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Editorial

With growing global challenges in environmental management, healthcare, and computational
sciences, innovative research continues to shape more effective and intelligent systems for
detection, prediction, and decision-making. This issue showcases cutting-edge studies that
leverage machine learning and numerical methods to enhance wildfire prediction, medical
diagnostics, and the precision of numerical solutions. Together, these contributions reflect the
critical role of computational tools in supporting urgent societal and scientific needs.

Accurate classification of wildfire types is increasingly vital in the face of rising fire incidents
linked to climate change and anthropogenic pressures. A comparative evaluation of supervised
machine learning algorithms applied to satellite-based environmental data identifies the Decision
Tree (DT) model as the most effective classifier, with a top accuracy of 96.69% across all
performance metrics. Closely following are Random Forest (RF) and Gradient Boosting Classifier
(GBC), both achieving consistently high results. In contrast, Support Vector Classifier (SVC) and
Logistic Regression (LR) exhibit reduced precision and F1 scores, making them less suitable for
this task. By applying a robust machine learning framework to real-world U.S. wildfire datasets,
the study provides actionable insights into model selection for early warning systems, ultimately
supporting more responsive and informed disaster management strategies [1].

Understanding the approximation errors in numerical solutions of differential equations is
critical for ensuring mathematical accuracy in engineering and scientific modeling. This study
enhances the precision of error estimation by utilizing the moving nodes method, which
calculates approximation errors at specific nodal points within a defined grid. By expressing the
discrete solution analytically and integrating the step size hhh and accuracy order ppp, the
approach provides a more accurate representation of how the numerical solution diverges from
the exact one. This refinement in approximation error analysis contributes to improved reliability
in simulations and numerical computations, particularly in fields where precision is paramount

[2].

Polycystic Ovary Syndrome (PCOS), a widespread endocrine disorder, poses significant diagnostic
challenges due to its complex symptom profile and associated metabolic risks. Using clinical and
lifestyle data, this study evaluates the predictive capabilities of seven machine learning models
for PCOS classification. Logistic Regression (LR) emerges as the most effective algorithm,
achieving the highest scores in accuracy (91.7%), precision (96%), and ROC AUC (96.8%). The
superior performance of LR is enhanced through the use of Synthetic Minority Over-sampling
Technique (SMOTE) for addressing class imbalance and ANOVA F-score feature selection for
identifying key predictors. The model’s interpretability and simplicity position it as a practical
solution for clinical decision-support systems, facilitating early diagnosis and intervention while
maintaining transparency in healthcare settings [3].

These studies collectively underscore the transformative potential of data-driven methodologies
in addressing real-world issues with accuracy, speed, and adaptability. Whether through
predictive environmental analytics, refined numerical modeling, or intelligent healthcare
diagnostics, the featured research reaffirms the indispensable role of computational science in
advancing societal resilience and technological progress.
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ABSTRACT: Wildfires are a growing global concern, causing widespread environmental, economic,
and health impacts. In the USA, fire incidents have become more frequent and intense due to factors
such as climate change, prolonged droughts, and human activities. Machine learning plays a vital role
in predicting and classifying fires by analyzing vast satellite and environmental datasets with high
speed and accuracy. These models support early warning systems and informed decision-making,
ultimately helping to reduce damage and improve emergency response strategies. This study evaluates
the effectiveness of supervised machine learning algorithms—including Decision Tree (DT), Random
Forest (RF), Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), Logistic Regression (LR),
and Gradient Boosting Classifier (GBC)—in classifying different fire types. The DT emerges as the top-
performing model, achieving the highest results across all evaluation metrics, including 96.69%
accuracy, precision, recall, and F1 score. RF follows closely with similarly strong performance, making
it a highly reliable alternative. GBC ranks third, showing balanced and consistent results above 92% in
all metrics. In contrast, SVC and LR perform less effectively, particularly in precision and F1 score,
indicating that they are not ideal choices for fire type classification in this study. The novelty of this
study lies in its application of a comparative ML framework to classify fire types using real satellite-
based observations specific to the USA. region. By integrating and evaluating multiple ML models on
this large-scale, real-world dataset, the study provides valuable insights into model suitability for fire
classification tasks and offers practical guidance for deploying predictive tools in environmental
monitoring and disaster management systems.

KEYWORDS: Artificial Intelligence, Data Analysis, Fire type Classification, Machine Learning, USA,
NASA, Civil Engineering.

1. Introduction variables—including high temperatures, strong wind
speeds, low relative humidity, limited rainfall, and
lightning probability —create conditions that significantly
increase the risk of fire ignition and propagation. In

Fires represent a major environmental disaster due to
their rapid spread, the complexity of containment efforts,
and the extensive damage they inflict on ecosystems,
infrastructure, and human health. In the USA, fire
incidents — particularly wildfires—have become
increasingly frequent and intense, driven by factors such
as climate variability, land use changes, and human
activity. The severe consequences of these events have

addition to environmental influences, human-related
factors such as population density, land development,
and increased recreational or industrial activity in
forested and rural regions further elevate fire risk. The
combination of these natural and anthropogenic elements
makes fire prediction and classification an increasingly
urgent priority for disaster management and
environmental protection [1].

underscored the importance of fire detection,
classification, and management, making fire monitoring a
vital component of forestry, environmental protection,

and emergency response strategies [1]. Artificial Intelligence (Al) plays a transformative role
in modern wildfire detection and classification systems,

Several critical factors contribute to the occurrence and significantly enhancing the ability to anticipate, monitor,

spread of fires across the United States. Climatic
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and manage fire events. Al technologies contribute to
various aspects of wildfire preparedness and response,
including fuel assessment, fire behavior prediction, real-
time detection, impact estimation, and strategic fire
management. Leveraging tools such as satellite imagery,
historical weather data, and computational models, Al
enables the automated analysis of complex
environmental patterns [2].

In particular, Machine Learning (ML)—a subset of
Al—is increasingly utilized for the early prediction and
accurate classification of fires by identifying patterns in
large-scale datasets. These intelligent systems support
timely decision-making and resource allocation, making
Al a critical component in reducing wildfire-related risks
and improving emergency response strategies [2].

This study utilizes a dataset comprising fire incident
records detected throughout the United States in 2021.
The data were collected by the VIIRS sensor aboard the
SNPP satellite and sourced from the NASA Open Data
Portal. The research follows the CRISP-DM (Cross-
Industry Standard Process for Data Mining) framework
to ensure a structured approach to data analysis and
model development. Since each machine learning method
has its own advantages and limitations, a comparative
evaluation is necessary to determine the most effective
model for classifying fire types. Therefore, this work
focuses on assessing the performance of six supervised
learning algorithms—DT, RF, SVC, KNN, LR, and GBC—
in predicting fire categories. The paper is organized into
several sections: a literature review, methodology, data
description and preprocessing, model implementation,
results, conclusion, and future
recommendations.

discussion,

2. Literature Review

Several ML algorithms have been instrumental in
advancing forest fire forecasting. This section reviews
various studies that have applied these methods, as
outlined below recent research has extensively explored
various ML and Al techniques for forest fire prediction
and management.

In [3], the authors addressed critical challenges in
forest fire prediction by proposing a robust ML
framework specifically designed to handle severely
imbalanced datasets, a frequent issue in wildfire
modeling. The study utilized Copernicus reanalysis data
from 2000 to 2018, incorporating 27 features including
temperature, soil moisture, wind speed, and vegetation
indices to model fire susceptibility in Canada’s boreal
forests. To manage the 158:1 non-fire-to-fire ratio, the
authors employed a hybrid sampling strategy combining
NearMiss3 for undersampling and SMOTE-ENN for
oversampling with noise reduction. Among the models
tested —RF, XGB, LGBM, and CatBoost—XGB combined

with NearMiss3 at a 0.09 sampling ratio achieved optimal
performance, with 98.08% accuracy, 86.06% sensitivity,
and 93.03% specificity. Moreover, the study emphasized
the balance between computational -efficiency—
demonstrated by LGBM'’s histogram-based learning—
and model interpretability, using feature importance to
highlight soil moisture as a dominant factor in fire
prediction.

Similarly, the authors in [4] conducted a detailed
evaluation of ML models using meteorological data from
Algeria, integrating a temporal-stage approach and
correlation-based feature selection (CFS) to enhance
predictive accuracy. The study divided the dataset into
six-time intervals and focused on weather indicators such
as temperature, humidity, and FWI components.
Important predictors including FFMC, DMC, and FWI
were identified through CFS, significantly improving
model accuracy. Among the tested models—DT, RF, SVC,
LR, KNN, and GNB—DT and RF both achieved perfect
accuracy (100%) during the peak fire season (June-July),
outperforming SVC, LR, and KNN, each of which
recorded 98%. The authors also observed that variables
like wind speed contributed minimally, reinforcing the
need for region-specific features in fire prediction.
Although GBC was not part of the study, the findings
strongly support the use of ensemble and tree-based
methods for regionally adapted fire forecasting,
particularly within U.S. contexts.

In another effort to improve prediction through model
integration, the authors in [5] employed an ensemble-
based soft voting strategy combining DT, KNN, and LR
to map wildfire susceptibility in Iran’s Alborz Mountains.
Using MODIS thermal anomaly data and a GPS-corrected
fire inventory, the study incorporated 17 variables across
anthropogenic, vegetation, topographic, climatic, and
hydrological domains. The ensemble model achieved an
average AUC of 88%, peaking at 93% in one-fold during
10-fold cross-validation, surpassing the performance of
each individual base classifier. The generated
susceptibility map classified the landscape into five risk
zones, revealing that 21% of the area was at high or very
high risk—correlating well with historical fire records.
The study underscored the benefits of ensemble learning
for improving accuracy and robustness, and suggested
that integrating more advanced models like RF or GBC
into such frameworks could further improve adaptability
across diverse USA terrains.

Expanding the geographical scope, the authors in [6]
conducted a large-scale comparative study involving
more than 1.04 million fire events from the USA (1992-
2015) and 517 cases from Portugal (2000-2003). The
dataset featured a wide range of spatial, temporal, and
environmental variables. A variety of models—DL, DT,
SGD, ExGBT, and LR —were evaluated for wildfire size
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classification, with results showing accuracy ranging
from 80% to 82%. DT and ExGBT outperformed others,
while GA was employed to derive symbolic
representations of wildfire behavior, producing
correlation coefficients above 0.80. To enhance balance
and interpretability, SMOTE was used to address class
imbalance, and SHAP values revealed temperature and
weather indices as critical predictive factors. The study
demonstrates the value of combining performance-
focused models with interpretable Al techniques,
especially when handling large, complex wildfire
datasets like those found in the U.S.

On a global scale, in [7], the authors used high-
resolution (0.25°) global data from 2015 to evaluate
wildfire susceptibility based on meteorological variables,
fire weather indices, and anthropogenic influences.
Models assessed included RF, XGB, and MLP,

benchmarked against traditional LR and linear regression.

The XGB model yielded the highest performance with an
AUC of 97% for wildfire occurrence and a MAE of 3.13
km? for burned area prediction. SMOTE and class-
weighted loss functions were used to mitigate data
imbalance, while SHAP analysis identified key variables
such as historical fire activity, relative humidity, and
precipitation.

Although the study aimed for global applicability,
regional analysis showed that ML models performed
better in Africa and Asia, while in North America,
traditional fire indices remained relevant. These findings
reinforce the effectiveness of ensemble and deep learning
models like XGB and MLP, particularly in high-
dimensional, data-rich environments such as the U.S.

In the context of localized prediction, in [8], the
authors applied several ML models to Greece’s Attica
basin, using a custom dataset with 12 meteorological
features including temperature, humidity, wind, and
rainfall. The study explored binary classification (fire/no
fire), severity), and
regression (burned area prediction). Among the tested
models—RF, XGB, KNN, NN, SVM, LR, and DT—RF
performed best for binary classification with 70%
accuracy using all features, XGB was most effective with
a reduced four-feature set (67.4% accuracy), and KNN
achieved the highest R? score of 70% for regression.
Validation against the Montesinho dataset supported the
generalizability of the approach, suggesting its
adaptability to fire-prone regions in the USA.

multiclass classification (fire

Similarly, the authors in [9] proposed an ML-driven
prediction framework utilizing meteorological variables
and FWI data from Portugal’s Montesinho Park. The
study tested RF, SVM, GBC, LR, and K-means, using
stepwise regression and backward elimination for feature
selection. Temperature and humidity were identified as
the most influential features. SVM and RF performed best

in estimating burned While
performance was modest (R? = 14%), clustering via K-
means (optimized with the elbow method) allowed for
localized fire risk assessment. The authors emphasized
the value of incorporating spatial and climatic diversity
into prediction models—especially relevant to U.S.
regions like California and the Pacific Northwest—and
suggested further improvements including vegetation
types, forest density, and ignition source modeling.

areas. regression

Building on the comparison of classifiers, in [10], the
authors evaluated the performance of RF, SVM, DT, and
NB and identified RF as the most accurate model for
wildfire forecasting. Their findings highlight REF's
reliability in supporting early warning and fire response
efforts. Similarly, in [11], the authors affirmed RF as the
top-performing algorithm among the same set,
emphasizing its critical role in risk reduction strategies.

The reviewed literature reflects the increasing reliance
on advanced ML techniques for wildfire prediction and
classification, particularly ensemble and tree-based
models such as RF, XGB, LGBM, CatBoost, DT, GBC, and
AdaBoost. These
traditional approaches like LR and linear regression,
especially when combined with strategies such as SMOTE,
correlation-based and stepwise feature selection, and
SHAP for model interpretability. Other algorithms
including SVM, KNN, GNB, SGD, MLP, NN, and GA
have also demonstrated strong performance in specific
tasks, such as burned area regression and symbolic
modeling. Unsupervised methods like K-means have
been effectively used for spatial clustering and localized

models consistently outperform

risk assessment. The studies emphasize the importance of
regional and temporal adaptation, the integration of
spatial and environmental data, and handling class
imbalance. Although challenges remain in accurately
modeling fire extent, ensemble and hybrid methods show
strong potential. Overall, the literature confirms the
adaptability and scalability of a wide array of ML models
for wildfire forecasting across the diverse climatic zones
of the U.S.

3. Research Methodology and approach
3.1. Background of the Research Study

This research was conducted using the Google Collab
platform as the primary workspace, with Scikit-learn
serving as the main Python library for implementing
machine learning models. A total of six algorithms—DT,
RF, SVC, KNN, LR, and GBC—were employed to explore
and analyze the dataset. The study adopted the CRISP-
DM methodology, a widely accepted framework for
machine learning projects. This methodology comprises
six essential phases: identifying the project goals
(business understanding), examining the dataset (data
understanding), preparing the data for analysis (data
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preparation), building and optimizing models (modeling),
evaluating the performance of those models (evaluation),
and making the model ready for real-world use
(deployment) [2]. Utilizing this structured approach
ensured clarity and efficiency throughout the process,
contributing to the reliable and accurate results illustrated
in Figure 1.

Business
Understanding

Data
Understanding

Data
Preparation

Figure 1: Phases of the CRISP-DM Methodology.

3.2. Dataset Description

The data set used in this study contains records of fire
incidents detected across the USA during the year 2021.
These observations were captured by the VIIRS sensor on
board the Suomi National Polar-orbiting Partnership
(SNPP) satellite and obtained through the NASA Open
Data Portal [12]. This open-access platform provides
researchers with dependable, high-resolution datasets
crucial for advancing studies in renewable energy and
enhancing grid management strategies. It delivers
comprehensive
meteorological variables, and atmospheric conditions,
which are instrumental in building precise energy
forecasting models and tackling the unpredictability
inherent in renewable energy systems. Furthermore, the
platform supports sophisticated simulations and machine
learning applications, contributing to more accurate
predictive analytics and improved grid efficiency. Its
commitment to open data access fosters
disciplinary research and innovation, establishing it as a

information on solar radiation,

Cross-

vital resource for environmental and energy research
communities [12].

The dataset includes 661,058 records, comprising
360,993 nighttime and 300,065 daytime entries. It features
eight input variables and one categorical target variable,
which classifies fire events into four categories: Type 0
(presumed vegetation fires), Type 1 (active volcanic
activity), Type 2 (fires from stationary land-based
sources), and Type 3 (offshore fire detections over water
bodies).

This
dataset’s emphasis on distinguishing between different
fire origins and behaviors [12]. A summary of the
dataset's attributes is provided in Table 1.

classification framework underscores the

Table 1: Dataset Description

Attribute Definition Datatypes
Measures the brightness temperature in
Bright_ti4 | Band 4 of the thermal infrared spectrum Float64
(TIR).
Bright_ti5 g/;?;grzi :}}11: ?;Ehtness temperature in Float6d
Measures the satellite's scanning ability,
Scan including angle, direction, and spatial Float64
coverage.
Describes the satellite's orbital path,
Track alongside its current location and Float64
trajectory.
FRP Fire radiative power (MW). Float64
Latitude Fire pixel latitude(degree). Float64
Longitude Fire pixel longitude (degree). Float64
Uses the solar zenith angle (SZA) to
Day-night | determine whether conditions are day or Object
night.
Type Type attributed to thermal anomaly. Object

3.3. Dataset Preparation

Following the data exploration phase, the preparation
of the dataset is initiated. This stage involves multiple
preprocessing steps, including managing missing values,
removing duplicate entries, applying normalization
techniques, selecting relevant features, encoding
categorical variables, and dividing the data into training
and testing sets. These steps are essential to ensure the
dataset is clean, structured, and ready for effective
modeling and further analytical procedures.

3.3.1.  Missing Data

To verify the integrity of the dataset, two standard
functions were employed: isnull().sum() and
duplicated().sum() [13]. The isnull(). sum() function is
used to detect and count any missing values across the
dataset columns, while duplicated().sum() identifies
repeated rows that could compromise data quality. The
execution of these checks revealed that the dataset
contained neither missing values nor duplicate entries.
This confirmation of data completeness and consistency
contributes to improved data quality, which is critical for
building accurate and reliable machine learning models.

3.3.2.  Balancing the Dataset

The distribution of fire types in the dataset reveals a
significant imbalance, with Type 0 (presumed vegetation
fires) dominating at 86.88% of the total records. In
contrast, the other categories are considerably less
represented, especially Type 1 (active volcano), which
constitutes only 0.10%. To address this disparity and
enhance the performance of machine learning models
across all classes, the dataset was balanced using the
Synthetic Minority Over-sampling Technique (SMOTE)
technique prior to training. SMOTE is a popular
technique used in imbalanced classification problems to
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help balance the dataset by generating synthetic data
points for the minority class [14].

3.3.3.  Encoding Categorical Data

The dataset underwent label encoding to transform
categorical variables into numeric format, an essential
preprocessing step since most machine learning
algorithms require numerical input [15].

In this study,
according to their type: Type O representing presumed
vegetation fires, Type 1 indicating volcanic activity, Type
2 referring to stationary land-based fires, and Type 3
covering offshore fire detections over water. This
conversion was vital to ensure the data was compatible
with the classification models, thereby improving the
effectiveness and accuracy of the training process.

fire incidents were categorized

3.3.4.  Splitting Data

Initially, the dataset was split into two parts: 80% for
training and 20% for testing. This division allows the
model to learn from the majority of the data while
reserving a portion for evaluating its performance on
unseen examples.

3.3.5.  Data Normalization

The numerical features bright_ti4, bright_ti5, scan,
track, and frp were normalized to bring their values
within a consistent range, such as 0 to 1 or -1 to 1 [16]. This
scaling process ensures that each feature contributes
equally during model training, preventing any one
variable from disproportionately influencing the learning
process and supporting more balanced, unbiased model
performance.

3.4. Modelling

Six machine learning algorithms—DT, RF, SVC, KNN,
LR, and GBC—were implemented to classify the fire

types.

Decision Tree (DT) is a non-parametric learning
method that uses a tree-like structure to make decisions
based on feature thresholds. It recursively splits the
dataset into subsets based on the most significant feature
at each node, making it interpretable and efficient for
handling both categorical and numerical data. However,
it is prone to overfitting, particularly on noisy datasets
[15].

Random Forest (RF) is an ensemble learning
technique that builds multiple decision trees during
training and merges their outputs for improved accuracy
and robustness. By averaging the results (in classification,
via majority voting), RF reduces overfitting and variance
compared to individual
generalization on unseen data [15].

trees, offering better

K-Nearest Neighbors (KNN) is a simple, instance-
based learning algorithm that classifies data points based
on the majority label among their k-nearest neighbors in
the feature space. Though computationally intensive
during prediction, KNN is intuitive and works well with
non-linear data distributions when appropriate distance
metrics and normalization are applied [17].

Logistic Regression (LR) is a statistical model that
uses the logistic function to model the probability of a
binary or multiclass outcome. Despite its simplicity, LR is
a strong baseline model due to its
interpretability, and solid performance in linearly
separable problems [18].

efficiency,

Gradient Boosting Classifier (GBC) is a powerful
ensemble method that builds models sequentially, where
each new model attempts to correct the errors made by
the previous ones. It combines weak learners (typically
shallow trees) using gradient descent optimization to
minimize the loss function, achieving high predictive
accuracy at the cost of increased training time [16].

Support Vector Classifier (SVC) is based on the
principles of Support Vector Machines (SVM). It attempts
to find the optimal hyperplane that best separates the data
into distinct classes by maximizing the margin between
support vectors. SVC is especially effective in high-
dimensional spaces and is robust to overfitting when the
kernel and regularization parameters are properly
selected [19] .

3.5. Performance Evaluation

The effectiveness of the supervised machine learning
models is evaluated using key performance metrics,
including accuracy, recall, F-measure and precision,
which collectively provide insight into their classification
performance.

3.56.1.  Accuracy

It represents the proportion of correctly predicted
instances out of the total number of predictions made. It
reflects the overall effectiveness of a model in classifying
both positive and negative cases correctly shown in
equation (1) [15].

TP + TN
TP + TN + FP + FN

Accuracy =

ey

3.5.2. F-measure

It offers a balanced assessment by combining both
metrics into a single value, especially useful when the
data is imbalanced or when equal consideration of false
positives and false negatives is needed shown in equation
) [15].

precision X recall

F —measure =2 X — (2)
precision + recall
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3.5.3.  Precision

It measures the ratio of correctly predicted positive
instances to the total predicted positives. It indicates how
many of the instances labeled as positive by the model are
actually relevant, helping to evaluate the model’s
reliability in making positive predictions shown in
equation (3) [17].

TP

Precision = TP ¥ FP 3)

3.54. Recall

It refers to the proportion of actual positive cases that
are correctly identified by the model. It is particularly
important in situations where missing positive cases is
costly or undesirable shown in equation (4) [18].

Recall = — 4
= TP Y FN )

4. Results

In terms of accuracy, DT attains the top performance
with 96.69%, closely followed by RF at 96.37%, both
demonstrating strong capabilities in correctly identifying
fire types. GBC also delivers notable accuracy at 93.16%,
with KNN achieving 91.27%. On the other hand, SVC and
LR register comparatively lower accuracy rates of 88.35%
and 87.58%, respectively, suggesting relatively less
effective classification results, as illustrated in Table 2 and
Figure 2.

Looking at precision, DT again leads with 96.70%,
indicating a high level of accuracy in its positive
predictions and a minimal rate of false positives. RF
follows closely with a precision of 96.31%, while GBC
achieves 92.76%, both reflecting reliable classification
outputs. KNN also shows solid results with 90.57%,
whereas SVC and LR lag behind at 83.61% and 83.65%,
respectively, highlighting a greater
incorrect positive classifications.

occurrence of

Regarding recall, which assesses the ability to correctly
identify actual fire instances, DT maintains its lead at
96.69%, with RF slightly behind at 96.37%. GBC continues
to perform well with 93.16%, while KNN records 91.27%.
In contrast, SVC and LR exhibit lower recall rates of
88.35% and 87.58%, indicating a higher chance of failing
to detect true fire occurrences.

When considering the F1 score, which harmonizes
precision and recall into a single performance metric, DT
secures the highest value at 96.67%, confirming its
balanced and robust classification ability. RF follows with
an F1 score of 96.19%, and GBC reaches 92.67%. KNN also
maintains dependable performance with 90.79%.
Meanwhile, SVC and LR yield lower F1 scores of 85.50%
and 84.71%, respectively, indicating limitations in
managing the trade-off between precision and recall.

Table 2: Performance Comparison between models.

Presi F1-
Model | Accuracy (%) | Recall (%) resion Scor
(%) (%)
SvC 88.35 88.35 83.61 85.50
RF 96.37 96.37 96.31 96.19
KNN 91.27 91.27 90.57 90.79
LR 87.58 87.58 83.65 84.71
DTC 96.69 96.69 96.70 96.70
GBC 93.16 93.16 92.76 92.67
100
95
90
85
80 I
75
Accuracy (%)  Recall (%) Presion (%) F1-Scor (%)

ESVC mRF mKNN ®mLR mDTC mGBC

Figure 2: Performance Plot of Proposed Models
5. Discussion

The findings of the current study, which evaluates six
supervised ML models—DT, RF, GBC, KNN, SVC, and
LR—for fire type classification, align well with trends
observed in the reviewed literature while also offering
noteworthy advancements in model performance and
application specificity.

In this study, DT achieved the highest accuracy
(96.69%), precision (96.70%), recall (96.69%), and F1 score
(96.67%), outperforming other models. These results are
consistent with the findings of Khosravi et al,
reported perfect classification accuracy for DT and RF
during peak fire seasons in Algeria, confirming the
effectiveness of tree-based models in wildfire
classification tasks. Similarly, RF performed robustly
across all metrics in the current study —attaining 96.37%
accuracy and 96.19% F1 score—which echoes its
dominant position in several previous studies, including
those by Tavakoli, Barzani et al., and Al-Bashiti & Naser,
where RF either matched or exceeded other ensemble
predictive accuracy and

who

models in terms of

interpretability.

GBC also demonstrated strong performance in this
work, with consistent results across accuracy (93.16%),
precision (92.76%), recall (93.16%), and F1 score (92.67%).
While GBC was not explicitly evaluated in some past
works such as those by Khosravi et al.,, its potential was
highlighted in Chaubey et al. and Alkhatib et al., who
supported the integration of ensemble models to improve
using
complex and high-dimensional environmental data.

classification  reliability —particularly =~ when
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KNN, although not an ensemble method, delivered
solid results (accuracy: 91.27%, F1 score: 90.79%), which
aligns with Stafylas Demetrios’ regression-based analysis,
where KNN
predicting burned area. However, KNN remains sensitive
to feature scaling and may not capture complex decision
boundaries as effectively as tree-based models, which is
reflected in its slightly lower scores compared to DT, RF,
and GBC.In contrast, SVC and LR showed the weakest
performance across all metrics. SVC recorded 88.35%
accuracy and 85.50% F1 score, while LR followed closely
behind with 87.58% accuracy and 84.71% F1 score. These
outcomes are consistent with earlier studies, such as those
by Al-Bashiti and Naser, where LR underperformed
relative to ensemble and tree-based models, and by
Shmuel and Heifetz, who showed that while traditional
models like LR offer baseline predictability, they fall short
in handling the nonlinear and complex nature of wildfire

showed competitive performance in

dynamics.

Another important point of comparison is how well
the current study addresses model balance. Unlike some
previous works that focused on peak fire seasons or
lacked formal imbalance-handling strategies, this study
ensured an equal class distribution prior to training,
which likely contributed to the high and consistent scores
for DT, RF, and GBC across all evaluation metrics. This
balanced approach strengthens the reliability and
generalizability of the findings, especially for real-world
applications in USA fire
underrepresented classes often challenge prediction
accuracy.

forecasting, =~ where

Furthermore, this study’s comparative framework
adds value by using a unified dataset and standardized
preprocessing, enabling a fair and direct performance
comparison. While prior literature often evaluated
models on region-specific or task-specific datasets (e.g.,
ignition, size, burned area), this study provides a focused
comparison on fire type classification, offering insights
particularly useful for U.S.-based fire management
systems aiming for categorical fire event identification.

6. Conclusion and Future Directions

This study assessed the effectiveness of six supervised
machine learning algorithms—DT, RF, GBC, KNN, SVC,
and LR—in classifying fire types in the United States
using satellite-derived data. Among the evaluated models,
DT consistently achieved the best results, recording the
highest scores in accuracy (96.69%), precision (96.70%),
recall (96.69%), and F1 score (96.67%). RF closely followed,
while GBC also demonstrated strong and balanced
performance across all metrics. In contrast, SVC and LR
exhibited comparatively lower predictive capabilities,
highlighting their limitations in capturing the complex,
nonlinear patterns characteristic of fire behavior.

These findings align with previous research, where
tree-based and ensemble models—particularly DT, RF,
and XGB—have repeatedly proven effective in wildfire
prediction. Their success can be attributed to several key
strengths. First, these models are well-suited to capturing
nonlinear interactions among environmental variables
such as temperature, humidity, wind, and vegetation,
which are critical in fire dynamics. Second, they
effectively manage heterogeneous and high-dimensional
datasets, including those combining meteorological
indices, satellite imagery, and geospatial information.
Third, they demonstrate robustness to noise, missing
values, and outliers, enabling more reliable predictions in
real-world conditions.

Moreover, ensemble methods such as RF and XGB
offer enhanced generalization through the aggregation of
multiple decision paths, thereby reducing the risk of
overfitting. These support
interpretability through feature importance rankings and
SHAP analysis, providing valuable insights into the most
influential factors driving fire classifications —an essential
feature for transparent and accountable decision-making
in wildfire management systems.

models also model

By applying a balanced dataset and a standardized
evaluation framework, this study provides a robust
comparison of model performance, contributing novel
insights to the evolving field of ML-driven wildfire
forecasting. The findings reaffirm that tree-based and
ensemble algorithms are not only highly accurate but also
scalable, flexible, and interpretable, making them
particularly well-suited for operational deployment in
real-world fire risk management applications —especially
across the diverse climatic and ecological regions of the
USA.

Looking forward, future research should explore the
integration of real-time meteorological feeds, higher-
resolution spatial data, and advanced ensemble strategies
such as model stacking and hybrid architectures.
Additionally, incorporating deep learning techniques and
spatiotemporal modeling could further enhance
predictive precision, enabling more dynamic and
proactive wildfire forecasting systems
addressing both localized threats and broader regional
patterns.

capable of
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ABSTRACT: This article addresses the calculation of approximation errors in numerical methods for

solving differential equations. A fundamental challenge when replacing differential equations with

discrete representations is ensuring that the discrete solution closely approximates the exact solution.

To tackle this, a grid area is established for the difference solution, with discrete solutions evaluated at

specific nodal points. Traditionally, the degree of approximation in this context is expressed using the

notation O (hP), where h represents the grid step and p indicates the order of accuracy. A significant

advancement in this area is the application of the moving nodes method, which enables the calculation

of approximation errors at these nodal points. This method allows researchers to derive an

approximate analytical expression for the discrete solution, which serves as a foundation for

calculating the approximation error.

KEYWORDS: Moving Node Method, Approximation error, To-Point Boundary Problem

1. Introduction

This article is an expanded version of the article
presented in [1]. The numerical solution methods for
equations  fundamentally rely on
transforming differential problems into difference
problems [2-5]. In simpler terms, solving differential
equations requires understanding how to approximate
them. This involves converting a differential equation
into a system of algebraic equations, which is based on the
values of the desired functions at specific points on a grid.
Recent studies [6]-11] have introduced a new approach
for approximating differential operators, enhancing the
accuracy and efficiency of these methods. One of the
significant advantages of the moved node method is that
it enables the calculation of an explicit expression for the
approximation error when replacing differential
equations with difference ones. Understanding this error

differential

is crucial because it provides insights into the reliability
and accuracy of the numerical solution. By quantifying
the error, researchers can refine their methods and
improve the overall quality of the numerical solutions
obtained.

the transformation of differential
equations into difference equations is a fundamental

In conclusion,

aspect of numerical analysis. The development of
innovative methods like the moved node method
represents a significant advancement in this field,
providing researchers and practitioners with powerful
tools to tackle complex differential problems more
effectively. As numerical methods continue to evolve, the
importance  of
approximation errors will remain a critical area of focus
for ensuring the accuracy and reliability of solutions.

understanding and  minimizing

On the basis of the movable node, an approximate
analytical expression for the difference solution of the
differential problem was obtained [12]. This development
represents a significant step forward in numerical
methods, as it provides a more refined approach to
approximating solutions to differential equations. The
analytical expression derived from the movable node
approach allows for greater flexibility and accuracy when
dealing with complex differential problems.

In [13], the moving nodes method was further applied
to construct the control volume method, which is widely
used in computational fluid dynamics and other
engineering applications.
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In [14], the authors explored the potential to increase
accuracy by combining the moving nodes method with
the ideas of Richardson’s extrapolation. Richardson’s
extrapolation is a technique used to improve the precision
of numerical approximations by utilizing solutions
obtained at different grid resolutions. By integrating this
method with the moving nodes approach, it is possible to
achieve higher-order accuracy in the numerical solutions,
the error associated with the

thereby reducing

approximation.

Some questions regarding the monotonicity of the
difference scheme using the movable node are addressed
in [15]. Monotonicity is an important property in
numerical methods, as it ensures that the numerical
solution behaves in a physically realistic manner,
avoiding non-physical oscillations or spurious solutions.
Understanding and ensuring the monotonicity of the
difference scheme is crucial for maintaining the stability
and reliability of the numerical method, especially in
problems involving sharp gradients or discontinuities.

The application of the moving nodes method to various
applied problems is reflected in [16]. This demonstrates
the versatility of the method across different fields, such
as fluid dynamics, heat transfer, and structural analysis.

Moreover, based on the choice of the velocity profile
on the edge of the control volume, qualitative schemes
were obtained in [17]. The velocity profile plays a critical
role in determining the flow characteristics and behavior
within the control volume.

In summary, the integration of the movable node
method into various numerical frameworks and its
highlights its
significance in advancing numerical analysis. The

application to real-world problems
ongoing exploration of its properties, such as accuracy,
monotonicity, and adaptability to different contexts,
continues to enhance the capability of numerical methods
in solving complex differential equations effectively. As
research in this area progresses, the potential for further
innovations and improvements remains substantial,
promising even greater advancements in the field of
numerical solutions.

This paper describes the application of the moving
nodes method to the calculation of the approximation
error. The moving nodes method provides a dynamic
approach to numerical analysis, allowing for the
adjustment of grid points based on the behavior of the

solution.

When a two-point boundary value problem is solved
using difference methods, the question of the degree of

approximation is crucial as it directly impacts how closely
the numerical solution aligns with the exact solution. In
numerical analysis, understanding the closeness of the
exact solution to its approximation is essential for

evaluating the effectiveness of the chosen method.

The quality of the difference scheme is often assessed
based on this degree of approximation. A higher degree
indicates a more accurate representation of the solution,
while a lower degree suggests potential discrepancies
that may arise from the numerical method employed.
This evaluation is typically conducted by analyzing the
behavior of the approximation error, which quantifies the
difference between the exact solution and the numerical
approximation.

Interestingly, in this analysis, other parameters—such
as the coefficients of the differential equation—are not
for the
approximation error. This is significant because it allows

explicitly involved in the expression
researchers to focus on the fundamental aspects of the
numerical method without being distracted by the
specific characteristics of the differential equation being
solved. By isolating the approximation error from these
coefficients, the analysis can yield more generalized

insights into the behavior of the numerical solution.

Obtaining an explicit expression allows researchers to
identify how changes in the grid size, the choice of the
moving nodes, and other factors influence the accuracy of
the numerical solution. Furthermore, it enables the
development of strategies to minimize the approximation
error, thus enhancing the overall quality of the numerical
method.

By utilizing the moving nodes method to derive this
explicit expression, the paper contributes to a deeper
understanding of the approximation error in the context
This
understanding is crucial for advancing numerical

of two-point boundary value problems.

methods, as it provides a foundation for improving
accuracy and reliability in solving complex differential
equations. Ultimately, the insights gained from this
analysis can inform future research and applications,

paving the way for more effective numerical solutions in
various scientific and engineering fields.

When a two-point boundary value problem is solved
by difference methods, the question of the degree of
approximation usually appears. For the closeness of the
exact and approximation of the solution, and the quality
of the difference scheme are evaluated based on the
degree of this parameter. With such an analysis, other
parameters (the coefficients of the differential equation)
are not explicitly involved in the approximation error

approximation typically arises. This degree of
WWW.jenrs.com Journal of Engineering Research and Sciences, 4(6): 9-15, 2025 10
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expression. Obtaining an explicit expression for the
approximation error makes it possible to analyze it.

Consider the simplest ordinary differential equation
with boundary conditions
2
d—ﬁ‘ =C, u(0)=0, u(l)=1 )
dx
where C is constant.
Create a uniform grid on segments [0,1] with step .
A uniform grid on a segment xe[0,1] with step 4 has the

form:
@, =1{x, =hk, k=0,1,.,N, h-N =1}

Let us replace the second-order derivative by the
difference relation [18]:
Ui+1 — 2Ui + Ui—l
P
1<i<N-1LU,=0, U, =1

C,

(2)
Difference scheme (2) traditionally has order O(h*).

However, if we solve system (2) by the Tomas algorithm,
we obtain a numerical solution that coincides with the
exact analytical solution for any grid steps & at the grid
nodes. Those. scheme (2) approximates (1) exactly.

2. Method For Determining Approximation Error

Let we have a differential equation

where L isa differential operator, f isaknown function,

and u is an unknown function. (3) the equation is
considered in some domain D  with appropriate
boundary conditions. The differential equation (3) is
replaced by the difference equation [18] :

Ly = £y @)
where [, is the difference operator, u, is the unknown
grid function, and f, is the approximation of the function
f at the grid nodes.

Usually, the approximation error is given as [18,19]:

0, =L,[ul], - /> 5)

where [4], is the exact solution of (3) at the grid nodes.

h
Using the Taylor series, from (5) one obtains that,

O, =OWU")  where 1 is the grid step and 772 is the
degree of approximation.

You can determine an explicit approximation error if
you use the method of a moving node, which allows you
to extend the definition to the entire area D. This allows
you to introduce an approximation error like this:

Rh = Lh {u}h - ]Fh (6)

Here {u}, is a predefined continuous function by

means of a moveable node. Approximate calculation of
the approximation error of type (6) is demonstrated using
simple examples.

3. Results and Discussion

As an application of the above approach, consider
examples.

3.1. Simple Boundary Value Problem
Consider a simple boundary value problem:

6aif_zzl:f(x), u0)=u,, ul)=u, @)
X

Let's build a non-uniform grid on segments [0, 1]:

@, ={0=x,<x <..<xy,<xy,=1k=0,1,..,N}

In the non-uniform grid, we replace (7) with the
difference problem:

2 Uu -U U -U,
[ i+l [ l_lj:f(xj)a (8)
X =X X — X X =Xy
i=12,.,N-1.

Here U, is the grid solution of the problem. From here

Ui =x ) +U (%, —x) _

Xinn — X

U. =

i

%f(xl.)(xi -x,_ )%, —x), 1=1,2,..,N-1.
)

We redefine the value of the function at non-nodal points
as follows. To do this, we

XisXisps U i1 U i+1, to be fixed, and X; to be moved,

1

consider in (9)

and the function f(x) to be smooth. Thus, we will

complete the grid function on each segment (xi,l ) X +1) .

From (9) we get
Ui”(xi) = _%f”(xi )Xy — X)X — X)) — (10)
f’(xi)(xi+l X, = 2xi) + f('xi)

Then the approximation error for the nodal points looks
like this:

Ry6) == () =305 = 3,)-
S, + X, —2x,)

(11)

If the grid is uniform for the approximation error, we
obtain the expression
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Rh(xl.)z—%f”(xl.)hz, i=1,2,.,N-1. (12)

If on the segments (x

. 1»X;,,;) the function constant

approximation error is identically equal to zero and we
get the exact solution.

Based on expression (10), the following conclusion can
be drawn.

Given a two-point boundary value problem

LUy w0 =u,, ull) =1,

ckzz
and f ' (x) can be represented as
* 1 "
S/ (x)= _Ef (e )Xy = X)(x, —x,,) —
S )+ =2x) + f(x)

then the difference scheme

2 Ui+l _Ui _ Ui _Ui—l _
Xig T X \ X = 5T Xy
f(x), i=12,.,N-1,

gives a grid solution coinciding with the exact solution at
the nodal points.

If there is only one internal node point (the node
being moved is one), then an approximate analytical
solution can be obtained. Indeed, if we rewrite scheme (8)
for one moving node, we have

z(Ub_U(x)_U(x)_UaJ:f(xi). (13)

1-x X

From here we obtain an approximate analytical
solution:

U(x)=U,x+U,(1-x) —%f C)(A-x)x. (14)

In this case, (14) represents the exact solution of the
problem (7) if we put

0= —%f "= x)x = f1()(1 = 2x) + [ ().

The form of the approximation error (11) allows the
construction of new schemes of the collocation type.
Indeed, if in problem (8) we replace the right side by the
expression

) + ACG = X)) (Xirr — X3),

Here A is still an unknown constant. Parameter 4 is
determined so that the approximation error (11) for a

uniform step at node X; is equal to zero, i.e. collocation

3.2. Boundary value problem for convection and diffusion
equation

Consider a stationary equation in which only
convection and diffusion are present without a source.

eu"+u' =0, (15)
with boundary conditions v(0) =0, v(1) =1.

There are various schemes for the difference solution
(15) [6, 7]. Based on the moving node technique [1,2], it is
possible to explicitly express local errors in the
approximation of differential equations. Using the
moving node method [1], we will show the efficient

calculation of local approximation errors for the model
problem (15).

3.1.1.  Scheme with central-difference approximation of the

convective term

Take a segment [xi—l;xi+1] and any point I .
Consider the grid analog (15)

2e (uiﬂ —u _ u—u,, ]-i— Uiy — Ui, =0 (16)

Xigg =X \ X =X X=X, Xign — X

central

At x:(x-+1—x~_1)/2 , we have a

1 1

difference approximation. Here, U; | is the approximate
value of the solution at the point X;,;, U;; is the

approximate value of the solution at the point X;_; .
From (16) we find

u=———|(x—x_,)2e+x., —X)u,, +
28(){.“ _xfil)[( 171)( i+l ) i+l

i

(% —X)2e—x+x_)u, ] (17)

From here we get,
284X, A X 2 U, U,

1
u i+ 2 , (18)
3 Xt — X
lu, , —u._
U” —_ i+l i-1 . (19)
& Xy — X,

If the difference solution at nodal points is known,
then formula (17) makes it possible to determine the
unknown at points that are not nodal.

Using formulas (18) and (19), the derivatives are
restored at any point of the segment. Multiplying (19) by
and adding with (18), we obtain

type scheme. Then we have eu"+u' =Y, (20)
1
A= 2 " (x) where
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V7 X T Xy —2x Ui — Ui,
=

2¢ X =X

i+

Equation (20) can be called a differential analog of the
difference equation (16); difference equation (16) is a
collocation-type scheme.

Using (19), the approximation error can be written as

g, = Ko PN 72X
2

Then equation (20) takes the form

(5+—x"” i _2xju”+u':0. (21)
2
Thus, difference equation (16) exactly approximates
differential equation (21) on the segment [xi—l » X +1]-
Comparison of Egs. (15) and (21) shows that when Eq. (15)

is approximated by scheme (16), scheme diffusion

appears with a variable coefficient (x,- aTX, - ZX) /2.

3.2.2 Upwind Scheme. Let us consider the difference
analog of equation (15), in which the convective term is
approximated by the one-sided difference relation

2e (um —u _u—uilj
Xigg — X\ K =X XX

1

u ,—u
0. (22)
xi+1 - X

From here we get

_ (x— Xic1 )(2e + KXivt — xi—l) Uyt Zg(xm — x)”[—l (23)
(% —x)2e+x—x)

Determine the first and second derivatives:

r_ 2626+ x,, =X, ) Uy, — U,

) 5 , (24)
(Qe+x—x)" X, —Xx
U = —4e(2e+ X, — X)) Uy Uiy 25)
3
2e+x—x_)"  x,-x,
Let us calculate the approximation error
_ 2e(x—x )2+ X, =X, ) Uy — U,
2 Qe+x-x,,) X =X,
The differential analog of scheme (22) has the form
X—X.
£g+ 2’"1ju”+u'20, (26)

those. with a scheme against the flow, we have a scheme
diffusion with a coefficient . Based on (23) - is a hyperbola,
which is monotone on the segment, i.e. scheme (22) is
monotonic.

Based on the form of the differential analogue (26), we
can conclude that the differential equation

X " 1_0
5+E u +u = (27)

is exactly approximated by the scheme
u —u u—u u, —u
28| 21—+ Cl+L2—=0
( l1-x X j 1-x (28)

Those. solving (28) with respect to u, we obtain the exact
solution of differential equation (27).

3.3. Parametric Schemes

In this case, an attempt is made to create a special
parametric scheme in order to improve the quality of the
circuit. The peculiarity of this approach is the choice of the
parameter, which is carried out on the basis of the
calculated approximation error, which allows more
accurately adjusting the parameters of the scheme to
achieve the best indicators. We demonstrate the
effectiveness of this method using examples of problems
related to convection-diffusion processes, where the
correct choice of parameters is especially important for
the stability and accuracy of the solution. Consider the
problem [19,20].

2
Peﬂzd—‘;we-S(x),
dx dx

u(0)=u,, u(l)=u,

Here Pe is the Peclet number, S(x) is the source, I is

(29)

the unknown function.

When problem (29) is discredited, it is essential to
approximate the convective term [4]. The standard finite-
difference scheme against the flow on a three-point
template is:

pU=Uy __ 2 [UE—U_U —UW}L 30)
X=Xy  Xpg—X,\ Xp—X X —X
Pe-S(x),
Consider the parametric scheme
Pe Uk_ U;” et =
X=X 31)
2 (UE_U—U _UWJ+Pe-S(x),
Xp =X, Xp—X X —X,

The choice of the parameter k can be found by
experiment. Based on the
approximation error R, , it is not difficult to select the

numerical calculated

parameter k. The idea of approximating the convective
term is as follows. We introduce an intermediate variable
y(x), and based on the calculation of the derivative of a

complex function, we have

du _du dy

dx dy dx’

For the function y(x) we take a monotonically

k
increasing function, for example, Y =X . du/ dy will

WWW.jenrs.com

Journal of Engineering Research and Sciences, 4(6): 9-15, 2025 13


http://www.jenrs.com/

@3 JENRS

D. Umurdin et al., Analysis of Difference Schemes of Two-Point Boundary Value

be replaced by the difference relation upstream. Making
the assumption that with such a replacement, the
approximation error decreases. In this way

du ~ U4y P
dx  x*—xt '

Figure 1 shows the results of calculations
(Pe=0, S(x)=0, N=1Lu,=0,u,=1), at k=1 and
k=9.

Thus, by carefully choosing the parameter k, we are
able to obtain a result that is as close as possible to the
exact solution of the problem. This approach allows us to
significantly increase the accuracy and reliability of
calculations, minimizing approximation errors and
ensuring more stable behavior of the numerical method.

0 0.2 0.4 0.6 0.8 1
x

Figure 1: Comparison of results. The solid line is the exact solution,
the circles are the numerical results obtained at k=1, and the solid
circles at k=9.

5
44
3 ©
2
o}
1
o
4 E . [ ] hd *

02 03 04 05 0.6 0.7 0.8

Figure 2: Comparison of the results of the approximation error at
internal nodal points. The solid circles are obtained according to the
scheme (31) at k=9, and the circles at k=1.

3.3. Iterative method to get a solution

It is known that after replacing the differential
equation with discrete ones, we obtain a system of
algebraic equations [4,5,19,20]. There are two approaches
to solving systems of algebraic equations: exact methods
and iterative methods. Using the idea of constructing
iterative methods for systems of discrete equations, we
will show the possibilities of an analytical approximate
solution based on the method of moving nodes.

Consider problem (29). If there is only one moving

node, approximating the convective term by the

upstream scheme from (31) we get (4, =0, u, =1).

. 2x x(1—x)

u' = : -S(x) (32
2+ Pe(l1—x) 2+ Pe(1—x)

This expression is taken as the initial approximation of
problem (29). Let's find the approximation error
d*u' u'

= Pe
dx dx

R' + Pe- S(x) (33)

Let's calculate the second approximation

u’ =u' +owx(1—x)R'

Find the approximation error R”.

d*u’? _ pe du?*

R ="""
dx? dx

+ Pe - S(x)

Thus, we carry out an iterative process in the form
u* =u"' +ox(1—x)R"' + Pe-S(x), k=2,3... (34)

In (34) o is the relaxation parameter.

In Fig. 3 the exact solution of the problem as well as

12 3 4
approximating analytical solutions ¥ , ¥ , 4 and U
are compared. As can be seen from the graphic, step by

step we can improve of solution

(S(x)=0, Pe=10, ®=0.08).
On fig. 4 the sequence of solution of problem (18) is given
for S(x) =cos(5x), Pe=10, @ =0.06. On fig. 3 and 4,

the solid line corresponds to the exact solution of the

analytical

1 2 3
problem; dot- U ; dashed, U ; ; dotted-dashed -- U ;

4
long-dashed - U .

Figure 3: Comparison of results: S(x) = 0, Pe=10, ©=0,08
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Figure 4: Comparison of results: S(x) = cos(5x), Pe=10, »=0,06

As can be seen from the graphic, step by step we can
improve of the analytical solution.
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ABSTRACT: Polycystic Ovary Syndrome (PCOS) is a prevalent hormonal disorder affecting women
of reproductive age, commonly resulting in irregular menstrual cycles, elevated androgen levels, and
the presence of polycystic ovaries. It is a major cause of infertility and is often linked with metabolic
complications such as insulin resistance and obesity. Symptoms vary and may include acne, excessive
hair growth, weight gain, and hair thinning. Early detection and proper management through lifestyle
interventions and medical treatment are crucial to mitigating long-term health risks. This study
investigates the classification performance of seven supervised machine learning algorithms—Logistic
Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), Gradient
Boosting Classifier (GBC), Adaptive Boosting (AdaBoost), and Multi-Layer Perceptron (MLP)—using
clinical and lifestyle data related to PCOS. The models were evaluated using accuracy, precision, recall,
F1 score, and ROC AUC metrics. LR consistently outperformed the other models, achieving the highest
accuracy (91.7%), precision (96%), and Receiver Operating Characteristics -Area Under the Curve (ROC
AUC) (96.8%), while also maintaining a strong balance in recall and F1 score. This outstanding
performance is attributed to the linear nature of the dataset and the efficiency, simplicity, and
generalizability of LR, making it particularly suitable for this classification task. This study introduces
a novel approach for predicting PCOS by integrating advanced data preprocessing techniques with a
focus on model simplicity and interpretability. The predictive performance of LR was further enhanced
through the application of the Synthetic Minority Over-sampling Technique (SMOTE) to address class
imbalance and Analysis of Variance (ANOVA) F-score-based feature selection to identify the most
statistically significant predictors. This approach not only achieved high predictive accuracy but also
ensured transparency and ease of deployment, making it highly applicable for clinical decision-support
systems aimed at early and accurate PCOS diagnosis.

KEYWORDS: Artificial Intelligence, Data Analysis, Polycystic Ovary Syndrome, Supervised Machine
Learning, Medical Diagnosis.

1. Introduction increased cardiovascular risk [1]. Despit

e its widespread

Polycystic Ovary Syndrome (PCOS) is a prevalent
endocrine disorder that affects approximately 8-13% of
women of reproductive age worldwide. Its prevalence,
however, varies depending on ethnicity and diagnostic
criteria. PCOS is characterized by hormonal imbalances,
particularly elevated androgen levels, which manifest in
such as menstrual  cycles,
anovulation, and the presence of multiple ovarian
follicles. These disruptions often lead to infertility and are
commonly accompanied by metabolic complications,

symptoms irregular

including obesity, insulin resistance, type 2 diabetes, and

occurrence and clinical implications, PCOS remains
underdiagnosed due to its heterogeneous presentation
and overlapping symptoms with other conditions. This
diagnostic challenge underscores the need for advanced
tools to enhance early detection and personalized care.
Artificial intelligence (Al), particularly machine learning
(ML), offers a promising solution by identifying complex,
non-linear patterns within clinical and biochemical
data—patterns that may be through
conventional diagnostic approaches. Numerous studies
have highlighted the potential of ML to augment clinical

overlooked
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workflows in endocrinology, providing timely, data-
driven support for healthcare professionals [1].

The presence of PCOS symptoms
significantly among women, it includes acne, extra body
hair growth, hair thinning and obesity. As a matter of fact,
symptoms differ from one person to another, which
makes diagnosing PCOS challenging. Early and accurate
diagnosis is essential for timely intervention to manage
both reproductive and metabolic health risks [2].

can vary

The diagnostic process for PCOS remains challenging
due to the diverse presence of symptoms across women.
Typically, physicians rely on a combination of clinical
assessments, blood tests, and pelvic ultrasound imaging.
However, the absence of a comprehensive diagnostic tool
also makes it hard to distinguish from other conditions
leading to misdiagnosis or delays in diagnosis.
Consequently, healthcare systems are seeking more
advanced solutions to boost diagnostic accuracy to have
efficient outcomes [3].

Advancements in Al, specifically in ML, have shown
considerable promise in healthcare diagnostics. This is
particularly for finding and classifying sophisticated
diseases such as PCOS. For instance, supervised learning
algorithms are demonstrating significant capability by
uncovering hidden patterns within clinical and lifestyle
data that was not readable by healthcare providers. The
availability of electronic health records (EHRs) and
patient data are rapidly increasing. Furthermore, Al-
driven solutions could improve the prediction of PCOS
diagnosis,
treatments [4].

enabling tailored and patient-specific

This study investigates the effectiveness of seven ML
algorithms—LR, NB, SVM, RF, GBC, AdaBoost and
MLP —in identifying PCOS using a dataset sourced from
Kaggle. Following the CRISP-DM framework, the study
applies a structured approach to data analysis and model
development, incorporating patient data related to
symptoms and lifestyle factors. The performance of each
model is assessed using precision, recall, F1 score, and
ROC AUC to enable a comparative evaluation of their
strengths and limitations.

The findings aim to inform the development of Al-
based diagnostic tools that support clinicians in
diagnosing PCOS more accurately and efficiently, thereby
enhancing clinical decision-making.

The study is structured into the following sections:
literature review, methodology, data description and
preprocessing, model  implementation,  results,
discussion, conclusion, and future recommendations.

2. Literature Review

Several studies in recent years have used different ML
techniques to diagnose and predict PCOS. Utilising

clinical and physiological dataset to augment prediction
accuracy. These approaches enhance distinct algorithms
and data preprocessing methods for the aim of capturing
patterns that assist in early and reliable PCOS detection.

In [5], the Decision Tree (DT), RF, and SVM
algorithms were applied to a clinical dataset containing
features such as Body Mass Index (BMI), insulin levels,
and follicle count to predict the presence of PCOS. Among
the models tested, the RF classifier achieved the highest
accuracy of 89.5%. The study emphasized that ensemble
models like RF are particularly effective in capturing
complex relationships and interdependencies among
clinical features.

Similarly, authors [6] used LR, NB, and KNN to
analyse a dataset of 520 PCOS cases. In terms of model
performance development, the study focused on feature
selection techniques such as chi-square and recursive
feature elimination. LR revealed strong predictive
capability with an accuracy of 85.3%, especially when
hormonal and metabolic attributes were emphasized.
This demonstrates the strength of tree-based models in
the clinical field.

In a more recent analysis, authors in [7] implemented
DL models accompanied with traditional supervised
classifiers on a refined clinical dataset. The study
compared Artificial Neural Networks (ANN) with SVM,
DT, and XGBoost. Despite the fact that ANN achieved the
highest accuracy of 91.2%, the authors highlighted that
simpler supervised model like XGBoost provided
competitive results with lower computational costs,
supporting their practicality for clinical integration.

In the imaging domain, researchers [8] proposed a
model interpretability by combining DT classifiers with
SHapley exPlanations (SHAP), a method that collaborates
each independent feature to contribute to accurate
predictions. This approach assembled the authors to
generate a ranked list of features based on their impacts
on the model’s output. Nevertheless, testosterone levels
and the luteinizing hormones (LH) to follicle-stimulating
hormone (FSH) ratio emerged as dominant predictors
lining up with clinical indicators of PCOS. Through the
visualization of feature importance at both the population
and patient-specific levels, the study provided a clearer
understanding of the reasoning, which
contributes to  greater confidence and
interpretability in automated diagnostic applications.

model's
clinical

Furthermore, authors [9] established a cloud-based
diagnostic system trained on three different medical
datasets taken from medical centres. Al algorithms
analysed images, focusing on DNA content with cell
nuclei. It validated the value of feature specificity such as
DNA content as PCOS markers. Based on the results,
these images were derived to a cloud-based platform for
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evaluation and assessments. Results achieved accuracy
between 86% and 89%.

In addition, Arya [10] proposed a two-step approach
to medical diagnosis that merges both supervised and
unsupervised learning techniques. Starting with k-means
clustering was used to group similar patient records.
Followed by, analysing the clustered groups using
supervised classification models, DT and SVM models to
predict diagnosis. This combined method improved the
accuracy of the system, reaching a prediction accuracy of
87.5%, and highlighted how blending ML techniques.

In the use of Graph Neural Network (GNN), Boll, et
al. [11] acknowledges relationships between variables in
EHRs. By treating clinical data as a network each variable
is a node, and the connections reflect how these variables
interact. As a result, patient information was modelled in
a meaningful way. This graph-based approach achieved
a strong AUC score of 89%, showing significant clinical
prediction outcomes using advanced Deep Learning (DL)
techniques.

Similarly, authors in [12] developed a Light Gradient
Boosting Machine (LightGBM) model in conjunction with
SHAP to identify and prioritise features relevant to PCOS
diagnosis. The analysis highlighted the significance of
anti-Miillerian hormone (AMH) levels and clinical signs
such as hirsutism in prediction PCOS. As a result, the
achieved AUC of 93%, indicating high
performance. In another notable comparison, Wang, et al.
[13] implemented SVM, GBC, and MLP on PCOS datasets
with categorical and numerical features. MLP achieved
the highest F1 score 92%, demonstrating DL's ability to
capture nonlinear relationships in diverse data formats.
However, SVM maintained excellent generalization with
less overfitting.

model

Additionally, authors in [14] examined the
performance of LR, SVM, and MLP for early PCOS
detection using lifestyle data (e.g., activity, sleep). Results
show LR proved superior in AUC and interpretability,
confirming its dominance in structured health data
settings. Specifically, the study documented an AUC of
82.3% for the LR model, highlighting its robust
performance.

Addressing the challenge of class imbalance, authors
in [15] conducted an analysis on distinct algorithms, RF
AdaBoost, and GBC on datasets with imbalanced PCOS
class distributions. By applying SMOTE for balance, GBC
performed best in handling rare class detection, with an
AUC of 94.2%, followed closely by AdaBoost.

Similarly, authors in this study [16] developed
predictive models using four ML methods: LR, SVM,
GBC trees, and RF. It focused on hormone values (follicle-
stimulating hormone, luteinizing hormone, oestradiol,
and sex hormone-binding globulin) were combined to

create a multilayer perceptron score using a neural
network classifier. The models achieved AUC values of
85%, 81%, 80%, and 82%, respectively. Significant positive
predictors of PCOS diagnosis across models included
hormone levels and obesity; negative predictors included
gravidity. The study illustrates the potential benefits of
integrating Al tools into EHRs to facilitate earlier
detection of PCOS.

Finally, researchers in [17] proposed three
lightweight DL models LSTM-based, CNN-based, and
CNN-LSTM-based for automated PCOS prediction. To
address the imbalanced nature of the dataset, the SMOTE
was employed. The models achieved accuracies of
92.04%, 96.59%, and 94.31%, with corresponding ROC-
AUC values of 92.0%, 96.6%, and 94.3%. The study
highlights the effectiveness of lightweight DL models in
delivering high performance with fewer trainable
them
constrained environments.

parameters, making suitable for resource-

Previous studies have utilized various ML algorithms
to enhance PCOS diagnosis and prediction. Among these,
RF demonstrated strong predictive capabilities by
capturing complex, non-linear relationships, achieving
accuracies up to 89.5%. LR was also widely used due to
its simplicity and interpretability, particularly effective
with structured clinical and lifestyle data, achieving
accuracies above 85%.

SVM provided good generalization performance,
especially on smaller datasets, but was sometimes
outperformed by DL models on larger datasets. DL
approaches, including ANN, CNN, and LSTM, achieved
the highest accuracies, reaching up to 96.59% with CNN-
LSTM architectures, though they required higher
computational resources.

Tree-based ensemble models such as GBC and
XGBoost delivered competitive results with lower
computational costs, making them suitable for clinical
environments. GBC particularly excelled in handling
imbalanced datasets, achieving AUC values over 94%.
Recently, advanced models like GNN were introduced to
model complex relationships in electronic health records,
achieving an AUC of 89%.

In summary, although DL models achieved the
highest prediction accuracies, RF and GBC provided a
balanced trade-off between performance, interpretability,
and computational efficiency, making them highly
applicable in practical clinical scenarios.

3. Research Methodology and approach
3.1. Background of the Research Study

This research was conducted using Google Colab as
the primary development environment, with Scikit-learn
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as the main Python library for implementing ML models.
A total of seven classification algorithms were employed
to analyse and classify PCOS cases. The models used
include LR, NB, SVM, RF, GB, AdaBoost, and MLP. Each
algorithm was trained and evaluated to assess its
effectiveness in accurately identifying PCOS based on
clinical and lifestyle features.

The selection of these specific algorithms—LR, NB,
SVM, RF, GBC, AdaBoost, and MLP —was driven by their
complementary strengths in handling structured clinical
data. LR offers high interpretability and computational
efficiency, making it ideal for linear relationships within
medical datasets. NB is well-suited for smaller datasets
and performs effectively under the assumption of
conditional feature independence. SVM is robust in high-
dimensional spaces and generalizes well across complex
boundaries. Ensemble methods such as RF, GBC, and
AdaBoost are powerful in modeling non-linear
interactions and addressing class imbalance, which are
common in PCOS-related data. Lastly, MLP, a type of
artificial neural network, was included for its ability to
capture deep non-linear relationships. This diverse
algorithm selection enables a comprehensive comparison
across linear, probabilistic, ensemble-based, and neural
learning paradigms, enhancing the model's applicability
to the multifactorial nature of PCOS.

Data

Deployment
L= Understanding

Data

Data
Preparation

Modeling

Figure 1: Phases of the CRISP-DM Methodology

e
“-"

The study followed the CRISP-DM methodology, a
widely recognized framework for structuring ML
projects. This approach consists of six key phases:
defining project objectives (business understanding),
exploring and analysing the dataset (data
understanding), organizing and cleaning data for analysis
(data preparation), developing and tuning ML models
(modelling), assessing model performance (evaluation),
and preparing the model for practical application
(deployment) [18]. Adopting this structured workflow

throughout the project, ultimately contributing to the
reliable and accurate results presented in Figure 1.

3.2. Dataset Description

The dataset used in this study was retrieved from
Kaggle, a widely recognized platform for data science
competitions and open-access datasets [19]. It contains
clinical, biochemical, and lifestyle-related information
collected from 541 female patients to support the
prediction and diagnosis of PCOS. The dataset includes
44 features, including a binary target variable, PCOS
(Y/N), where a value of 1 indicates a confirmed diagnosis
of PCOS and 0 denotes its absence.

The features span several categories. Demographic
and anthropometric variables include age, weight, height,
BMI, and blood group. Vital signs such as pulse rate,
respiratory rate, and blood pressure are included.
Reproductive health indicators—like menstrual cycle
regularity and pregnancy status—are complemented by
hormonal measurements including AMH, FSH, LH, the
FSH/LH ratio, and Beta-HCG. The dataset also captures
symptoms and lifestyle factors, such as hair loss, acne,
skin pigmentation, weight gain, hirsutism, fast food
intake, and physical activity. Furthermore, ultrasound
features detail follicle count and size in each ovary, along
with endometrial thickness.

Notably, this dataset does not contain some of the
core hormonal biomarkers typically used in the clinical
diagnosis of PCOS, such as estrogen, progesterone, and
testosterone. The absence of these indicators constitutes a
key limitation of the dataset provided via Kaggle and was
not a modeling decision but rather a constraint imposed
by data availability. In real-world clinical practice, these
hormones are fundamental to differential diagnosis and
are often among the first parameters assessed alongside
imaging. Their exclusion may restrict the model’s ability
to fully replicate the diagnostic reasoning employed by
clinicians and can limit generalizability to broader patient
populations. Future studies will aim to incorporate such
hormonal data to enhance both predictive performance
and clinical validity.

Additionally, the dataset does not include crucial
demographic attributes such as ethnicity, geographical
origin, and socioeconomic status—factors that
significantly influence hormonal
symptomatology, and PCOS risk profiles. The lack of
these variables introduces potential bias and restricts the
fairness and applicability of the model across diverse

expression,

populations. This limitation will be acknowledged
explicitly in the revised manuscript, and future research
will seek to mitigate these shortcomings through more
inclusive and representative datasets. A summary of the

ensured clarity, consistency, and effectiveness  dataset's attributes is provided in Table 1.
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Table 1: Dataset Description Endometriu Thickness of the Float64
Feature Description Data m (mm) endometrial lining
Type PCOS (Y/N) Diagnosis of PCOS Int64
Age (yrs) Age of the patient in Float64 (1=Yes, 0=No)
years 3.3. Dataset Preparation
Weight (Kg) Body weight in Float64
kilograms After completing the data exploration phase, the
Height (Cm) Height in centimetres Float6t4 dataset undergoes a comprehensive preprocessing stage.
BMI Body Mass Index Float64 This phase includes handling missing values, eliminating
Blood Group Blood type as Int64 duplicate records, applying normalization, selecting
numerical code relevant features, encoding categorical variables, and
Pulse Pulse rate in beats Float64 splitting the data into training and testing sets. These
rate(bpm) per minute preprocessing steps are crucial to ensure the dataset is
RR Respiratory rate per Int64 clean, well-structured, and suitable for accurate
(breaths/min) minute modelling and further analysis.
Cycle(R/T) Menstrual cycle Int64 3.3.1. Missing Data
regularity
Pregnant(Y/ Pregnancy status Int64 To ensure the integrity of the dataset, two standard
N) (1=Yes, 0=No) validation functions were applied: isnull (). sum () and
I beta-HCG Beta-HCG hormone Float64 duplicated (). sum (). For instance, the isnull (). sum ()
(mIU/mL) level (case I) function was used to detect and count missing values
AMH Anti-MAVillerian Float6d across all columns, while duplicated().sum() identified
(ng/mL) Hormone level any repeated rows that could affect data quality. The
FSH Follicle Stimulating Float6d results confirmed that the dataset contained no missing
(mIU/mL) Hormone values or duplicate entries, indicating a high level of
IH Luteinizing Hormone Float6d completeness and consistency. This verification step is
(mIU/mL) essential, as clean and reliable data forms the foundation
FSH/LH Ratio of FSH to LH Floatod for developing accurate and robust ML models.
Hair Presence of hair loss Int64 3.3.2. Balancing the Dataset
losSsl((\i(r/lN) p(rle_szzzle (i)_fl\sIl(Zi)n Inted The dataset comprises a total of 541 patient records,
darkening pigmentation (1=Yes, each containing clinical, biochemical, and lifestyle-related
(Y/N) 0-No) information relevant to the d%agnosis of PCOS: The target
Weight Reported weight gain nted variable, PCOS (Y/N), is binary, where 1 indicates a
. positive PCOS diagnosis and 0 indicates the absence of
gam(\.(/N) (1=Yesf 0=N9) the condition as presented in Figure 2. To address this
Hair Excessive hair Int64 imbalance and improve the performance of ML models,
g.rowth(Y/ N) growth (1=Yes, 0=No) the study employed SMOTE. The SMOTE generates
Pimples(Y/N) ) Presence of Int64 synthetic examples of the minority class (PCOS) to create
pimples/acne (1=Yes, a more balanced dataset. This technique helps reduce bias
0=No) toward the majority class during model training, leading
Fast food F ast.food Float64 to more reliable and generalizable classification outcomes
(Y/N) Consum(gll\(l):) (1=Yes, [17].
Reg.Exercise( Engagement in Int64 Class Distribution of PCOS (Y/N)
Y/N) regular exercise o1
(1=Yes, 0=No) 0 2%
Follicle No. Number of follicles in Int64 2 2507
(L) left ovary % 200
Follicle No. Number of follicles in Int64 £ 150
(R) right ovary Z 100}
Avg. F size Average follicle size Float64 >0
(L) (mm) in left ovary 0 0 1
Avg. F size Average follicle size Float64 PeOS Plagnesis (0= No. 1 = Yes)
(R) (mm) in right ovary Figure 2: Class Distribution of PCOS
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3.3.3. Feature Selection

The feature selection results using ANOVA F-scores
highlight the most statistically significant variables for
distinguishing between PCOS and non-PCOS cases. The
two most predictive features are Follicle No. (R) and
Follicle No. (L), with F-scores of 390.84 and 308.52,
respectively. These findings are consistent with clinical
criteria, as women with PCOS typically present with a
higher number of ovarian follicles, particularly in the
right ovary. Other highly discriminative features include
skin darkening, hair growth, and weight gain, all of which
are common symptoms associated with hormonal
imbalance and insulin resistance in PCOS patients.

The menstrual cycle regularity feature (Cycle R/I) also
shows a high F-score (103.67),
importance, as irregular cycles are a key diagnostic

emphasizing its

marker of PCOS. Moderate contributions come from
features like fast food consumption, pimples, weight,
BMI, and cycle length, which reflect both lifestyle and
physiological factors influencing the condition. Less
predictive but still relevant features include hair loss, age,
waist size, and hip circumference, which contribute to the
model with lower F-scores. Overall, the analysis confirms
that reproductive indicators, clinical symptoms, and
lifestyle behaviours play a vital role in the classification of
PCOS, guiding both feature prioritization and model
development for improved diagnostic accuracy. A
summary of the attribute’s importance is provided in
Table 2.

Table 2: Feature Importance Using ANOVA F-score

Selected Feature ANOVA F-score
Follicle No. (R) 390.83
Follicle No. (L) 308.51

Skin darkening (Y/N) 157.67
hair growth(Y/N) 148.42
Weight gain(Y/N) 130.16

Cycle(R/T) 103.67

Fast food (Y/N) 89.72

Pimples(Y/N) 48.04

Weight (Kg) 25.34

BMI 22.34

Cycle length(days) 17.73

Hair loss(Y/N) 16.6

Age (yrs) 15.75
Waist(inch) 15

Hip(inch) 14.58

3.3.4. Encoding Categorical Data

The dataset was processed using label encoding to
convert categorical variables into numerical format, a
crucial preprocessing step as most ML algorithms
requires numerical input [20]. In this study, all categorical

features were successfully transformed into numeric
values. This
compatibility with the classification models, ultimately

conversion was essential to ensure
enhancing the efficiency and accuracy of the training and
evaluation processes.

3.3.5. Splitting Data

The dataset was initially divided into two subsets,
with 80% allocated for training and 20% for testing. This
split enables the model to learn patterns from the larger
portion of the data while using the remaining portion to
assess its performance on previously unseen instances,
ensuring a more reliable evaluation.

3.3.6. Data Normalization

The numerical features were normalized to scale their
values within a consistent range, typically between 0 and
1. This process ensures that all features contribute equally
during model training, preventing any single variable
from dominating the learning process. Normalization
supports more balanced and
performance, ultimately enhancing the accuracy and
stability of the results [21].

3.4. Modelling

unbiased model

Seven ML algorithms—LR, NB, SVM, RF, GBC,
AdaBoost, and MLP—were applied to classify patients
based on the presence or absence of PCOS.

LR is a supervised ML algorithm commonly used for
binary classification tasks. It estimates the probability that
a given input belongs to a particular class by applying a
sigmoid function to a linear combination of the input
features. The output is a value between 0 and 1,
representing the likelihood of the positive class. LR is
valued for its simplicity, interpretability, and efficiency,
making it a reliable choice for solving classification
problems in various domains [22].

RF is an ensemble ML method that constructs
numerous DTs during the training phase and combines
their predictions to enhance accuracy and stability. For
classification tasks, it typically uses majority voting to
determine the final output. This approach helps reduce
both overfitting and variance compared to relying on a
single DT, leading to improved generalization and
performance on new, unseen data [23].

GBC is an effective ensemble learning method that
constructs models in a sequential manner, with each new
model aiming to improve upon the errors of its
predecessors. It combines multiple weak learners,
typically shallow DTs, and optimizes performance by
minimizing a loss function through gradient-based
techniques. This approach often results in high predictive
accuracy, although it may require more training time due
to its iterative nature [23].
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SVM is a powerful supervised learning algorithm
used for classification and regression tasks. It works by
finding the optimal hyperplane that separates data points
of different classes with the maximum margin. The data
points closest to the hyperplane, known as support
vectors, are critical in defining the decision boundary.
SVM is especially effective in high-dimensional spaces
and can be adapted to non-linear problems through the
use of kernel functions. Its ability to handle complex
relationships and avoid overfitting makes it a widely
used method in ML [20].

NB is a simple, yet effective supervised classification
algorithm based on Bayes’” Theorem. It assumes that all
features are independent of each other given the class
label —an assumption known as "naive" independence.
Despite this simplification, NB performs well in many
real-world scenarios, particularly with large datasets. It is
computationally efficient, easy to implement, and works
well for both binary and multi-class classification
problems, especially when the input features are
categorical or conditionally independent [20].

AdaBoost is an ensemble learning algorithm that
combines multiple weak classifiers, typically DTs, to form
a strong classifier. It works by training models
sequentially, where each new model focuses more on the
errors made by the previous ones. During the training
process, weights are assigned to each instance, increasing
for those that are misclassified, so the next model gives
them more attention. AdaBoost is known for improving
accuracy, reducing bias, and being relatively resistant to
overfitting when properly tuned. It performs well on
binary classification tasks and is particularly effective
with clean, well-prepared data [24].

MLP is a type of ANN used for supervised learning
tasks, including both classification and regression. It
consists of an input layer, one or more hidden layers, and
an output layer, with each layer made up of
interconnected nodes (neurons).

MLP uses non-linear activation functions and is
trained using backpropagation to minimize prediction
errors. It is capable of capturing complex patterns in the
data but often requires careful tuning of hyperparameters
and sufficient data to perform effectively. MLP is
particularly useful when the relationship between
features and outcomes is non-linear and not easily
captured by simpler models [25].

3.5. Performance Evaluation

The performance of the supervised ML models is
assessed using key
precision, recall, F-measure and ROC AUC—which
together offer a comprehensive understanding of each
model’s classification effectiveness.

evaluation metrics—accuracy,

3.5.1. Accuracy:

It measures the proportion of correctly predicted
instances out of the total number of predictions. It reflects
the overall effectiveness of a model incorrectly classifying
both positive and negative cases, as expressed in Equation
(1) [26].

TP + TN

A =
Couracy =Tp X TN + FP + FN

ey

3.5.2. F-measure:

It provides a balanced evaluation by combining
precision and recall into a single metric. It is especially
valuable when dealing with imbalanced datasets or when
both false positives and false negatives carry significant
consequences, as shown in Equation (2) [26].

precision X recall

F —measure =2 X — 2
precision + recall

3.5.3. Precision:

It quantifies the ratio of correctly predicted positive
instances to all instances predicted as positive. It
evaluates the model's ability to produce reliable positive
predictions, helping determine how many of the
predicted positives are relevant. This is illustrated in
Equation (3) [26].

TP

Precision = TP T FP 3)

3.5.4. Recall:

It measures the proportion of actual positive cases
that are correctly identified by the model. It is crucial in
contexts where missing positive cases may have serious
implications, as represented in Equation (4) [26].

Recall = — 4
e = TP ¥ FN )

3.5.5. ROC AUC

It is a performance metric used to evaluate the
classification ability of a ML model across various
threshold settings. The ROC curve plots the True Positive
Rate against the False Positive Rate, showing how the
model's sensitivity and specificity vary with different
decision boundaries. The AUC quantifies the overall
ability of the model to distinguish between classes [26].

4. Results

The results of the current study demonstrate the
effectiveness of the ML techniques in accurately
predicting PCOS. Key performance metrics, including
accuracy, precision, recall, F1-Score and ROC AUC, were
evaluated to assess model reliability. As provided in
Table 3.

Table 3: Performance Comparison Between Models

WWW.jenrs.com

Journal of Engineering Research and Sciences, 4(6): 16-26, 2025 22


http://www.jenrs.com/

3 JENRS

R. Taha et al. Comparative Analysis of Supervised Machine Learning

Model | Accuracy | Precision Recall | F1 ROC
(%) (%) (%) Score | AUC
(%) | (%)
NB 90.8 82.4 87.5 84.8 96.7
LR 91.7 96.0 85.0 84.2 96.8
SVM 89.9 92.0 90.0 80.7 | 96.0
RF 89.0 83.3 78.1 80.6 95.0
GBC 89.0 83.3 78.1 80.6 92.1
AdaBo | 88.1 85.2 71.9 78.0 93.4
ost
MLP 87.2 82.1 719 76.7 | 921

In terms of accuracy, LR achieved the highest score at
91.7%, indicating its strong overall capability to correctly
classify both positive and negative cases. NB followed
closely with 90.8%, while SVM and RF achieved 89.9%
and 89%, respectively. GBC also matched RF with 89%,
and AdaBoost recorded a slightly lower accuracy at
88.1%. The MLP had the lowest accuracy among all
models at 87.2%, suggesting it may be less effective in
general classification performance for this dataset as
shown in Figure 3.
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Figure.3: Accuracy Plot of Proposed Models

When evaluating precision, which measures the
correctness of positive predictions, LR outperformed all
other models with a precision of 96%. SVM came next
with 92%, indicating its reliability in predicting relevant
positive cases. AdaBoost followed with 85.2%, and both
RF and GBC scored 83.3%. NB had a precision of 82.4%,
and MLP was the lowest at 82.1%. This metric highlights
LR as the most dependable model when minimizing false
positives is important as shown in Figure 4.
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Figure.4: Precision Plot of Proposed Models

The performance comparison based on recall shows
that NB achieved the highest recall at 87.5%,
demonstrating  superior sensitivity in  correctly
identifying positive cases. This is followed by LR, which
also performed well with a recall of 85%, indicating its
effectiveness with the dataset’s linear characteristics.
Meanwhile, SVM, AdaBoost, and MLP exhibited
moderate recall values of 79%, reflecting balanced but less
outstanding performance in detecting positive cases.
Finally, RF and GBC recorded the lowest recall values at
78.1%, suggesting that these ensemble methods may have
underperformed in this specific context, possibly due to
data characteristics or parameter tuning limitations as
shown in Figure 5.

90
.85
X
(]
(&)
S
£ 80 781 781
e
=
(0]
& 75
70
> Q < ¢ & Q
AN RC o ¢
“
V‘b
Algorithms

Figure.5: Recall Plot of Proposed Models

For F1 Score, which balances both precision and
recall, NB again emerged as the top performer with an F1
Score of 84.8%, suggesting it offers the most balanced
predictions. LR was a close second at 84.2%. SVM, RF, and
GBC showed similar F1 scores around 80.6-80.7%,
reflecting solid but slightly less balanced performance.
AdaBoost scored 80%, while MLP had the lowest F1 Score
at 76.7%, further confirming its relatively weaker balance
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between identifying and correctly classifying positive
cases as shown in Figure 6.
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Figure.6: F1 Score Plot of Proposed Models

Regarding ROC AUC, which assesses a model’s
ability to distinguish between classes at various threshold
levels, LR achieved the highest score of 96.8%, closely
followed by NB at 96.7% and SVM at 96%. RF also
performed well with 95%, and AdaBoost came next at
93.4%. The lowest AUC scores were observed in GBC and
MLP, both at 92.1%. These results indicate that while all
models demonstrated good class-separating ability, LR
and NB were the most effective in this regard as shown in
Figure 7.
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Figure.7: ROC AUC Plot of Proposed Models

5. Discussion

The superior performance of the LR model, achieving
the highest AUC, aligns with findings from previous
studies discussed in the literature. Similar to the work of
Hosain et al. [6], where LR achieved an accuracy of 85.3%
due to its strong predictive capability with hormonal and
metabolic attributes, this study also demonstrated the
effectiveness of LR when supported by appropriate
feature selection and data balancing techniques. In the
present analysis, class imbalance was effectively
managed using the SMOTE algorithm, enhancing the

model’s sensitivity and specificity—an approach also
highlighted by Shanmugavadivel et al. [15] in addressing
rare class detection.

Additionally, feature selection using ANOVA F-
scores helped identify the most statistically significant
predictors, allowing LR to focus on the most influential
clinical variables, consistent with the methodology
applied by Hosain et al. [6]. These results further validate
the literature's emphasis on the importance of simple,
interpretable models like LR, particularly when
combined with effective preprocessing strategies,
achieving performance comparable to or even surpassing
more complex models such as RF and SVM [5], [13].

Although the models, particularly LR, achieved high
accuracy and AUC scores, we acknowledge that recall
values were modest in several cases, indicating a
proportion of PCOS cases were not successfully
identified. This raises clinical concerns,
diagnoses in screening settings may delay treatment. To

as missed

address this, we will conduct further analysis of false
negative cases to identify potential patterns or limitations
in feature representation. Additionally, we plan to
experiment with threshold tuning,
learning, and advanced resampling methods to improve
recall. In clinical contexts, high recall is essential to ensure
at-risk patients are not overlooked. A comparative
benchmark with clinical diagnostic among
physicians will also be considered in future work to
contextualize the model’s performance

cost-sensitive

rates

6. Conclusion a Future Direction

This study evaluated the performance of seven
supervised ML algorithms— LR, NB, SVM, RF, GBC,
AdaBoost, and MLP —for the classification of PCOS
based on clinical and lifestyle data. The models were
assessed using key performance metrics including
accuracy, precision, recall, F1 score, and ROC AUC.
Among all the models, LR consistently demonstrated the
best overall performance.

LR achieved the highest accuracy (91.7%), precision
(96%), and ROC AUC (96.8%), and maintained a strong
balance between recall and F1 score. Its superior
performance can be attributed to the linear separability of
the dataset and the model’s inherent ability to generalize
well with limited assumptions and minimal overfitting.
Furthermore, LR is computationally efficient, easy to
interpret, and performs reliably when the relationship
between features and output is approximately linear
characteristics that align well with the nature of this
dataset.

This study confirms the potential of machine learning
(ML) in identifying PCOS with high accuracy and
interpretability. However, limitations such as moderate

recall scores, missing hormonal and demographic
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variables, and the absence of comparison with clinical
decision-making indicate that the current approach
requires further enhancement before clinical adoption.
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