω= = =  On fig. 3 and 4, 
the solid line corresponds to the exact solution of the 

problem; dot - 
1;u  dashed, 

2;u ; dotted-dashed -- 
3;u  

long-dashed - 
4.u  

 
Figure 3: Comparison of results: S(x) = 0, Pe=10,  ω=0,08 
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Figure 4: Comparison of results: S(x) = cos(5x), Pe=10,  ω=0,06 

As can be seen from the graphic, step by step we can 
improve of the analytical solution.  
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ABSTRACT: Polycystic Ovary Syndrome (PCOS) is a prevalent hormonal disorder affecting women 
of reproductive age, commonly resulting in irregular menstrual cycles, elevated androgen levels, and 
the presence of polycystic ovaries. It is a major cause of infertility and is often linked with metabolic 
complications such as insulin resistance and obesity. Symptoms vary and may include acne, excessive 
hair growth, weight gain, and hair thinning. Early detection and proper management through lifestyle 
interventions and medical treatment are crucial to mitigating long-term health risks. This study 
investigates the classification performance of seven supervised machine learning algorithms—Logistic 
Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), Gradient 
Boosting Classifier (GBC), Adaptive Boosting (AdaBoost), and Multi-Layer Perceptron (MLP)—using 
clinical and lifestyle data related to PCOS. The models were evaluated using accuracy, precision, recall, 
F1 score, and ROC AUC metrics. LR consistently outperformed the other models, achieving the highest 
accuracy (91.7%), precision (96%), and Receiver Operating Characteristics -Area Under the Curve (ROC 
AUC) (96.8%), while also maintaining a strong balance in recall and F1 score. This outstanding 
performance is attributed to the linear nature of the dataset and the efficiency, simplicity, and 
generalizability of LR, making it particularly suitable for this classification task. This study introduces 
a novel approach for predicting PCOS by integrating advanced data preprocessing techniques with a 
focus on model simplicity and interpretability. The predictive performance of LR was further enhanced 
through the application of the Synthetic Minority Over-sampling Technique (SMOTE) to address class 
imbalance and Analysis of Variance (ANOVA) F-score-based feature selection to identify the most 
statistically significant predictors. This approach not only achieved high predictive accuracy but also 
ensured transparency and ease of deployment, making it highly applicable for clinical decision-support 
systems aimed at early and accurate PCOS diagnosis. 
 
KEYWORDS:  Artificial Intelligence, Data Analysis, Polycystic Ovary Syndrome, Supervised Machine 
Learning, Medical Diagnosis. 
 
 
1. Introduction  

Polycystic Ovary Syndrome (PCOS) is a prevalent 
endocrine disorder that affects approximately 8–13% of 
women of reproductive age worldwide. Its prevalence, 
however, varies depending on ethnicity and diagnostic 
criteria. PCOS is characterized by hormonal imbalances, 
particularly elevated androgen levels, which manifest in 
symptoms such as irregular menstrual cycles, 
anovulation, and the presence of multiple ovarian 
follicles. These disruptions often lead to infertility and are 
commonly accompanied by metabolic complications, 
including obesity, insulin resistance, type 2 diabetes, and 

increased cardiovascular risk [1]. Despite its widespread 
occurrence and clinical implications, PCOS remains 
underdiagnosed due to its heterogeneous presentation 
and overlapping symptoms with other conditions. This 
diagnostic challenge underscores the need for advanced 
tools to enhance early detection and personalized care. 
Artificial intelligence (AI), particularly machine learning 
(ML), offers a promising solution by identifying complex, 
non-linear patterns within clinical and biochemical 
data—patterns that may be overlooked through 
conventional diagnostic approaches. Numerous studies 
have highlighted the potential of ML to augment clinical 
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workflows in endocrinology, providing timely, data-
driven support for healthcare professionals [1].  

The presence of PCOS symptoms can vary 
significantly among women, it includes acne, extra body 
hair growth, hair thinning and obesity. As a matter of fact, 
symptoms differ from one person to another, which 
makes diagnosing PCOS challenging. Early and accurate 
diagnosis is essential for timely intervention to manage 
both reproductive and metabolic health risks [2]. 

The diagnostic process for PCOS remains challenging 
due to the diverse presence of symptoms across women. 
Typically, physicians rely on a combination of clinical 
assessments, blood tests, and pelvic ultrasound imaging. 
However, the absence of a comprehensive diagnostic tool 
also makes it hard to distinguish from other conditions 
leading to misdiagnosis or delays in diagnosis. 
Consequently, healthcare systems are seeking more 
advanced solutions to boost diagnostic accuracy to have 
efficient outcomes [3].  

Advancements in AI, specifically in ML, have shown 
considerable promise in healthcare diagnostics. This is 
particularly for finding and classifying sophisticated 
diseases such as PCOS. For instance, supervised learning 
algorithms are demonstrating significant capability by 
uncovering hidden patterns within clinical and lifestyle 
data that was not readable by healthcare providers. The 
availability of electronic health records (EHRs) and 
patient data are rapidly increasing. Furthermore, AI-
driven solutions could improve the prediction of PCOS 
diagnosis, enabling tailored and patient-specific 
treatments [4].  

This study investigates the effectiveness of seven ML 
algorithms—LR, NB, SVM, RF, GBC, AdaBoost and 
MLP—in identifying PCOS using a dataset sourced from 
Kaggle. Following the CRISP-DM framework, the study 
applies a structured approach to data analysis and model 
development, incorporating patient data related to 
symptoms and lifestyle factors. The performance of each 
model is assessed using precision, recall, F1 score, and 
ROC AUC to enable a comparative evaluation of their 
strengths and limitations.  

The findings aim to inform the development of AI-
based diagnostic tools that support clinicians in 
diagnosing PCOS more accurately and efficiently, thereby 
enhancing clinical decision-making. 

       The study is structured into the following sections: 
literature review, methodology, data description and 
preprocessing, model implementation, results, 
discussion, conclusion, and future recommendations. 

2. Literature Review 

Several studies in recent years have used different ML 
techniques to diagnose and predict PCOS. Utilising 

clinical and physiological dataset to augment prediction 
accuracy. These approaches enhance distinct algorithms 
and data preprocessing methods for the aim of capturing 
patterns that assist in early and reliable PCOS detection.  

In [5], the Decision Tree (DT), RF, and SVM 
algorithms were applied to a clinical dataset containing 
features such as Body Mass Index (BMI), insulin levels, 
and follicle count to predict the presence of PCOS. Among 
the models tested, the RF classifier achieved the highest 
accuracy of 89.5%. The study emphasized that ensemble 
models like RF are particularly effective in capturing 
complex relationships and interdependencies among 
clinical features. 

Similarly, authors [6] used LR, NB, and KNN to 
analyse a dataset of 520 PCOS cases. In terms of model 
performance development, the study focused on feature 
selection techniques such as chi-square and recursive 
feature elimination. LR revealed strong predictive 
capability with an accuracy of 85.3%, especially when 
hormonal and metabolic attributes were emphasized. 
This demonstrates the strength of tree-based models in 
the clinical field. 

In a more recent analysis, authors in [7] implemented 
DL models accompanied with traditional supervised 
classifiers on a refined clinical dataset. The study 
compared Artificial Neural Networks (ANN) with SVM, 
DT, and XGBoost. Despite the fact that ANN achieved the 
highest accuracy of 91.2%, the authors highlighted that 
simpler supervised model like XGBoost provided 
competitive results with lower computational costs, 
supporting their practicality for clinical integration. 

In the imaging domain, researchers [8] proposed a 
model interpretability by combining DT classifiers with 
SHapley exPlanations (SHAP), a method that collaborates 
each independent feature to contribute to accurate 
predictions. This approach assembled the authors to 
generate a ranked list of features based on their impacts 
on the model’s output. Nevertheless, testosterone levels 
and the luteinizing hormones (LH) to follicle-stimulating 
hormone (FSH) ratio emerged as dominant predictors 
lining up with clinical indicators of PCOS. Through the 
visualization of feature importance at both the population 
and patient-specific levels, the study provided a clearer 
understanding of the model's reasoning, which 
contributes to greater clinical confidence and 
interpretability in automated diagnostic applications. 

Furthermore, authors [9] established a cloud-based 
diagnostic system trained on three different medical 
datasets taken from medical centres. AI algorithms 
analysed images, focusing on DNA content with cell 
nuclei. It validated the value of feature specificity such as 
DNA content as PCOS markers.  Based on the results, 
these images were derived to a cloud-based platform for 
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evaluation and assessments. Results achieved accuracy 
between 86% and 89%.  

In addition, Arya [10] proposed a two-step approach 
to medical diagnosis that merges both supervised and 
unsupervised learning techniques. Starting with k-means 
clustering was used to group similar patient records. 
Followed by, analysing the clustered groups using 
supervised classification models, DT and SVM models to 
predict diagnosis. This combined method improved the 
accuracy of the system, reaching a prediction accuracy of 
87.5%, and highlighted how blending ML techniques.  

 In the use of Graph Neural Network (GNN), Boll, et 
al. [11] acknowledges relationships between variables in 
EHRs. By treating clinical data as a network each variable 
is a node, and the connections reflect how these variables 
interact. As a result, patient information was modelled in 
a meaningful way. This graph-based approach achieved 
a strong AUC score of 89%, showing significant clinical 
prediction outcomes using advanced Deep Learning (DL) 
techniques.  

Similarly, authors in [12] developed a Light Gradient 
Boosting Machine (LightGBM) model in conjunction with 
SHAP to identify and prioritise features relevant to PCOS 
diagnosis. The analysis highlighted the significance of 
anti-Müllerian hormone (AMH) levels and clinical signs 
such as hirsutism in prediction PCOS. As a result, the 
model achieved AUC of 93%, indicating high 
performance. In another notable comparison, Wang, et al. 
[13] implemented SVM, GBC, and MLP on PCOS datasets 
with categorical and numerical features. MLP achieved 
the highest F1 score 92%, demonstrating DL's ability to 
capture nonlinear relationships in diverse data formats. 
However, SVM maintained excellent generalization with 
less overfitting. 

Additionally, authors in [14] examined the 
performance of LR, SVM, and MLP for early PCOS 
detection using lifestyle data (e.g., activity, sleep). Results 
show LR proved superior in AUC and interpretability, 
confirming its dominance in structured health data 
settings. Specifically, the study documented an AUC of 
82.3% for the LR model, highlighting its robust 
performance. 

Addressing the challenge of class imbalance, authors 
in [15] conducted an analysis on distinct algorithms, RF 
AdaBoost, and GBC on datasets with imbalanced PCOS 
class distributions. By applying SMOTE for balance, GBC 
performed best in handling rare class detection, with an 
AUC of 94.2%, followed closely by AdaBoost. 

Similarly, authors in this study [16] developed 
predictive models using four ML methods: LR, SVM, 
GBC trees, and RF. It focused on hormone values (follicle-
stimulating hormone, luteinizing hormone, oestradiol, 
and sex hormone-binding globulin) were combined to 

create a multilayer perceptron score using a neural 
network classifier. The models achieved AUC values of 
85%, 81%, 80%, and 82%, respectively. Significant positive 
predictors of PCOS diagnosis across models included 
hormone levels and obesity; negative predictors included 
gravidity. The study illustrates the potential benefits of 
integrating AI tools into EHRs to facilitate earlier 
detection of PCOS. 

Finally, researchers in [17] proposed three 
lightweight DL models LSTM-based, CNN-based, and 
CNN-LSTM-based for automated PCOS prediction. To 
address the imbalanced nature of the dataset, the SMOTE 
was employed. The models achieved accuracies of 
92.04%, 96.59%, and 94.31%, with corresponding ROC-
AUC values of 92.0%, 96.6%, and 94.3%. The study 
highlights the effectiveness of lightweight DL models in 
delivering high performance with fewer trainable 
parameters, making them suitable for resource-
constrained environments. 

Previous studies have utilized various ML algorithms 
to enhance PCOS diagnosis and prediction. Among these, 
RF demonstrated strong predictive capabilities by 
capturing complex, non-linear relationships, achieving 
accuracies up to 89.5%. LR was also widely used due to 
its simplicity and interpretability, particularly effective 
with structured clinical and lifestyle data, achieving 
accuracies above 85%. 

SVM provided good generalization performance, 
especially on smaller datasets, but was sometimes 
outperformed by DL models on larger datasets. DL 
approaches, including ANN, CNN, and LSTM, achieved 
the highest accuracies, reaching up to 96.59% with CNN-
LSTM architectures, though they required higher 
computational resources. 

Tree-based ensemble models such as GBC and 
XGBoost delivered competitive results with lower 
computational costs, making them suitable for clinical 
environments. GBC particularly excelled in handling 
imbalanced datasets, achieving AUC values over 94%. 
Recently, advanced models like GNN were introduced to 
model complex relationships in electronic health records, 
achieving an AUC of 89%. 

In summary, although DL models achieved the 
highest prediction accuracies, RF and GBC provided a 
balanced trade-off between performance, interpretability, 
and computational efficiency, making them highly 
applicable in practical clinical scenarios. 

3. Research Methodology and approach 

3.1. Background of the Research Study  

This research was conducted using Google Colab as 
the primary development environment, with Scikit-learn 
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as the main Python library for implementing ML models. 
A total of seven classification algorithms were employed 
to analyse and classify PCOS cases. The models used 
include LR, NB, SVM, RF, GB, AdaBoost, and MLP. Each 
algorithm was trained and evaluated to assess its 
effectiveness in accurately identifying PCOS based on 
clinical and lifestyle features. 

The selection of these specific algorithms—LR, NB, 
SVM, RF, GBC, AdaBoost, and MLP—was driven by their 
complementary strengths in handling structured clinical 
data. LR offers high interpretability and computational 
efficiency, making it ideal for linear relationships within 
medical datasets. NB is well-suited for smaller datasets 
and performs effectively under the assumption of 
conditional feature independence. SVM is robust in high-
dimensional spaces and generalizes well across complex 
boundaries. Ensemble methods such as RF, GBC, and 
AdaBoost are powerful in modeling non-linear 
interactions and addressing class imbalance, which are 
common in PCOS-related data. Lastly, MLP, a type of 
artificial neural network, was included for its ability to 
capture deep non-linear relationships. This diverse 
algorithm selection enables a comprehensive comparison 
across linear, probabilistic, ensemble-based, and neural 
learning paradigms, enhancing the model's applicability 
to the multifactorial nature of PCOS. 

 
Figure 1: Phases of the CRISP-DM Methodology 

The study followed the CRISP-DM methodology, a 
widely recognized framework for structuring ML 
projects. This approach consists of six key phases: 
defining project objectives (business understanding), 
exploring and analysing the dataset (data 
understanding), organizing and cleaning data for analysis 
(data preparation), developing and tuning ML models 
(modelling), assessing model performance (evaluation), 
and preparing the model for practical application 
(deployment) [18]. Adopting this structured workflow 
ensured clarity, consistency, and effectiveness 

throughout the project, ultimately contributing to the 
reliable and accurate results presented in Figure 1. 

3.2. Dataset Description  

The dataset used in this study was retrieved from 
Kaggle, a widely recognized platform for data science 
competitions and open-access datasets [19]. It contains 
clinical, biochemical, and lifestyle-related information 
collected from 541 female patients to support the 
prediction and diagnosis of PCOS. The dataset includes 
44 features, including a binary target variable, PCOS 
(Y/N), where a value of 1 indicates a confirmed diagnosis 
of PCOS and 0 denotes its absence. 

The features span several categories. Demographic 
and anthropometric variables include age, weight, height, 
BMI, and blood group. Vital signs such as pulse rate, 
respiratory rate, and blood pressure are included. 
Reproductive health indicators—like menstrual cycle 
regularity and pregnancy status—are complemented by 
hormonal measurements including AMH, FSH, LH, the 
FSH/LH ratio, and Beta-HCG. The dataset also captures 
symptoms and lifestyle factors, such as hair loss, acne, 
skin pigmentation, weight gain, hirsutism, fast food 
intake, and physical activity. Furthermore, ultrasound 
features detail follicle count and size in each ovary, along 
with endometrial thickness.  

Notably, this dataset does not contain some of the 
core hormonal biomarkers typically used in the clinical 
diagnosis of PCOS, such as estrogen, progesterone, and 
testosterone. The absence of these indicators constitutes a 
key limitation of the dataset provided via Kaggle and was 
not a modeling decision but rather a constraint imposed 
by data availability. In real-world clinical practice, these 
hormones are fundamental to differential diagnosis and 
are often among the first parameters assessed alongside 
imaging. Their exclusion may restrict the model’s ability 
to fully replicate the diagnostic reasoning employed by 
clinicians and can limit generalizability to broader patient 
populations. Future studies will aim to incorporate such 
hormonal data to enhance both predictive performance 
and clinical validity. 

Additionally, the dataset does not include crucial 
demographic attributes such as ethnicity, geographical 
origin, and socioeconomic status—factors that 
significantly influence hormonal expression, 
symptomatology, and PCOS risk profiles. The lack of 
these variables introduces potential bias and restricts the 
fairness and applicability of the model across diverse 
populations. This limitation will be acknowledged 
explicitly in the revised manuscript, and future research 
will seek to mitigate these shortcomings through more 
inclusive and representative datasets. A summary of the 
dataset's attributes is provided in Table 1. 
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Table 1: Dataset Description 

Feature Description Data 
Type 

Age (yrs) Age of the patient in 
years 

Float64 

Weight (Kg) Body weight in 
kilograms 

Float64 

Height (Cm) Height in centimetres Float64 
BMI Body Mass Index Float64 

Blood Group Blood type as 
numerical code 

Int64 

Pulse 
rate(bpm) 

Pulse rate in beats 
per minute 

Float64 

RR 
(breaths/min) 

Respiratory rate per 
minute 

Int64 

Cycle(R/I) Menstrual cycle 
regularity 

Int64 

Pregnant(Y/
N) 

Pregnancy status 
(1=Yes, 0=No) 

Int64 

I beta-HCG 
(mIU/mL) 

Beta-HCG hormone 
level (case I) 

Float64 

AMH 
(ng/mL) 

Anti-MÃ¼llerian 
Hormone level 

Float64 

FSH 
(mIU/mL) 

Follicle Stimulating 
Hormone 

Float64 

LH 
(mIU/mL) 

Luteinizing Hormone Float64 

FSH/LH Ratio of FSH to LH Float64 
Hair 

loss(Y/N) 
Presence of hair loss 

(1=Yes, 0=No) 
Int64 

Skin 
darkening 

(Y/N) 

Presence of skin 
pigmentation (1=Yes, 

0=No) 

Int64 

Weight 
gain(Y/N) 

Reported weight gain 
(1=Yes, 0=No) 

Int64 

Hair 
growth(Y/N) 

Excessive hair 
growth (1=Yes, 0=No) 

Int64 

Pimples(Y/N) Presence of 
pimples/acne (1=Yes, 

0=No) 

Int64 

Fast food 
(Y/N) 

Fast food 
consumption (1=Yes, 

0=No) 

Float64 

Reg.Exercise(
Y/N) 

Engagement in 
regular exercise 
(1=Yes, 0=No) 

Int64 

Follicle No. 
(L) 

Number of follicles in 
left ovary 

Int64 

Follicle No. 
(R) 

Number of follicles in 
right ovary 

Int64 

Avg. F size 
(L) (mm) 

Average follicle size 
in left ovary 

Float64 

Avg. F size 
(R) (mm) 

Average follicle size 
in right ovary 

Float64 

Endometriu
m (mm) 

Thickness of the 
endometrial lining 

Float64 

PCOS (Y/N) Diagnosis of PCOS 
(1=Yes, 0=No) 

Int64 

 
3.3. Dataset Preparation 

After completing the data exploration phase, the 
dataset undergoes a comprehensive preprocessing stage. 
This phase includes handling missing values, eliminating 
duplicate records, applying normalization, selecting 
relevant features, encoding categorical variables, and 
splitting the data into training and testing sets. These 
preprocessing steps are crucial to ensure the dataset is 
clean, well-structured, and suitable for accurate 
modelling and further analysis. 

3.3.1. Missing Data 

To ensure the integrity of the dataset, two standard 
validation functions were applied: isnull (). sum () and 
duplicated (). sum (). For instance, the isnull (). sum () 
function was used to detect and count missing values 
across all columns, while duplicated().sum() identified 
any repeated rows that could affect data quality. The 
results confirmed that the dataset contained no missing 
values or duplicate entries, indicating a high level of 
completeness and consistency. This verification step is 
essential, as clean and reliable data forms the foundation 
for developing accurate and robust ML models. 

3.3.2. Balancing the Dataset 

The dataset comprises a total of 541 patient records, 
each containing clinical, biochemical, and lifestyle-related 
information relevant to the diagnosis of PCOS. The target 
variable, PCOS (Y/N), is binary, where 1 indicates a 
positive PCOS diagnosis and 0 indicates the absence of 
the condition as presented in Figure 2. To address this 
imbalance and improve the performance of ML models, 
the study employed SMOTE. The SMOTE generates 
synthetic examples of the minority class (PCOS) to create 
a more balanced dataset. This technique helps reduce bias 
toward the majority class during model training, leading 
to more reliable and generalizable classification outcomes 
[17]. 

 
Figure 2: Class Distribution of PCOS 
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3.3.3. Feature Selection   

The feature selection results using ANOVA F-scores 
highlight the most statistically significant variables for 
distinguishing between PCOS and non-PCOS cases. The 
two most predictive features are Follicle No. (R) and 
Follicle No. (L), with F-scores of 390.84 and 308.52, 
respectively. These findings are consistent with clinical 
criteria, as women with PCOS typically present with a 
higher number of ovarian follicles, particularly in the 
right ovary. Other highly discriminative features include 
skin darkening, hair growth, and weight gain, all of which 
are common symptoms associated with hormonal 
imbalance and insulin resistance in PCOS patients. 

The menstrual cycle regularity feature (Cycle R/I) also 
shows a high F-score (103.67), emphasizing its 
importance, as irregular cycles are a key diagnostic 
marker of PCOS. Moderate contributions come from 
features like fast food consumption, pimples, weight, 
BMI, and cycle length, which reflect both lifestyle and 
physiological factors influencing the condition. Less 
predictive but still relevant features include hair loss, age, 
waist size, and hip circumference, which contribute to the 
model with lower F-scores. Overall, the analysis confirms 
that reproductive indicators, clinical symptoms, and 
lifestyle behaviours play a vital role in the classification of 
PCOS, guiding both feature prioritization and model 
development for improved diagnostic accuracy. A 
summary of the attribute’s importance is provided in 
Table 2. 

Table 2: Feature Importance Using ANOVA F-score 

Selected Feature ANOVA F-score 
Follicle No. (R) 390.83 
Follicle No. (L) 308.51 

Skin darkening (Y/N) 157.67 
hair growth(Y/N) 148.42 
Weight gain(Y/N) 130.16 

Cycle(R/I) 103.67 
Fast food (Y/N) 89.72 
Pimples(Y/N) 48.04 
Weight (Kg) 25.34 

BMI 22.34 
Cycle length(days) 17.73 

Hair loss(Y/N) 16.6 
 Age (yrs) 15.75 

Waist(inch) 15 
Hip(inch) 14.58 

3.3.4. Encoding Categorical Data 

The dataset was processed using label encoding to 
convert categorical variables into numerical format, a 
crucial preprocessing step as most ML algorithms 
requires numerical input [20]. In this study, all categorical 

features were successfully transformed into numeric 
values. This conversion was essential to ensure 
compatibility with the classification models, ultimately 
enhancing the efficiency and accuracy of the training and 
evaluation processes. 

3.3.5. Splitting Data 

The dataset was initially divided into two subsets, 
with 80% allocated for training and 20% for testing. This 
split enables the model to learn patterns from the larger 
portion of the data while using the remaining portion to 
assess its performance on previously unseen instances, 
ensuring a more reliable evaluation. 

3.3.6. Data Normalization   

The numerical features were normalized to scale their 
values within a consistent range, typically between 0 and 
1. This process ensures that all features contribute equally 
during model training, preventing any single variable 
from dominating the learning process. Normalization 
supports more balanced and unbiased model 
performance, ultimately enhancing the accuracy and 
stability of the results [21]. 

3.4. Modelling 

Seven ML algorithms—LR, NB, SVM, RF, GBC, 
AdaBoost, and MLP—were applied to classify patients 
based on the presence or absence of PCOS. 

LR is a supervised ML algorithm commonly used for 
binary classification tasks. It estimates the probability that 
a given input belongs to a particular class by applying a 
sigmoid function to a linear combination of the input 
features. The output is a value between 0 and 1, 
representing the likelihood of the positive class. LR is 
valued for its simplicity, interpretability, and efficiency, 
making it a reliable choice for solving classification 
problems in various domains [22]. 

RF is an ensemble ML method that constructs 
numerous DTs during the training phase and combines 
their predictions to enhance accuracy and stability. For 
classification tasks, it typically uses majority voting to 
determine the final output. This approach helps reduce 
both overfitting and variance compared to relying on a 
single DT, leading to improved generalization and 
performance on new, unseen data [23]. 

GBC is an effective ensemble learning method that 
constructs models in a sequential manner, with each new 
model aiming to improve upon the errors of its 
predecessors. It combines multiple weak learners, 
typically shallow DTs, and optimizes performance by 
minimizing a loss function through gradient-based 
techniques. This approach often results in high predictive 
accuracy, although it may require more training time due 
to its iterative nature [23]. 
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SVM is a powerful supervised learning algorithm 
used for classification and regression tasks. It works by 
finding the optimal hyperplane that separates data points 
of different classes with the maximum margin. The data 
points closest to the hyperplane, known as support 
vectors, are critical in defining the decision boundary. 
SVM is especially effective in high-dimensional spaces 
and can be adapted to non-linear problems through the 
use of kernel functions. Its ability to handle complex 
relationships and avoid overfitting makes it a widely 
used method in ML [20].  

NB is a simple, yet effective supervised classification 
algorithm based on Bayes’ Theorem. It assumes that all 
features are independent of each other given the class 
label—an assumption known as "naive" independence. 
Despite this simplification, NB performs well in many 
real-world scenarios, particularly with large datasets. It is 
computationally efficient, easy to implement, and works 
well for both binary and multi-class classification 
problems, especially when the input features are 
categorical or conditionally independent [20]. 

AdaBoost is an ensemble learning algorithm that 
combines multiple weak classifiers, typically DTs, to form 
a strong classifier. It works by training models 
sequentially, where each new model focuses more on the 
errors made by the previous ones. During the training 
process, weights are assigned to each instance, increasing 
for those that are misclassified, so the next model gives 
them more attention. AdaBoost is known for improving 
accuracy, reducing bias, and being relatively resistant to 
overfitting when properly tuned. It performs well on 
binary classification tasks and is particularly effective 
with clean, well-prepared data [24]. 

MLP is a type of ANN used for supervised learning 
tasks, including both classification and regression. It 
consists of an input layer, one or more hidden layers, and 
an output layer, with each layer made up of 
interconnected nodes (neurons).  

MLP uses non-linear activation functions and is 
trained using backpropagation to minimize prediction 
errors. It is capable of capturing complex patterns in the 
data but often requires careful tuning of hyperparameters 
and sufficient data to perform effectively. MLP is 
particularly useful when the relationship between 
features and outcomes is non-linear and not easily 
captured by simpler models [25]. 

3.5.  Performance Evaluation  

The performance of the supervised ML models is 
assessed using key evaluation metrics—accuracy, 
precision, recall, F-measure and ROC AUC—which 
together offer a comprehensive understanding of each 
model’s classification effectiveness. 

3.5.1. Accuracy:  

It measures the proportion of correctly predicted 
instances out of the total number of predictions. It reflects 
the overall effectiveness of a model incorrectly classifying 
both positive and negative cases, as expressed in Equation 
(1) [26].  

             𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹                (1) 
 

3.5.2. F-measure:  

It provides a balanced evaluation by combining 
precision and recall into a single metric. It is especially 
valuable when dealing with imbalanced datasets or when 
both false positives and false negatives carry significant 
consequences, as shown in Equation (2) [26]. 

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

              (2) 

3.5.3. Precision:  

It quantifies the ratio of correctly predicted positive 
instances to all instances predicted as positive. It 
evaluates the model's ability to produce reliable positive 
predictions, helping determine how many of the 
predicted positives are relevant. This is illustrated in 
Equation (3) [26]. 

                        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
                        (3) 

3.5.4. Recall: 

       It measures the proportion of actual positive cases 
that are correctly identified by the model. It is crucial in 
contexts where missing positive cases may have serious 
implications, as represented in Equation (4) [26]. 

                                  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 
                           (4)   

3.5.5. ROC AUC 

It is a performance metric used to evaluate the 
classification ability of a ML model across various 
threshold settings. The ROC curve plots the True Positive 
Rate against the False Positive Rate, showing how the 
model's sensitivity and specificity vary with different 
decision boundaries. The AUC quantifies the overall 
ability of the model to distinguish between classes [26]. 

4.  Results 

The results of the current study demonstrate the 
effectiveness of the ML techniques in accurately 
predicting PCOS. Key performance metrics, including 
accuracy, precision, recall, F1-Score and ROC AUC, were 
evaluated to assess model reliability. As provided in 
Table 3. 

Table 3: Performance Comparison Between Models 
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Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%) 

ROC 
AUC 
(%) 

NB 90.8 82.4 87.5 84.8 96.7 

LR 91.7 96.0 85.0 84.2 96.8 

SVM 89.9 92.0 90.0 80.7 96.0 

RF 89.0 83.3 78.1 80.6 95.0 

GBC 89.0 83.3 78.1 80.6 92.1 

AdaBo
ost 

88.1 85.2 71.9 78.0 93.4 

MLP 87.2 82.1 71.9 76.7 92.1 

In terms of accuracy, LR achieved the highest score at 
91.7%, indicating its strong overall capability to correctly 
classify both positive and negative cases. NB followed 
closely with 90.8%, while SVM and RF achieved 89.9% 
and 89%, respectively. GBC also matched RF with 89%, 
and AdaBoost recorded a slightly lower accuracy at 
88.1%. The MLP had the lowest accuracy among all 
models at 87.2%, suggesting it may be less effective in 
general classification performance for this dataset as 
shown in Figure 3. 

 
Figure.3: Accuracy Plot of Proposed Models 

When evaluating precision, which measures the 
correctness of positive predictions, LR outperformed all 
other models with a precision of 96%. SVM came next 
with 92%, indicating its reliability in predicting relevant 
positive cases. AdaBoost followed with 85.2%, and both 
RF and GBC scored 83.3%. NB had a precision of 82.4%, 
and MLP was the lowest at 82.1%. This metric highlights 
LR as the most dependable model when minimizing false 
positives is important as shown in Figure 4. 

 
Figure.4: Precision Plot of Proposed Models 

The performance comparison based on recall shows 
that NB achieved the highest recall at 87.5%, 
demonstrating superior sensitivity in correctly 
identifying positive cases. This is followed by LR, which 
also performed well with a recall of 85%, indicating its 
effectiveness with the dataset’s linear characteristics. 
Meanwhile, SVM, AdaBoost, and MLP exhibited 
moderate recall values of 79%, reflecting balanced but less 
outstanding performance in detecting positive cases. 
Finally, RF and GBC recorded the lowest recall values at 
78.1%, suggesting that these ensemble methods may have 
underperformed in this specific context, possibly due to 
data characteristics or parameter tuning limitations as 
shown in Figure 5. 

 
Figure.5: Recall Plot of Proposed Models 

For F1 Score, which balances both precision and 
recall, NB again emerged as the top performer with an F1 
Score of 84.8%, suggesting it offers the most balanced 
predictions. LR was a close second at 84.2%. SVM, RF, and 
GBC showed similar F1 scores around 80.6–80.7%, 
reflecting solid but slightly less balanced performance. 
AdaBoost scored 80%, while MLP had the lowest F1 Score 
at 76.7%, further confirming its relatively weaker balance 
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between identifying and correctly classifying positive 
cases as shown in Figure 6. 

 
Figure.6: F1 Score Plot of Proposed Models 

Regarding ROC AUC, which assesses a model’s 
ability to distinguish between classes at various threshold 
levels, LR achieved the highest score of 96.8%, closely 
followed by NB at 96.7% and SVM at 96%. RF also 
performed well with 95%, and AdaBoost came next at 
93.4%. The lowest AUC scores were observed in GBC and 
MLP, both at 92.1%. These results indicate that while all 
models demonstrated good class-separating ability, LR 
and NB were the most effective in this regard as shown in 
Figure 7. 

 

Figure.7: ROC AUC Plot of Proposed Models 

5. Discussion 

The superior performance of the LR model, achieving 
the highest AUC, aligns with findings from previous 
studies discussed in the literature. Similar to the work of 
Hosain et al. [6], where LR achieved an accuracy of 85.3% 
due to its strong predictive capability with hormonal and 
metabolic attributes, this study also demonstrated the 
effectiveness of LR when supported by appropriate 
feature selection and data balancing techniques. In the 
present analysis, class imbalance was effectively 
managed using the SMOTE algorithm, enhancing the 

model’s sensitivity and specificity—an approach also 
highlighted by Shanmugavadivel et al. [15] in addressing 
rare class detection.  

Additionally, feature selection using ANOVA F-
scores helped identify the most statistically significant 
predictors, allowing LR to focus on the most influential 
clinical variables, consistent with the methodology 
applied by Hosain et al. [6]. These results further validate 
the literature's emphasis on the importance of simple, 
interpretable models like LR, particularly when 
combined with effective preprocessing strategies, 
achieving performance comparable to or even surpassing 
more complex models such as RF and SVM [5], [13]. 

Although the models, particularly LR, achieved high 
accuracy and AUC scores, we acknowledge that recall 
values were modest in several cases, indicating a 
proportion of PCOS cases were not successfully 
identified. This raises clinical concerns, as missed 
diagnoses in screening settings may delay treatment. To 
address this, we will conduct further analysis of false 
negative cases to identify potential patterns or limitations 
in feature representation. Additionally, we plan to 
experiment with threshold tuning, cost-sensitive 
learning, and advanced resampling methods to improve 
recall. In clinical contexts, high recall is essential to ensure 
at-risk patients are not overlooked. A comparative 
benchmark with clinical diagnostic rates among 
physicians will also be considered in future work to 
contextualize the model’s performance 

6. Conclusion a Future Direction 

This study evaluated the performance of seven 
supervised ML algorithms— LR, NB, SVM, RF, GBC, 
AdaBoost, and MLP —for the classification of PCOS 
based on clinical and lifestyle data. The models were 
assessed using key performance metrics including 
accuracy, precision, recall, F1 score, and ROC AUC. 
Among all the models, LR consistently demonstrated the 
best overall performance. 

LR achieved the highest accuracy (91.7%), precision 
(96%), and ROC AUC (96.8%), and maintained a strong 
balance between recall and F1 score. Its superior 
performance can be attributed to the linear separability of 
the dataset and the model’s inherent ability to generalize 
well with limited assumptions and minimal overfitting. 
Furthermore, LR is computationally efficient, easy to 
interpret, and performs reliably when the relationship 
between features and output is approximately linear 
characteristics that align well with the nature of this 
dataset. 

This study confirms the potential of machine learning 
(ML) in identifying PCOS with high accuracy and 
interpretability. However, limitations such as moderate 
recall scores, missing hormonal and demographic 
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variables, and the absence of comparison with clinical 
decision-making indicate that the current approach 
requires further enhancement before clinical adoption. 
Addressing these gaps will improve both the diagnostic 
value and real-world applicability of ML models in 
women’s health. 

Future work should focus on incorporating more 
comprehensive clinical and biochemical indicators, 
including insulin resistance markers, androgen levels, 
and family history. Advanced ensemble techniques like 
XGBoost and model stacking could be employed to boost 
predictive performance. Additionally, combining 
structured data with medical imaging or exploring deep 
learning (DL) models may lead to more robust diagnostic 
tools. Expanding the dataset to include diverse 
populations and validating findings in clinical settings 
will also be key to ensuring generalizability and fairness 
in AI-assisted PCOS diagnosis. 
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