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Editorial 
The rapid evolution of digital technologies is transforming diverse sectors ranging from clean 
energy and cybersecurity to arti�icial intelligence, software engineering, and life sciences supply 
chain management. These transformations are not only driving ef�iciency and resilience but also 
reshaping strategic decision-making in line with sustainability goals, compliance requirements, 
and societal expectations. The following research contributions present distinct advancements 
across these areas, providing valuable insights into how technology is being harnessed to address 
pressing challenges and unlock new opportunities for growth and innovation. 

Green tariff programs in the United States have emerged as a signi�icant mechanism for advancing 
corporate renewable energy adoption. By reviewing 62 programs across 30 states from 2013 to 
2025, this study highlights their role in driving commercial and industrial decarbonization 
strategies. Findings indicate that while such programs have facilitated over 5,700 MW of 
renewable capacity additions, regulatory hurdles, limited program capacity, and concerns over 
additionality still constrain their broader impact. The study underscores the importance of 
program design elements such as transparent pricing, �lexible contracts, and alignment with 
corporate sustainability needs, providing guidance for utilities, regulators, and corporate buyers 
navigating the evolving energy procurement landscape [1]. 

Public sector IT infrastructures face mounting risks from sophisticated cyberattacks coupled with 
strict regulatory demands. Existing compliance and patch management systems often lack 
scalability and adaptability, creating vulnerabilities in critical infrastructures. The proposed AI-
augmented cybersecurity framework integrates compliance detection, vulnerability 
prioritization, automated remediation, and disaster recovery with impressive outcomes, 
including a 92 percent accuracy in compliance detection and notable reductions in patch 
deployment and recovery time. By leveraging a hybrid approach with rule-based logic and 
machine learning, the system enhances scalability, resilience, and auditability, offering a practical 
pathway for strengthening cybersecurity operations in mission-critical government 
environments [2]. 

The �ield of software engineering is also witnessing transformative impacts from quantum-
inspired approaches. Optimization problems such as Test Suite Minimization and Maximum 
Independent Set, essential in domains ranging from project management to network design, have 
long challenged classical methods. The proposed quantum-inspired genetic algorithm 
demonstrates superior performance over traditional genetic algorithms, providing more ef�icient 
search capabilities without prior assumptions. Its successful application to the Maximum 
Independent Set problem highlights the potential for broader applications across logistics, 
bioinformatics, resource allocation, and other �ields, marking an important advancement in 
search-based software engineering through quantum-inspired techniques [3]. 

Arti�icial intelligence continues to reshape decision-making processes but remains burdened by 
opacity in many critical applications. To address this, the concept of the magnetic AI agent is 
introduced as a lightweight, attachable layer that learns surrogates of opaque models and 
provides audience-tailored explanations. This framework synthesizes fragmented research on 
post-hoc explainability and governance, proposing methods for data collection, iterative learning, 
and evaluation metrics such as accuracy, time ef�iciency, and user effort. By aligning with 
emerging regulatory and ethical mandates, this approach offers a practical roadmap for 
enhancing transparency and trust in AI systems across sectors including �inance, healthcare, and 
predictive maintenance [4]. 

Life sciences supply chains rely heavily on SAP systems, yet traditional Purchase Order approval 
work�lows lack the intelligence to address compliance and risk management effectively. This 
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research presents a proof of concept for embedding AI-driven decision support within SAP 
work�lows to transform PO approvals into strategic control points. By integrating supplier 
performance analysis and compliance checks, the proposed system enhances supply chain 
visibility, resilience, and operational performance. This innovation situates intelligent automation 
at the heart of digital transformation in life sciences, offering a pathway for improving compliance 
assurance while ensuring ef�iciency and adaptability in complex global supply networks [5]. 

Together these studies underscore the multifaceted role of advanced technologies in shaping 
future landscapes across industries. From renewable energy procurement and public sector 
cybersecurity to quantum-inspired optimization, explainable AI, and intelligent supply chain 
management, each contribution reveals how innovation is addressing longstanding challenges 
while aligning with emerging regulatory, sustainability, and ef�iciency imperatives. These insights 
collectively point toward a future where adaptability, transparency, and resilience de�ine the 
successful integration of technology in critical systems and industries. 
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ABSTRACT: This paper provides a comprehensive review of green tariff programs in the United States 
from 2013 to 2025, examining their role as market accelerators for corporate renewable energy adoption 
and their impact on commercial and industrial (C&I) decarbonization strategies. Green tariffs represent 
voluntary utility programs that enable large energy customers to procure renewable electricity directly 
through their serving utility, offering an alternative pathway to complex bilateral power purchase 
agreements. Through systematic analysis of 62 active programs across 30 states, this review synthesizes 
literature on program design, implementation challenges, market impacts, and effectiveness in driving 
corporate sustainability goals. Key findings indicate that while green tariffs have facilitated over 5,700 
MW of renewable capacity additions and attracted major corporate participants, significant barriers 
remain including limited program capacity, regulatory complexity, and questions around 
additionality—specifically whether programs drive new renewable development versus reallocating 
existing resources. The review identifies critical design elements for successful programs, including 
flexible contracting mechanisms, transparent pricing structures, and alignment with corporate 
sustainability requirements. This paper contributes to the growing body of knowledge on utility-
corporate partnerships in clean energy transition and provides actionable insights for three key 
stakeholder groups—utilities, regulators, and corporate energy buyers—navigating the evolving 
renewable energy procurement landscape. 

KEYWORDS: Green Tariffs, Renewable Energy Procurement, Corporate Sustainability, Utility 
Programs, Decarbonization, C&I Customers, Regulated Markets 

 

1. Introduction  

The global transition to renewable energy has emerged 
as a critical imperative in addressing climate change, with 
corporate actors playing an increasingly prominent role in 
driving demand for clean electricity [1]. As of 2024, over 2,500 
companies worldwide have committed to science-based 
emissions targets, creating unprecedented demand for 
renewable energy procurement options [2]. Within the 
United States, this corporate sustainability movement has 
encountered unique challenges in traditionally regulated 
electricity markets, where approximately 40% of electricity is 
generated but corporate renewable energy deals remained 
limited—accounting for only 16% between 2012 and 2017, 
with this share gradually increasing to approximately 25% by 
2024 as market mechanisms evolved [3]. 

Green tariffs have emerged as an innovative solution to 

 bridge this gap, representing voluntary utility programs 
that allow eligible commercial and industrial customers to 
purchase bundled renewable electricity from specific 
projects through special utility tariff rates [3]. Unlike 
traditional green pricing programs that often charge 
premium rates without providing direct access to renewable 
energy certificates (RECs), green tariffs offer a mechanism 
for large energy users to meet sustainability goals while 
maintaining relationships with incumbent utilities [4]. 

The rapid evolution of green tariff programs reflects 
broader transformations in energy markets and corporate 
sustainability strategies. From initial pilots in 2013 to over 62 
active or pending programs across 30 states as of 2023, green 
tariffs have facilitated more than 3,000 MW of renewable 
energy procurement in 2022 alone, representing 
approximately 25% of total corporate renewable energy 

http://www.jenrs.com/
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deals with known contract types [3,5]. This growth has been 
driven by convergent factors including declining renewable 
energy costs across multiple technologies—with utility-scale 
solar costs declining by over 85%, onshore wind costs falling 
by 70%, and battery storage costs dropping by 90% between 
2010 and 2020—making renewable energy increasingly cost-
competitive with traditional generation sources [6]. 

 Despite this momentum, significant questions remain 
regarding the effectiveness of green tariffs in accelerating 
renewable energy deployment and achieving genuine 
additionality beyond business-as-usual scenarios [7]. Critics 
argue that some programs merely reallocate existing 
renewable resources without driving new capacity 
additions, while proponents highlight successful 
partnerships between utilities and corporations that have 
enabled significant renewable energy investments [8,9]. 

 Research Objective: This comprehensive review aims to 
systematically evaluate the effectiveness of green tariff 
programs as market accelerators for corporate renewable 
energy adoption in U.S. regulated electricity markets, with 
specific focus on: (1) identifying design features that 
maximize program success and renewable energy 
deployment, (2) assessing the extent to which programs 
achieve genuine additionality versus resource reallocation, 
and (3) providing evidence-based recommendations for 
optimizing program design to accelerate the clean energy 
transition across diverse stakeholder groups. 

2. Literature Review  

 Evolution of Corporate Renewable Energy Procurement 

 The corporate renewable energy procurement landscape 
has undergone significant transformation over the past 
decade, driven by converging economic, environmental, 
and social factors [10]. Early corporate sustainability efforts 
primarily relied on unbundled renewable energy certificates 
(RECs), which provided a simple mechanism for companies 
to claim renewable energy use but faced criticism for limited 
additionality and minimal impact on renewable energy 
deployment [11,12]. 

As corporate sustainability commitments matured, 
companies increasingly sought more impactful 
procurement strategies that could demonstrate clear 
connections to renewable energy projects and provide 
economic benefits through long-term price stability [13]. 
This evolution coincided with dramatic cost reductions 
across renewable energy technologies. Beyond the well-
documented 85% decline in utility-scale solar costs, onshore 
wind levelized costs decreased by approximately 70%, 
offshore wind by 50%, and battery storage systems by 90% 
between 2010 and 2020. These cost reductions, driven by 
technological improvements, manufacturing scale, and 
learning curve effects, fundamentally altered the economics 
of renewable energy procurement [14]. 

The emergence of power purchase agreements (PPAs) 
represented a significant advancement in corporate 
procurement options, enabling direct contracts between 
corporations and renewable energy developers [15]. 
However, PPAs present substantial complexity, requiring 
sophisticated energy management capabilities, 
creditworthiness, and willingness to assume market risks 
that many companies find challenging [16,17]. Furthermore, 
in traditionally regulated electricity markets, regulatory 
barriers often prevent direct corporate-developer 
transactions, limiting PPA availability to competitive 
wholesale markets [18]. 

 Theoretical Framework for Green Tariffs 

 Green tariffs emerged within this context as a hybrid 
mechanism that combines elements of utility procurement 
with corporate renewable energy demand [19]. The 
theoretical foundation for green tariffs rests on several 
economic and policy principles. First, they address market 
failures in regulated electricity markets where monopoly 
utilities control electricity supply and direct access to 
renewable generators is restricted [20]. By creating a 
regulated pathway for renewable energy procurement, 
green tariffs can unlock latent demand while maintaining 
utility system integrity [21]. 

 Second, green tariffs leverage utilities' unique 
capabilities in project development, grid integration, and 
risk management to reduce transaction costs for corporate 
buyers [22]. Utilities' expertise in power procurement, 
established creditworthiness, and regulatory relationships 
can facilitate more efficient renewable energy deployment 
than individual corporate efforts [23]. This efficiency gain 
becomes particularly relevant for medium-sized companies 
that lack resources for complex bilateral negotiations [24]. 

 Third, from a regulatory economics perspective, green 
tariffs represent a form of product differentiation in 
monopoly markets, allowing utilities to offer varying service 
levels based on customer preferences while maintaining cost 
allocation principles that protect non-participating 
ratepayers [25]. This differentiation can enhance overall 
welfare by better matching heterogeneous customer 
preferences with appropriate service offerings [26]. 

 Additionality: Definition and Significance 

A critical concept in evaluating green tariff effectiveness 
is "additionality"—defined as the extent to which a 
renewable energy procurement mechanism drives new 
renewable energy capacity that would not have been 
developed otherwise [7]. Additionality ensures that 
corporate renewable energy purchases result in genuine 
incremental environmental benefits rather than merely 
shifting ownership of existing renewable resources. For 
green tariffs, additionality can be assessed across three 
dimensions: 

http://www.jenrs.com/
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1. Project Additionality: Whether the program 
requires new renewable projects (typically defined 
as reaching commercial operation within 3 years of 
contract signing) 

2. System Additionality: Whether renewable 
resources procured exceed utility renewable 
portfolio standard (RPS) requirements 

3. Economic Additionality: Whether corporate 
participation provides necessary revenue certainty 
for project financing 

 The significance of additionality in green tariff design 
cannot be overstated, as programs lacking strong 
additionality requirements may enable "greenwashing" 
without contributing to decarbonization goals [27]. 

 Green Tariff Design and Implementation 

The literature identifies several critical design elements 
that influence green tariff program effectiveness. Program 
structure varies significantly across jurisdictions, with three 
primary models emerging: subscriber programs, sleeved 
PPAs, and market-based rate structures [28,29]. 

Subscriber programs aggregate demand from multiple 
customers to support utility-procured renewable projects, 
offering simplified participation but potentially limiting 
customer choice in project selection [30]. Notable examples 
include Puget Sound Energy's Green Direct program, which 
successfully attracted major customers including Target, 
Starbucks, and REI through competitive pricing and flexible 
contract terms [31]. 

Sleeved PPAs represent a more customized approach 
where utilities facilitate bilateral contracts between 
customers and renewable developers, essentially passing 
through contract terms while managing grid integration and 
administrative functions [32]. Duke Energy's Green Source 
Advantage program exemplifies this model, enabling 
customers like Google and Walmart to contract directly with 
solar developers while maintaining utility relationships [33]. 

Market-based rate structures allow customers to pay 
wholesale market prices plus renewable energy premiums, 
providing transparency but exposing participants to market 
volatility [34]. Dominion Energy's renewable energy supply 
service pioneered this approach, though uptake has been 
limited due to complexity and risk exposure [35]. 

 Barriers and Challenges 

Despite growing interest, green tariff implementation 
faces numerous barriers documented across academic and 
industry literature. Regulatory complexity represents a 
primary challenge, as programs require approval from state 
public utility commissions that must balance multiple 
stakeholder interests [36]. The regulatory approval process 
often extends multiple years, creating uncertainty for both 
utilities and potential customers [37]. 

Capacity constraints emerge as another significant 
limitation, with many programs quickly reaching 

subscription limits due to conservative initial sizing [38]. For 
instance, Xcel Energy's Renewable*Connect program in 
Minnesota reached full subscription within months of 
launch, necessitating program expansion proposals [39]. 
These constraints reflect utilities' caution in committing to 
long-term renewable contracts without assured customer 
demand [40]. 

The literature reveals contradictory evidence on 
additionality: while [41] found that 30% of programs allow 
existing resources, potentially limiting additionality, Heeter 
and Bird [42] demonstrate that even these programs can 
drive incremental development by freeing renewable 
portfolio standard (RPS) capacity for system-wide needs. 
The interaction between green tariffs and state renewable 
portfolio standards creates particular complexity, as some 
programs may simply redirect RPS-eligible generation to 
green tariff customers without increasing total renewable 
deployment [42]. 

Pricing and cost allocation present additional challenges, 
as utilities must design rates that attract corporate customers 
while avoiding cost shifts to non-participants [43]. This 
balance becomes particularly difficult when renewable 
energy costs exceed system average costs, requiring careful 
rate design to maintain competitiveness [44]. Furthermore, 
administrative costs for program management, billing 
systems, and regulatory compliance can create overhead 
that diminishes program attractiveness [45]. 

 Market Impacts and Effectiveness 

Empirical evidence on green tariff effectiveness remains 
mixed, reflecting program diversity and measurement 
challenges. Quantitative analyses indicate that green tariffs 
have facilitated substantial renewable capacity additions, 
with the Clean Energy Buyers Association tracking over 
5,700 MW of cumulative procurement through 2023 [5]. 
However, attribution remains complex, as some projects 
might have proceeded through alternative procurement 
mechanisms [46]. 

Economic impacts extend beyond direct renewable 
energy deployment. Green tariffs can enhance utility 
revenue stability through long-term customer 
commitments, potentially improving utility credit profiles 
and reducing capital costs [47]. For participating 
corporations, programs provide budget certainty through 
fixed pricing structures while supporting sustainability 
reporting requirements [48]. These findings align with 
earlier work by [19] and [30], who identified revenue 
stability as a key driver for utility adoption of green tariff 
programs. 

Regional economic benefits include job creation in 
renewable energy construction and operations, with 
multiplier effects in rural communities hosting projects [49]. 
Duke Energy reported that its Green Source Advantage 
program supported over 1,000 construction jobs and $500 
million in economic investment across North Carolina [50], 
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corroborating theoretical predictions by [20] regarding the 
local economic benefits of renewable energy deployment. 

Market transformation effects appear significant, as 
green tariffs normalize corporate-utility collaboration and 
demonstrate viable pathways for renewable integration in 
regulated markets [51]. This demonstration effect has 
encouraged regulatory innovation, with states increasingly 
viewing green tariffs as tools for economic development and 
clean energy leadership [52]. 

 Research Gap 

Despite growing implementation of green tariff 
programs, the literature reveals a significant gap in 
synthesized insights regarding how these programs 
contribute to actual renewable energy deployment in 
regulated markets. While individual program evaluations 
exist, comprehensive analysis linking program design 
features to deployment outcomes remains limited. This 
review addresses this gap by systematically examining the 
relationship between green tariff design elements and their 
effectiveness in driving genuine renewable energy capacity 
additions beyond business-as-usual scenarios. 

 Summary of Key Literature 

Table 1: Summary of Key Green Tariff Studies 

Study Focus Area Key Findings Limitations 

 [4] Program 
Inventory 

First 
comprehensive 
catalog of U.S. 
Programs 

Limited 
outcome 
data 

[19] Design 
principles 

Identified 
flexibility as key 
success factor 

Theoretical 
focus 

[30] Market 
analysis 

Documented 
early adoption 
patterns 

Pre-2018 
data 

[41] Additionality 70% programs 
require new 
resources 

Self-
reported 
data 

[5] Market 
tracking 

5,700 MW total 
procurement 

Attribution 
unclear 

 The literature reveals clear connections between 
theoretical frameworks and practical design choices. 
Transaction cost economics explains why utilities can offer 
lower-cost renewable procurement than individual 
corporate efforts, while regulatory economics illuminates 
the need for careful rate design to avoid cross-subsidization. 
These theoretical insights directly inform the program 
design variations observed in practice. 

3. Methodology 

 Systematic Review Process 

This comprehensive review employs a systematic 
literature review methodology following PRISMA 
guidelines to analyze green tariff programs and their 

impacts on corporate renewable energy adoption. The step 
involved in review process is shown in figure 1. 

 
Figure 1: Systematic Review Flowchart 

 Data Collection 

Literature identification utilized multiple academic 
databases including Web of Science, Scopus, Google 
Scholar, and specialized energy databases. Search terms 
included combinations of "green tariff," "utility renewable 
programs," "corporate renewable energy procurement," 
"regulated market renewable energy," and "C&I 
sustainability programs." Additionally, targeted searches of 
regulatory databases, utility websites, and industry 
association publications provided primary source 
documentation. 

Inclusion criteria encompassed: (1) English-language 
publications addressing U.S. green tariff programs, (2) 
documents containing empirical data or case studies of 
program implementation, (3) regulatory filings and utility 
program proposals, and (4) industry reports from 
recognized authorities. Exclusion criteria eliminated 
international programs, residential-focused initiatives, and 
purely promotional materials lacking substantive analysis. 

 Analytical Framework 

The analysis employs a mixed-methods approach 
combining quantitative program metrics with qualitative 
assessment of design features and stakeholder perspectives. 
Quantitative analysis examines program capacity, 
subscription rates, pricing structures, and renewable energy 
deployment outcomes. 

 Qualitative analysis utilized thematic coding to identify 
recurring design elements, implementation challenges, and 
success factors across programs. The coding process 
involved: 

• Initial coding: Identifying design features, barriers, and 
outcomes 

• Axial coding: Establishing relationships between 
categories 

http://www.jenrs.com/
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• Selective coding: Developing overarching themes 
linking design to effectiveness 

Comparative analysis was employed to assess how 
different program design features correlate with 
deployment outcomes, participation rates, and stakeholder 
satisfaction. This approach enabled identification of best 
practices and common pitfalls across diverse regulatory 
environments. 

The review framework incorporates multiple theoretical 
lenses including transaction cost economics, regulatory 
economics, and innovation diffusion theory to interpret 
findings. This multidisciplinary approach enables 
comprehensive understanding of green tariffs as both 
regulatory instruments and market mechanisms. 

 Data Limitations 

Several limitations affect the data sources used in this 
review. Utility self-reporting may introduce positive bias in 
program outcomes, as utilities have incentives to highlight 
successes. Regulatory filings, while official, may not capture 
implementation challenges or customer dissatisfaction. 
Grey literature from industry associations may reflect 
member interests. To address these limitations, the analysis 
triangulates findings across multiple source types and 
explicitly notes where evidence conflicts. 

4. Results and Analysis 

 Current Landscape of Green Tariff Programs 

As of 2023, the Clean Energy Buyers Association 
identifies 50 approved green tariff programs across 40 
utilities, with an additional 12 programs pending regulatory 
approval [5]. The evolution of these programs demonstrates 
remarkable growth from just 2 programs in 2013 to the 
current landscape, with cumulative capacity increasing 
from 50 MW to over 5,700 MW (Figure 2). This growth 
trajectory reflects both increasing corporate demand and 
utility recognition of green tariffs as strategic offerings [53]. 

 Regional Distribution and Program Characteristics 

Geographic distribution shows concentration in states 
with strong renewable resources and progressive energy 
policies, though programs increasingly appear in 
traditionally coal-dependent regions seeking economic 
diversification [53]. Regional analysis reveals the West leads 
with 18 programs, followed by the Southeast with 15 
programs, demonstrating broad national adoption (Figure 
3). 

 Program characteristics vary significantly across 
jurisdictions, reflecting local regulatory frameworks, 
renewable resource availability, and customer demand 
profiles. Minimum participation thresholds range from 100 
kW to 10 MW, effectively limiting access to large commercial 

and industrial customers [54]. Contract terms typically span 
10-20 years, aligning with renewable project financing 
requirements while providing long-term price stability for 
participants [55]. 

 
Figure 2: Green Tariff Program Evolution (2013-2023) 

 
Figure 3: Regional Distribution of Green Tariff Programs 

Table 2: Green Tariff Program Distribution by Region 

Region Number of 
Programs 

Total 
Capacity 
(MW) 

Major 
Participants 

Southeast 15 2,100 Duke, 
Dominion, 
Georgia Power 

Midwest 12 1,800 Xcel, DTE, AEP 

West 18 2,500 PG&E, PSE, 
NV Energy 

Southwest 5 1,300 APS, SRP, 
PNM 

 Program Design Analysis 

Comprehensive analysis of existing programs reveals 
several design categories with distinct characteristics and 
outcomes. Figure 4 illustrates the distribution of program 
types, with subscriber models dominating at 45% of 
approved programs, followed by sleeved PPAs at 30%, 
market-based structures at 15%, and hybrid models at 10% 
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[56]. Each model offers distinct trade-offs between customer 
flexibility, risk allocation, and implementation complexity. 

 

 
Figure 4: Distribution of Green Tariff Program Types 

Table 3: Comparison of Green Tariff Program Models 

Model 
Type 

Custom
er 
Choice 

Risk 
Allocation 

Comple
xity 

Typical 
Capacit
y 
Range 

Subscriber Limited Utility 
bears most 

Low 200kW- 
5MW 

Sleeved 
PPA 

High Shared Medium 1MW – 
50MW 

Market-
based 

Medium Customer 
bears most 

High 5MW+ 

4.3.1. Subscriber Models 

Subscriber programs represent the most common 
structure, accounting for approximately 45% of approved 
programs [56]. These programs aggregate customer demand 
to support utility-procured renewable projects, offering 
standardized terms and simplified administration. 
Successful examples include: 

• Xcel Energy's Renewable*Connect (Colorado): Offers 
flexible subscription blocks starting at 200 kW, with 
pricing at approximately $0.02/kWh premium over 
standard rates [57]. The program achieved full 
subscription of 50 MW within six months, prompting 
expansion proposals [39].  

• Puget Sound Energy's Green Direct: Provides 100% 
renewable energy from dedicated wind and solar 
resources at competitive rates, attracting major 
customers including Microsoft, Starbucks, and Target 
[58]. The program's success stems from transparent 
pricing, long-term contracts, and local economic 
benefits [31]. 

4.3.2. Sleeved PPA Structures 

 Sleeved PPA programs enable greater customer choice 
in project selection while maintaining utility administration, 
representing approximately 30% of programs [59]. These 
structures appeal to sophisticated buyers seeking specific 
project attributes: 

• Duke Energy's Green Source Advantage: Facilitates 
direct negotiations between customers and developers, 
with Duke managing interconnection and contract 
administration [60]. The program has enabled over 1,000 
MW of solar development, demonstrating scalability of 
the sleeved model [33].  

• Dominion Energy's Renewable Energy Supply: Allows 
customers to identify specific projects meeting their 
requirements, with Dominion providing transmission 
and balancing services [61]. Despite flexibility, complex 
negotiations have limited participation to large, 
sophisticated buyers [35]. 

4.3.3. Market-Based Rates 

 Market-based programs expose customers to wholesale 
market prices plus renewable premiums, representing 
approximately 15% of programs [62]. While offering 
transparency, market volatility has limited adoption: 

• AEP's Renewable Energy Purchase Tariff: Links 
customer rates to PJM wholesale prices plus renewable 
energy costs, providing direct market exposure [63]. 
Limited uptake reflects customer preference for price 
certainty over market optimization [64]. 

4.3.4. Hybrid and Innovative Models  

Emerging programs combine elements from multiple 
models or introduce novel features: 

• NV Energy's Green Energy Rate: Incorporates time-of-
use pricing with renewable energy procurement, 
encouraging load shifting to maximize renewable 
utilization [65]. This innovation addresses grid 
integration challenges while providing customer value 
[66].  

• Portland General Electric's Green Future Impact: 
Combines subscriber model with community benefits, 
dedicating portion of revenues to low-income 
renewable programs [67]. This approach addresses 
equity concerns while maintaining program viability 
[68]. 

 Pricing Structures and Economics 

Green tariff pricing encompasses multiple components 
that significantly influence program attractiveness and 
viability [69]. Analysis of 30 programs with publicly 
available pricing data reveals common structures and 
ranges: 
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Table 4: Green Tariff Pricing Component 

Component Typical 
Range 

Purpose Impact on 
Adoption 

Renewable 
Premium 

$0.01-
0.04/kWh 

Cover 
above-
market 
renewable 
costs 

Primary 
adoption 
barrier 

Administrativ
e Fee 

$100-
500/mont
h 

Program 
management 
costs 

Minor 
impact 

Transmission 
Charges 

$0.005-
0.02/kWh 

Grid 
integration 
costs 

Varies by 
location 

Risk Premium 0-10% of 
Project 
cost 

Credit, 
developmen
t risks 

Significan
t for small 
customers 

Economic analysis indicates that green tariff participants 
typically experience 5-15% higher electricity costs compared 
to standard service, though long-term contracts provide 
hedge value against future price volatility [70]. Return on 
investment calculations must incorporate multiple factors 
including REC ownership value, sustainability reporting 
benefits, and potential carbon pricing exposure [71]. 

 
Figure 5: Green Tariff Component Ranges 

 Corporate Participation Patterns 

Analysis of participation data reveals distinct patterns in 
corporate adoption of green tariff programs. Technology 
companies represent the largest participant category, 
accounting for approximately 40% of subscribed capacity 
[72]. This concentration reflects both sustainability 
commitments and 24/7 operational profiles that align with 
renewable generation patterns [73]. 

Geographic factors significantly influence participation, 
with companies prioritizing facilities in states offering green 
tariff programs for renewable energy procurement [74]. 

This "green tariff effect" on facility siting decisions 
demonstrates programs' economic development potential 
[75]. 

Company size analysis reveals bimodal distribution, 
with large multinationals (>$10B revenue) accounting for 
45% of participation and regional leaders ($100M-1B) 
representing 20% of the market. Mid-size companies often 
lack resources for complex negotiations while smaller firms 
fall below minimum thresholds [76]. 

 
Figure 6: Green Tariff Participation by Industry Sector 

4.5.1. Equity and Participation Barriers 

 Participation analysis reveals significant barriers for 
small and mid-sized companies: 

 Minimum Load Thresholds: Programs typically require 
100 kW to 10 MW minimum participation, excluding 
approximately 95% of commercial customers. These 
thresholds reflect utilities' administrative cost recovery 
needs but create systematic exclusion. 

Transaction Complexity: Even "simplified" subscriber 
programs require: 

Legal review of 20-50 page contracts 

Financial analysis of 10-20 year commitments 

Internal approval processes taking 3-12 months 

Estimated transaction costs of $50,000-200,000 

These barriers effectively limit participation to 
companies with dedicated sustainability staff and 
significant legal/financial resources, perpetuating 
inequitable access to renewable energy benefits. 

 Renewable Energy Deployment Outcomes 

Quantifying green tariff impacts on renewable energy 
deployment requires careful analysis to establish 
additionality. The claim that green tariffs accelerate 
renewable deployment by 2-3 years is based on comparative 
analysis of: 

• Contracted Capacity: Over 5,700 MW renewable 
capacity contracted through green tariffs as of 2023 [5]. 
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• Operational Projects: Approximately 3,500 MW 
operational, with remaining capacity under 
development [77]. 

• Technology Mix: 65% solar, 30% wind, 5% other 
renewable sources (Figure 7) [78]. 

• Geographic Distribution: Projects concentrated in 
high-resource areas but increasingly spreading to load 
centers [79]. 

 
Figure 7: Renewable Technology Mix in Green Tariff Programs 

4.6.1. Additionality Assessment 

The claim that green tariffs accelerate renewable 
deployment by 2-3 years is based on comparative analysis 
of: 

1. Baseline Scenario: Utility integrated resource plans 
(IRPs) filed before green tariff implementation showing 
planned renewable additions 

2. Actual Deployment: Renewable projects developed 
under green tariff programs 

3. Acceleration Calculation: Difference between IRP-
projected dates and actual commercial operation dates 

For example, Duke Energy's 2018 IRP projected 1,200 
MW of solar additions by 2028. However, Green Source 
Advantage program contracts signed in 2019-2020 brought 
800 MW online by 2022—6 years ahead of IRP schedule. 
Similar patterns across 15 utilities with sufficient data 
suggest average acceleration of 2.4 years, with assumptions: 

• Utilities would eventually add renewable capacity for 
economic/RPS compliance reasons 

• Corporate demand signals accelerate investment 
decisions 

• Regulatory approval processes remain constant 

Approximately 70% of green tariff programs require new 
renewable resources, while others allow existing resources 
under specific conditions [80]. Even programs allowing 
existing resources often drive incremental renewable 
development by freeing RPS capacity for system needs [81]. 

 

 Stakeholder Perspectives 

Comprehensive stakeholder analysis reveals diverse 
perspectives on green tariff effectiveness and design 
priorities. Figure 8 presents a comparative analysis of 
stakeholder priorities across four key groups, highlighting 
areas of alignment and divergence. The analysis reveals 
significant tensions, particularly between utility revenue 
objectives and advocate demands for additionality, and 
between corporate preferences for simplicity and regulatory 
requirements for complexity. 

 
Figure 8: Stakeholder Priority Comparison 

4.7.1. Corporate Buyers 

Corporate participants emphasize several key priorities [82]: 

• Additionality: Strong preference for new renewable 
projects that demonstrate clear environmental impact. 

• Price Stability: Long-term fixed pricing to support 
budget planning and hedge against volatility. 

• Flexibility: Ability to adjust participation levels as 
operations change. 

• Simplicity: Streamlined processes compared to bilateral 
PPAs. 

• REC Ownership: Retention of environmental attributes 
for sustainability reporting. 

Interviews with sustainability managers reveal that 
green tariffs often serve as entry points for renewable 
procurement, with companies later pursuing direct PPAs as 
expertise develops [83]. 

4.7.2. Utilities 

Utility perspectives reflect balancing multiple objectives 
[84]: 

• Revenue Stability: Long-term contracts with 
creditworthy customers enhance financial planning 

• Customer Retention: Green tariffs help retain large 
customers considering competitive options 

• Regulatory Compliance: Programs must satisfy 
regulatory requirements while maintaining flexibility 
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• Operational Integration: Renewable resources must 
integrate smoothly with system operations 

• Risk Management: Appropriate allocation of 
development, market, and credit risks 

Utility interviews indicate growing recognition of green 
tariffs as strategic offerings that enhance competitiveness 
and customer relationships [85]. 

4.7.3. Regulators 

Public utility commissions express varied concerns [86]: 

• Ratepayer Protection: Ensuring non-participants don't 
subsidize program costs. 

• Market Competition: Balancing utility offerings with 
competitive market development. 

• Environmental Benefits: Verifying genuine 
environmental improvements. 

• Economic Development: Leveraging programs for job 
creation and investment. 

• Equity Considerations: Addressing accessibility for 
smaller customers and communities. 

Regulatory orders increasingly emphasize performance 
metrics and regular program evaluation to ensure public 
interest alignment [87]. 

4.7.4. Environmental Advocates 

Environmental organizations maintain critical 
perspectives [88]: 

• Additionality Requirements: Advocating for strict new 
resource requirements 

• Interaction with RPS: Ensuring programs expand 
rather than reallocate renewable energy 

• Community Benefits: Promoting local hiring and 
community investment requirements 

• Environmental Justice: Addressing historical inequities 
in energy infrastructure siting 

• Transparency: Demanding public reporting of program 
outcomes and impacts 

Environmental group positions have evolved from initial 
skepticism toward conditional support for well-designed 
programs [89]. 

5. Discussion 

 Key Success Factors 

Analysis across multiple programs identifies critical 
success factors for effective green tariff implementation, 
with specific design features strongly correlated with 
positive outcomes: 

5.1.1. Regulatory Framework 

Programs with explicit legislative authorization show 3x 
faster deployment than those relying solely on regulatory 

approval [90]. States with clear legislative authorization for 
green tariffs experience faster program development and 
higher participation rates [91]. Regulatory certainty 
regarding cost recovery, program modification procedures, 
and performance metrics enables utilities to invest in 
program infrastructure [92]. 

Successful regulatory frameworks balance multiple 
objectives through [93]: 

• Performance-based metrics linking utility incentives to 
program outcomes 

• Regular review cycles enabling iterative improvements 
• Stakeholder engagement processes ensuring diverse 

input 
• Clear cost allocation principles protecting non-

participants 

5.1.2. Program Design Flexibility 

Programs offering multiple participation options and 
contract structures attract broader customer participation 
[94]. Analysis reveals clear correlations between specific 
design features and program success: 

Flexibility Features Correlated with High Uptake 
(>80% subscription): 

• Multiple contract term options (5, 10, 15, 20 years): +35% 
participation 

• Partial requirement serving (25%, 50%, 75%, 100%): 
+28% participation 

• Technology choice options: +22% participation 
• Transferability provisions: +18% participation 

5.1.3. Pricing Competitiveness 

Programs priced within 10% of standard service achieve 
85% subscription rates versus 45% for higher-premium 
programs [95]. Successful programs achieve 
competitiveness through: 

• Economies of scale in procurement 
• Efficient risk allocation between parties 
• Transparent pricing structures 
• Value stacking of multiple benefit streams 
Pricing Structures Correlated with Rapid Subscription: 

• Fixed premium structures: 6-month average to full 
subscription 

• Market-indexed pricing: 18-month average to full 
subscription 

• Hybrid pricing options: 9-month average to full 
subscription. 

5.1.4. Stakeholder Alignment 

Programs developed through 6+ month stakeholder 
processes show 40% higher satisfaction scores [96]. Best 
practices include: 
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• Early engagement with potential customers to 
understand needs 

• Regular dialogue with environmental advocates 

• Transparent reporting of program outcomes 

• Adaptive management responding to feedback 

 Market Transformation through Product Differentiation 

Green tariffs catalyze utility transformation from 
commodity providers to energy service companies [97]. This 
evolution includes fundamental shifts in how utilities 
approach their business model: 

Customer Segmentation refers to utilities dividing their 
customer base into distinct groups based on energy needs, 
sustainability goals, and willingness to pay for renewable 
energy. Green tariffs enable utilities to serve 
environmentally-conscious customers separately from 
price-sensitive customers, optimizing service offerings for 
each segment. For example: 

• Price-sensitive customers: Continue receiving standard 
system mix electricity 

• Sustainability-focused customers: Pay premium for 
100% renewable energy 

• Balanced approach customers: Choose 25% or 50% 
renewable options 

Product Differentiation involves utilities offering varied 
electricity products beyond standard service. Through green 
tariffs, utilities can offer: 

• Standard electricity service (system mix) 

• Partial renewable options (25%, 50% renewable) 

• 100% renewable energy service 

• 24/7 carbon-free energy matching 

• Renewable energy with local project selection 

• Community solar participation options 

This differentiation transforms utilities from commodity 
providers to energy service companies, similar to how 
telecommunications evolved from basic phone service to 
diverse communication packages.  

 Government Subsidies and Renewable Energy Support 

Various government subsidies support renewable 
energy deployment and interact with green tariff programs: 

Federal Level: 

• Investment Tax Credit (ITC): 30% tax credit for solar 
projects through 2032 

• Production Tax Credit (PTC): $0.0275/kWh for wind 
projects (2024 value) 

• Modified Accelerated Cost Recovery System 
(MACRS): 5-year depreciation for renewable assets 

• USDA REAP Grants: Up to 50% funding for rural 
renewable projects 

• DOE Loan Guarantee Program: Federal backing for 
innovative energy projects 

• Clean Energy Investment Tax Credits: Extended and 
expanded under the Inflation Reduction Act 

State Level Examples: 

• Renewable Energy Credits (RECs): Market value $5-
50/MWh depending on state 

• Property tax exemptions: 100% exemption in 38 states 
for renewable energy equipment 

• Sales tax exemptions: Equipment purchases exempt in 
25 states 

• Grant programs: $0.10-1.00/W for solar installations in 
leading states 

• Net metering policies: Retail rate credit for excess 
generation in 41 states 

• Green banks: State-sponsored financing in 15 states 

 These subsidies reduce renewable energy costs by 20-
40%, enabling green tariffs to offer competitive pricing while 
maintaining utility profitability. However, subsidy 
dependence creates policy risk that programs must address 
through contract structures. The interaction between 
subsidies and green tariffs creates both opportunities and 
challenges: 

Opportunities: 

• Lower renewable costs enable competitive green tariff 
pricing 

• Subsidy pass-through can reduce customer 

premiums 

• Tax equity financing expands project development 
capacity 

Challenges: 

• Policy uncertainty affects long-term contract pricing 

• Subsidy phase-outs may increase future costs 

• Complex interactions with utility rate structures 

 Barriers and Mitigation Strategies 

Despite growing success, significant barriers continue 

limiting green tariff effectiveness. Table 5 maps identified 
barriers to specific mitigation strategies: 
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Table 5: Barriers and Corresponding Mitigation Strategies 

Barriers Impact Mitigation 
Strategy 

Implementati
on Example 

Capacity 
Constraints 

Programs 
reach full 
subscripti
on quickly 

Phased 
expansion, 
reservation 
systems 

Xcel’s multi-
tranche 
approach 

Complexity Deters 
smaller 
customers 

Standardiz
ed 
contracts, 
online 
platforms 

PSE’s 
streamlined 
enrollment 

Additionalit
y Concerns 

Questions 
about 
environme
ntal 
impact 

New 
resource 
requiremen
ts, time 
matching 

Google’s 24/7 
CFE 
standards 

Transaction 
Costs 

High 
administra
tive 
burden 

Aggregatio
n options, 
technical 
assistance 

CEBA buyer 
coalitions 

5.4.1. Capacity Constraints 

Limited program capacity remains the primary barrier, 
with many programs fully subscribed shortly after launch 
[98]. Mitigation strategies include: 

• Phased Expansion: Planning multiple tranches based 
on demonstrated demand 

• Reservation Systems: Allowing customers to signal 
future interest 

• Portfolio Approaches: Developing diverse project 
pipelines 

• Regional Coordination: Aggregating demand across 
utility territories 

5.4.2. Complexity and Transaction Costs 

Program complexity deters smaller customers and 
increases administrative burden [99]. Simplification 
strategies include: 

• Standardized Contracts: Reducing negotiation 
requirements 

• Online Platforms: Automating enrollment and 
management 

• Aggregation Options: Enabling smaller customers to 
participate jointly 

• Technical Assistance: Providing education and 
support services 

5.4.3. Additionality Concerns 

Ensuring genuine environmental benefits remains 
contentious [100]. Strengthening additionality involves: 

• New Resource Requirements: Mandating recently 
constructed projects 

• Geographic Proximity: Prioritizing local renewable 
development 

• Time Matching: Aligning generation with 
consumption patterns through hourly matching rather 
than annual netting 

• Impact Measurement: Quantifying emission 
reductions and grid benefits 

Time matching represents an evolution from traditional 
annual REC accounting to hourly or sub-hourly matching of 
renewable generation with consumption. This approach, 
pioneered by Google's 24/7 carbon-free energy initiative, 
ensures that renewable energy is actually available when 
consumed, addressing criticism that annual matching 
allows fossil fuel use during non-renewable generation 
periods [101]. 

 Market Transformation Potential 

Green tariffs demonstrate significant potential for 
transforming electricity markets and accelerating 
decarbonization: 

5.5.1. Utility Business Model Evolution 

 Green tariffs catalyze utility transformation from 

commodity providers to energy service companies [97]. This 
evolution includes: 

• Customer segmentation based on sustainability 
preferences 

• Product differentiation beyond basic electricity service 

• Partnership approaches replacing traditional vendor 
relationships 

• Performance-based metrics supplementing cost-of-
service regulation 

5.5.2. Corporate Procurement Maturation 

Programs serve as stepping stones for corporate 
renewable energy capability development [102], [103]. 
Maturation pathway typically involves: 

1. Initial REC purchases for basic compliance 

2. Green tariff participation for simplified renewable 
procurement 

3. Direct PPA negotiation as expertise develops 
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4. Portfolio optimization across multiple procurement 
mechanisms 

5.5.3. Regulatory Innovation 

Success with green tariffs encourages broader regulatory 
innovation [104]: 

• Performance-based ratemaking incorporating 
environmental metrics 

• Integrated resource planning prioritizing customer 
preferences 

• Market mechanisms within regulated frameworks 

• Regional coordination of renewable development 

 Future Directions 

Several trends shape the future evolution of green tariff 
programs. Figure 9 presents three growth scenarios for 
green tariff capacity through 2030, with conservative 
estimates projecting 9,200 MW, moderate scenarios 
suggesting 20,000 MW, and aggressive projections reaching 
35,000 MW based on current market trends and policy 
developments. 

5.6.1. 24/7 Carbon-Free Energy 

Next-generation programs increasingly focus on 
temporal matching between renewable generation and 
consumption [101]. Google's partnership with NV Energy 
for geothermal-powered data centers exemplifies this trend 
[104]. Achieving 24/7 matching requires: 

• Diverse renewable portfolios including baseload 
resources  

• Advanced storage integration  

• Sophisticated load management  

•  Real-time tracking systems 

 
Figure 9: Projected Green Tariff Growth Scenarios (2024-2030) 

Beyond the technical requirements, 24/7 matching 
addresses fundamental grid integration challenges. As 

renewable penetration increases, the value of generation 
that matches consumption patterns increases, making 
baseload renewables like geothermal and renewable-plus-
storage configurations increasingly important [105]. 

5.6.2. Equity and Access 

 Growing emphasis on expanding access beyond large 
corporations includes [106]: 

• Community solar integration enabling smaller customer 
participation  

• Environmental justice provisions ensuring equitable 
benefit distribution  

• Workforce development requirements creating local 
employment  

• Disadvantaged community investment mandates 

5.6.3. Technology Integration 

Emerging technologies enhance program capabilities 
[105]: 

• Blockchain systems for REC tracking and verification  
• Artificial intelligence for load-generation matching 

optimization  
• Virtual power plants aggregating distributed resources  
• Advanced forecasting improving renewable integration 

5.6.4. Carbon Market Integration 

Convergence between renewable procurement and 
carbon markets creates new opportunities [107]: 

• Carbon credit generation from additional renewable 
deployment  

• Integration with compliance carbon markets  
• Premium products for net-zero commitments  
• International linkages supporting global corporations 
6. Policy Implications and Recommendations 

 For Policymakers and Regulators 

• Establish Clear Legislative Frameworks: States should 
enact legislation explicitly authorizing green tariffs and 
providing regulatory guidance [108]. Model legislation 
should address cost allocation, program parameters, 
and performance metrics.  

• Implement Performance-Based Incentives: Link utility 
revenue opportunities to program success metrics 
including capacity deployed, customer satisfaction, and 
environmental outcomes [109].  

• Mandate Regular Program Evaluation: Require periodic 
reviews examining additionality, cost-effectiveness, and 
market impacts with stakeholder input [110].  
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• Coordinate Regional Approaches: Develop interstate 
coordination mechanisms enabling larger renewable 
projects and reducing transaction costs [111].  

• Address Equity Concerns: Incorporate provisions 
ensuring program benefits extend to disadvantaged 
communities through job creation, bill savings, and 
environmental improvements [112]. 

 For Utilities 

• Develop Portfolio Approaches: Offer multiple program 
options catering to diverse customer needs and 
capabilities [113].  

• Invest in Digital Infrastructure: Deploy modern 
platforms enabling efficient program administration 
and customer engagement [114].  

• Build Internal Capabilities: Develop expertise in 
renewable project development, customer engagement, 
and sustainability services [115].  

• Engage Proactively with Stakeholders: Establish 
ongoing dialogue with customers, regulators, and 
advocates to refine program design [116].  

• Plan for Scale: Design programs with expansion 
capability to meet growing demand efficiently [117]. 

 For Corporate Buyers 

• Assess Procurement Options Holistically: Evaluate 
green tariffs alongside PPAs, on-site generation, and 
other mechanisms for optimal portfolio [118].  

• Engage Early in Program Development: Participate in 
utility stakeholder processes to ensure programs meet 
corporate needs [119].  

• Collaborate with Peers: Form buyer coalitions to 
aggregate demand and influence program design [120].  

• Demand Transparency: Require clear reporting on 
environmental impacts, pricing components, and 
program performance [121].  

• Consider Long-term Strategy: Use green tariffs as part 
of comprehensive decarbonization pathway including 
efficiency and electrification [122]. 

7. Limitations 

This review faces several limitations that should guide 
interpretation of findings: 

 Attribution Challenges 

Determining causality between green tariffs and 
renewable deployment remains complex due to: 

• Multiple simultaneous drivers: RPS requirements, 
economic factors, and corporate demand all influence 
renewable development. 

• Counterfactual uncertainty: Impossible to know 
definitively what would have happened without green 
tariffs. 

• Data limitations: Utilities rarely disclose internal 
decision-making processes that would clarify 
attribution. 

 Geographic Scope 

The U.S.-focused analysis limits global applicability 
because: 

• Regulatory structures differ: Other countries have 
fundamentally different utility regulation models 

• Market designs vary: Mix of regulated vs. competitive 
markets differs internationally 

• Cultural contexts matter: Corporate sustainability 
drivers vary by region 

 Temporal Constraints 

Limited long-term data (most programs <5 years old) 
prevents assessment of: 

• Sustained transformation: Whether initial market 
changes persist over time 

• Contract performance: How well long-term agreements 
hold up 

• Regulatory evolution: How programs adapt through 
multiple regulatory cycles 

 Data Availability 

Regional bias exists in available data, with well-
documented programs in progressive states potentially 
overrepresented while newer or smaller programs lack 
comprehensive documentation. 

8. Conclusions 

Green tariffs have emerged as a significant mechanism 
for accelerating corporate renewable energy adoption in 
traditionally regulated electricity markets. This 
comprehensive review demonstrates that well-designed 
programs can effectively bridge the gap between corporate 
sustainability ambitions and utility service offerings, 
facilitating over 5,700 MW of renewable energy 
procurement while maintaining regulatory oversight and 
ratepayer protection. 

The analysis reveals that successful programs share 
common characteristics including flexible design options, 
competitive pricing structures (within 10% of standard 
service), stakeholder alignment through extensive 
consultation processes, and clear additionality 
requirements. Programs incorporating these features show 
2-3x higher subscription rates and faster deployment 
timelines. The evidence suggests that green tariffs can 
accelerate renewable deployment by 2-3 years compared to 
utility planning processes alone, but only when designed 
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with strong additionality requirements, flexible 
participation options, and competitive pricing structures. 

However, significant challenges remain. Capacity 
constraints limit program growth, with many reaching full 
subscription within 6 months. Complexity and high 
transaction costs systematically exclude small and medium 
enterprises, raising equity concerns. Questions persist about 
whether all programs achieve genuine additionality beyond 
regulatory requirements. 

As the energy transition accelerates, green tariffs 
represent more than transitional instruments; they catalyze 
fundamental changes in utility business models, regulatory 
frameworks, and corporate procurement strategies. The 
evolution toward 24/7 carbon-free energy matching, 
increased emphasis on equity and community benefits, and 
integration with emerging technologies and carbon markets 
suggests that green tariffs will continue playing crucial roles 
in decarbonization efforts. 

For green tariffs to realize their full potential as market 
accelerators—the central question of this review—
coordinated action is needed across stakeholder groups. 
Policymakers must establish supportive frameworks 
balancing multiple objectives, utilities must innovate in 
program design and implementation, and corporate buyers 
must engage constructively in program development while 
maintaining ambitious sustainability goals. Environmental 
advocates and community organizations play essential roles 
in ensuring programs deliver genuine benefits equitably 
distributed. 

Future research should focus on longitudinal studies 
tracking long-term program impacts, development of 
standardized additionality metrics, and exploration of 
innovative designs to expand access beyond large 
corporations. As climate urgency intensifies and corporate 
commitments expand, optimizing green tariff design 
represents a critical opportunity to accelerate the clean 
energy transition while maintaining reliable, affordable 
electricity service. 

The transition to a decarbonized economy requires all 
available tools and mechanisms. Green tariffs, despite 
limitations, demonstrate that innovative regulatory and 
market solutions can unlock significant renewable energy 
deployment while serving diverse stakeholder interests. 
Continued refinement and expansion of these programs will 
play a vital role in achieving climate goals while maintaining 
economic competitiveness and social equity. 
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ABSTRACT: Public sector IT infrastructures that underpin essential services, such as transportation
and law enforcement, are becoming progressively susceptible to advanced cyber attacks and encounter
heightened regulatory demands, especially in accordance with CJIS and NIST standards. Regrettably,
existing methods for compliance enforcement and patch management are primarily manual or only
slightly automated, thereby constraining their scalability, precision, and adaptability. These problems
underscore the necessity for more sophisticated solutions that can improve the efficiency and efficacy of
cybersecurity operations in mission-critical settings. This paper presents an AI-augmented cybersecurity
system to mitigate these limitations through the integration of compliance detection, vulnerability
prioritization, automated remediation, and disaster recovery. The system employs a hybrid methodology
for compliance detection, integrating rule-based logic with XGBoost-driven anomaly categorization,
and utilizes telemetry data to highlight vulnerabilities. It automates patch deployment with SCCM and
PowerShell, and integrates predictive disaster recovery orchestration with real-time audit dashboards.
In a simulated government network with 10,000 varied endpoints, the framework exhibited a 92%
accuracy in compliance detection, a 40% reduction in patch deployment time, and a 70% drop in
disaster recovery delay. The enhancements, along with the implementation of interactive dashboards
for ongoing monitoring, indicate that the suggested methodology can markedly enhance the scalability,
resilience, and auditability of cybersecurity operations. This presents both theoretical significance and
practical advantages for forthcoming public sector applications, so becoming a beneficial enhancement
to cybersecurity in critical infrastructure settings.

KEYWORDS: AI-driven cybersecurity, Endpoint compliance, Vulnerability prioritization, NIST, Auto-
mated patching, CJIS, Disaster recovery, Public sector infrastructure, Telemetry analytics

1. Introduction

Government IT infrastructures that facilitate transporta-
tion, law enforcement, and public services are increasingly
vulnerable to advanced cyber assaults. In 2024, public sector
breaches compromised over 22 million sensitive documents
globally [1], with compliance failures constituting over 30%
of the incidents [2]. Maintaining the confidentiality, in-
tegrity, and availability of these systems is vital due to the
key services they provide. Regulatory frameworks, such
the Criminal Justice Information Services (CJIS) Security
Policy and the National Institute of Standards and Tech-
nology (NIST) Cybersecurity Framework, impose rigorous
controls to safeguard sensitive data and ensure operational
continuity.

Notwithstanding these obligations, current compliance
verification and remediation procedures predominantly de-
pend on manual audits and limited automation technologies.
These methods are inefficient, susceptible to errors, and chal-
lenging to implement across varied contexts with varying
endpoints, operating systems, and network circumstances.
As a result, businesses encounter difficulties in swiftly de-
tecting non-compliance, prioritizing vulnerabilities, and
coordinating effective responses.

The advent of artificial intelligence (AI) and machine
learning (ML) presents novel prospects for the automation
and augmentation of cybersecurity operations. AI-driven
methodologies can enhance compliance detection precision,
dynamically prioritize vulnerabilities based on contextual
data, and orchestrate automated patching and predictive
recovery processes. Current methodologies generally tackle
these capacities separately, lacking cohesive frameworks
that amalgamate compliance enforcement, risk-informed
decision-making, and operational automation in a verifiable
and scalable fashion.

Recent studies highlight these disparities. In [3], the
authors demonstrated that AI-driven compliance automa-
tion can diminish manual labor while ensuring regulatory
compliance in governmental contexts; nonetheless, their
methodology was deficient in real-time vulnerability priori-
tization. In [4], the authors investigated hybrid rule-based
and machine learning approaches to enhance endpoint secu-
rity, albeit lacking integrated recovery orchestration. Recent
advancements suggest adaptable frameworks, although they
are constrained by either scalability or compliance traceabil-
ity, underscoring the necessity for a holistic solution.

This paper tackles these difficulties by introducing an AI-
enhanced cybersecurity solution that incorporates several
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essential components. It employs a hybrid compliance en-
forcement strategy that integrates XGBoost-based anomaly
detection with policy-driven logic, facilitating enhanced
accuracy and scalability in compliance management.

Secondly, the solution employs telemetry-driven, risk-
sensitive prioritization of vulnerabilities, guaranteeing that
the most critical vulnerabilities are fixed initially.

Third, dynamic patch management is executed using
SCCM and PowerShell, optimizing the patch deployment
process and minimizing downtime. The solution incorpo-
rates proactive disaster recovery, real-time anomaly detec-
tion, and interactive audit dashboards that ensure ongoing
visibility and control over the security posture of the infras-
tructure.

2. Related Work

Prior research has extensively explored the application of
AI in cybersecurity domains such as vulnerability manage-
ment and incident response automation. In [5], the authors
developed machine learning models to estimate exploit like-
lihood and prioritize patching accordingly, demonstrating
improved remediation efficiency. In [6], the researchers
presented AI-assisted pipelines that accelerate patch deploy-
ment through intelligent orchestration and automation. In
[7], the authors investigated AI-driven orchestration of disas-
ter recovery workflows, focusing on minimizing downtime
through predictive failover triggers. However, these studies
often lack integration with formal compliance requirements
such as CJIS and NIST, and seldom address the end-to-end
automation of compliance enforcement, patch management,
and disaster recovery within a single unified system.

Hybrid compliance detection approaches that combine
rule-based validation with anomaly detection have been
proposed in industrial control system contexts [8], yet their
adaptation to complex government endpoint environments
remains limited. Additionally, telemetry-driven risk scoring
frameworks for vulnerability prioritization have gained trac-
tion [9], offering improved contextual awareness over static
severity metrics. Nonetheless, these frameworks rarely
incorporate adaptive feedback loops to inform dynamic
patch scheduling and remediation workflows. Our pro-
posed framework bridges these gaps by delivering a holistic,
auditable platform designed for large-scale public sector
infrastructure security.

Authors in [3] explored AI techniques for automating
compliance workflows in public sector IT, emphasizing the
challenges of heterogeneous endpoint environments. In [10],
the authors proposed dynamic vulnerability scoring mod-
els incorporating real-time telemetry data, aligning closely
with our risk-based prioritization approach. Authors in [11]
investigated machine learning methods to orchestrate auto-
mated patch pipelines, improving remediation efficiency.

In [12], the researchers demonstrated predictive disas-
ter recovery using anomaly detection on system telemetry,
effectively reducing failover time. In [13], the detailed
best practices for designing interactive cybersecurity dash-
boards, underscoring the importance of auditability and
visualization that inform our dashboard design. In [14], the
authors discussed federated learning approaches for secure
cross-agency collaboration, a promising avenue for future
extensions of our framework.

Table 1: Concise Comparison of Prior Works and Proposed Framework

Study Compliance
Integration

Vulnerability
Prioritiza-
tion

Automation
Scope

[5] None ML-based ex-
ploit predic-
tion

Patch prioriti-
zation only

[6] None Static CVSS
scoring

Patch deploy-
ment

[7] None None Predictive
failover

[3] Rule-based
(CJIS/NIST)

None Compliance
workflows

[9] None Telemetry-
based scor-
ing

Prioritization
logic

Proposed
Framework

Rule-based +
ML (NIST)

CVSS +
Exploit +
Telemetry

End-to-end
(compliance,
patching,
recovery)

3. Methodology

3.1. Framework Overview

As depicted in Figure 1, the proposed system consists of
four interrelated modules that jointly improve cybersecurity
posture via continuous monitoring, intelligent prioritiza-
tion, and automated remediation. In the final version, a
lifecycle flow chart that summarizes the full end-to-end
interaction of these modules will be added to support visual
understanding.

Figure 1: AI-Augmented Framework Architecture

The initial module executes hybrid compliance detection
by combining deterministic rule-based evaluations conform-
ing to CJIS and NIST standards with a supervised machine
learning classifier trained on varied endpoint state data. This
combination facilitates both explicit policy enforcement and
the identification of novel misconfigurations.

The second module employs a risk-based vulnerability
prioritization method that integrates static severity scores,
indicators of exploit availability, and telemetry-derived op-
erational risk measures to calculate a composite risk score.
This strategy guarantees that remediation operations priori-
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tize vulnerabilities that present the greatest actual risk to
mission-critical services.

The third module manages automated patch deployment
operations that adjust scheduling and execution according
to risk scores and endpoint usage patterns. Insights from
deployment results consistently guide scheduling decisions
to optimize patching efficiency while reducing service inter-
ruptions.

The predictive disaster recovery module utilizes teleme-
try anomaly detection to proactively initiate failover and
recovery processes, significantly minimizing downtime and
expediting incident response. A consolidated audit and
visualization dashboard consolidates data from all mod-
ules, offering real-time insights, compliance reports, and
operational transparency to security teams and regulatory
auditors.

3.2. Hybrid Compliance Detection

To ensure adherence to CJIS and NIST rules, we formal-
ize baseline configurations and security requirements via
automated PowerShell scripts and CMDB (Configuration
Management Database) queries. These rule-based verifica-
tions assess particular registry keys, patch levels, firewall
and proxy settings, and installed program versions deemed
essential for compliance.

Simultaneously, a supervised machine learning classifier
utilizing XGBoost is trained on labeled endpoint snapshots
that encompass comprehensive system state information.
These elements encompass security-related registry entries,
installed patch identifiers, software version metadata, net-
work configuration parameters, and recent telemetry data,
including system event logs and process statistics. The ML
classifier facilitates the identification of both recognized
compliance infractions and novel misconfigurations or un-
usual conditions that could signify security threats.

By amalgamating results from both rule-based and ma-
chine learning detectors, the framework ascertains a com-
prehensive compliance status for each endpoint, enhancing
overall detection precision and diminishing false negatives.

3.3. XGBoost Classifier and Telemetry-Based Risk Assessment

The framework utilizes a supervised machine learning
model based on the XGBoost algorithm to identify anoma-
lies in endpoint configurations and system behavior, in
addition to rule-based compliance checks. The model is
trained on a labeled dataset of endpoint telemetry snapshots,
including both compliant and non-compliant conditions.

Anomaly Threshold Calibration: XGBoost generates a
probability score for every prediction. A threshold of
0.43 was determined utilizing the Youden Index on the
ROC curve to enhance sensitivity and specificity. Any
endpoint beyond this threshold is identified as possibly
non-compliant for additional examination or automatic
correction.

Model Training and Evaluation: The dataset was parti-
tioned into 80% for training and 20% for testing, employing
stratified 5-fold cross-validation for hyperparameter opti-
mization.

Feature Selection and Input Variables: A total of 48
telemetry features were initially extracted, encompassing
security-related registry entries, installed patch identifiers,
software version metadata, network configurations, event
log patterns, and system resource utilization. Recursive
Feature Elimination (RFE) and mutual information scores
were utilized to identify the top 20 features. Features of
paramount significance included:

• Obsolete antivirus definitions.
• Absence of essential KB-level updates.
• Unauthorized modifications to the registry (e.g., dis-

abled firewalls).
• Anomalous frequency of PowerShell executions.
• Abrupt increases in failed login attempts.

3.4. Risk-Based Vulnerability Prioritization

Each identified vulnerability 𝑣 is assigned a composite
risk score 𝑅𝑣 defined as follows:

𝑅𝑣 = 𝛼 × CVSS𝑣 + 𝛽 × EA𝑣 + 𝛾 × Telemetry Risk𝑣 (1)
where

• CVSS𝑣 is base severity score derived from the National
Vulnerability Database (NVD).

• Exploit Availability𝑣 is a binary indicator of vulnera-
bility exploit code in use.

• Telemetry Risk𝑣 is a dynamic score aggregating real-
time endpoint metrics such as unusual CPU utilization
spikes, anomalous network connections, system er-
rors, and recent suspicious events associated with the
affected software or system component.

The weights 𝛼 = 0.4, 𝛽 = 0.3, and 𝛾 = 0.3 were empiri-
cally determined through performance optimization using
previous vulnerability incident data. This hybrid grading
methodology ensures that remediation efforts address both
serious vulnerabilities and those currently being exploited
or causing operational instability.

3.5. Predictive Disaster Recovery

To proactively minimize downtime, constant telemetry
from CPU, memory, disk I/O, and network interfaces is mon-
itored with threshold-based anomaly detectors calibrated
from historical baseline behaviors. Identified abnormalities
indicative of impending system failure or breach activate au-
tomated failover scripts that implement established recovery
protocols, encompassing virtual machine relocation, service
restarts, and network rerouting. This predictive automation
substantially reduces incident response time and lessens
the impact on mission-critical services by facilitating swift,
autonomous recovery.

3.6. Visualization Dashboard

Developed with Python Dash and Plotly, integrates
telemetry and operational data into clear visualizations
and reports. The dashboard displays endpoint compliance
heatmaps that emphasize non-compliant systems and track
compliance status over time. Vulnerability prioritization
lists and risk trend graphs enable security teams to concen-
trate on the most critical threats.
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Patch deployment schedules, success metrics, and failure
occurrences are monitored to assess remediation efficacy.
Disaster recovery incidents, failover durations, and related
downtime data provide clarity on the robustness of the
system. Thorough audit records of all automated actions
provide meticulous forensic investigation and regulatory
reporting, guaranteeing operational openness and account-
ability. The dashboard design follows the recommendations
of [13], integrating interactive graphic components that offer
both a general summary and detailed exploration options.

3.7. Visualization Dashboard

Developed with Python Dash and Plotly, integrates
telemetry and operational data into clear visualizations
and reports. The dashboard displays endpoint compliance
heatmaps that emphasize non-compliant systems and track
compliance status over time. Vulnerability prioritization
lists and risk trend graphs enable security teams to concen-
trate on the most critical threats.

Patch deployment schedules, success metrics, and failure
occurrences are monitored to assess remediation efficacy.
Disaster recovery incidents, failover durations. The dash-
board design follows the recommendations of [13], integrat-
ing interactive graphic components that offer both a general
summary and detailed exploration options.

4. Experimental Evaluation

4.1. Setup

A virtualized testbed simulating 10,000 endpoints was
built using VMware ESXi, Docker containers, and automated
snapshot provisioning to reflect diverse OS and security
profiles typical of government IT environments. PowerShell
was used to script anomaly injections into telemetry (e.g.,
simulated CPU spikes, failed authentications, network de-
lays). Baseline configurations were defined using CJIS and
NIST templates.

4.2. Results

4.2.1. Compliance Detection

The hybrid compliance detection method attained an
overall accuracy of 92%, surpassing the 78% accuracy of
solo rule-based techniques. The incorporation of machine
learning lowered false negative rates by 15%, facilitating
the earlier identification of nuanced misconfigurations over-
looked by manual inspections.

4.2.2. Vulnerability Prioritization

The telemetry-enhanced risk assessment accurately clas-
sified 85% of vulnerabilities with active exploits into the
highest priority category. This dynamic prioritizing fa-
cilitated expedited remediation of critical hazards, hence
decreasing the exposure window.

4.2.3. Classification Metrics

The confusion matrix demonstrates the model’s profi-
ciency in accurately differentiating between compliant and

non-compliant endpoints, and the ROC curve emphasizes
its discriminative efficacy.

Figure 2: Compliance Detection Accuracy

Figure 3: Performance metrics of the compliance detection classifier: (left)
Confusion matrix showing class prediction accuracy; (right) ROC curve
illustrating model discriminative performance (AUC = 0.958).

4.2.4. Patch Deployment

Automation decreased the average patch deployment
time from 48 hours with manual scheduling to 29 hours,
signifying a 40% enhancement. The overall patch success
rate rose from 88% to 95%, indicating enhanced reliability
and prompt remediation., as shown in Figure 4.
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Figure 4: Patch Deployment Time Comparison

4.2.5. Disaster Recovery

Predictive failover automation reduced average down-
time during failure situations from 30 minutes to 9 minutes,
representing a 70% drop. This swift recovery ability en-
hances service availability and facilitates mission-critical
continuity.

Figure 5: Disaster Recovery Failover Time Reduction

4.3. Summary Table

Table 2: Summary of Key Compliance and Performance Metrics

Metric Before Au-
tomation

After Au-
tomation

Improvement
(%)

Compliance
Detection
Accuracy

78% 92% +18%

Mean Patch
Deploy-
ment Time

48 hours 29 hours -40%

Patch Suc-
cess Rate

88% 95% +8%

Disaster
Recovery
Time

30 minutes 9 minutes -70%

The experimental findings indicate that the use of hybrid
compliance detection significantly enhances the discovery

of policy breaches, including new misconfigurations fre-
quently overlooked by conventional rule-based systems. The
telemetry-augmented vulnerability prioritization strategy
allows security teams to concentrate remediation efforts
on vulnerabilities with the greatest operational risk and
chance of exploitation, thereby enhancing efficiency and
minimizing risk exposure.

In future versions, pseudocode examples for telemetry
scoring and patch orchestration logic (e.g., XGBoost feature
weights, ITSM ticket generation conditions) will be provided
to enhance reproducibility.

Figure 6: Top Feature Importances from the XGBoost Model

Automated patch deployment methods enhance reme-
diation by adjusting to endpoint operational contexts and
feedback, optimizing throughput and reducing service dis-
ruption. Predictive disaster recovery automation substan-
tially reduces failover durations, hence improving system
resilience and availability essential for government services.

However, numerous obstacles persist. The complete-
ness and quality of telemetry can significantly differ among
endpoints, affecting the efficacy of anomaly identification.
Enhancing the dashboard and backend services for exten-
sive, geographically dispersed contexts necessitates more
optimization.

Ongoing adjustment of model parameters and incorpo-
ration of feedback is crucial for adapting to changing threats
and system dynamics. Future research will explore the
federated learning methodologies as suggested by [14] to
facilitate the secure dissemination of threat intelligence and
compliance frameworks among government entities while
safeguarding sensitive information.

5. Conclusion

This study introduces a comprehensive AI-enhanced
cybersecurity architecture that amalgamates hybrid compli-
ance detection, telemetry-driven vulnerability prioritization,
automated patching, and predictive catastrophe recovery,
specifically designed for mission-critical government infras-
tructure.

The experimental evaluation of a large-scale simulated
environment shows substantial improvements in compli-
ance accuracy, remedial speed, and failover efficiency. The
system’s auditability and operational transparency establish
it as a viable, scalable solution to improve cyber-resilience
and regulatory compliance in public sector IT settings.
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Limitations of the current work include reliance on
simulated telemetry data, uniform endpoint behavior as-
sumptions, and lack of validation across geographically
distributed infrastructures. These will be addressed in
future real-world deployments.

6. Future Work

In the future, research will investigate federated learning
approaches with the goal of facilitating the secure inter-
change of threat intelligence and compliance frameworks
among government agencies while simultaneously protect-
ing sensitive information.
The utilization of large language models (LLMs) as a means
of autonomously extracting and codifying compliance re-
quirements from regulatory documents is a solution that
has the potential to alleviate the burden of manual policy
translation.

Through the incorporation of identity-aware access con-
trols and continuous verification approaches, the framework
has the potential to be improved in order to support Zero
Trust architecture. This would result in the reinforcement of
endpoint security and the protection of data in distributed
environments.

Conflict of Interest: The authors declare no conflict of
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ABSTRACT: Software engineering plays an important role in computer science. Novel quantum 
algorithms can efficiently solve software-engineering problems. Not only software engineering but also 
many industries including logistics, finance, genomics, resource allocation, logistics, bioinformatics, 
mobile agents and more have optimization problems. Such problems may have long time solutions. 
Research has been conducted to improve the performance of current solutions and to search for 
optimized solutions. Search-based software engineering (SBSE) uses computational techniques to 
determine optimized solutions in a large search space. There are SBSE problems such as Test Suite 
Minimization (TSM) and Maximum Independent Set (MIS) that require efficient solutions due to its 
important role. A quantum-inspired genetic algorithm had solved the TSM problem with higher 
performance than classical solutions. The quantum-inspired genetic algorithm and quantum algorithm 
showed better performance results than classical solutions. This improvement motivated us to modify 
such algorithms in order to solve the MIS optimization problems. In addition, MIS has crucial 
applications in many domains. It can be applied in software engineering to separate related and 
unrelated requirements, which is of great support for project management. Resources, time, cost, and 
relevance can be updated accordingly. MIS can also be applied in network design, scheduling, resource 
allocation, logistics, bioinformatics, mobile agents, and more. Quantum-inspired genetic algorithm 
combines quantum mechanics concepts and genetic algorithms which enhances search capability and 
provides efficient search mechanism. In this study, a modified quantum-inspired genetic algorithm 
(QIGA) is proposed and implemented to find an optimized solution for the MIS problem. A classical 
genetic algorithm (GA) is implemented and has been tested. A Comparison is conducted to show the 
results of QIGA and GA to measure the performance improvement. Results and its analysis are 
displayed to show QIGA and GA convergence. The proposed algorithm has no prior assumptions. 

KEYWORDS: Quantum-inspired genetic algorithm, Genetic algorithm, Maximum independent set 
problem, Search based software engineering, Software engineering. 

 

1. Introduction and Literature Review  

Search-based software engineering (SBSE) uses 
computational techniques to determine optimized 
solutions for software engineering problems with a large 
and complex search space [1]. It combines software 
engineering concepts with optimization algorithms. It is 
difficult to solve complex software engineering issues 
manually; SBSE considers automation and optimization 
for solving such issues [2].  

SBSE can be applied in many software engineering 
areas. Areas include, but are not limited to, software 
project management, software testing, software defect 
prediction, and automated program repair. Genetic 
Improvement (GI) is a field of SBSE that considers 
evolutionary computing in the automation of updating the 
software source code to best serve its non-functional 
requirements [2]. 

SBSE is used in enterprise application integration 
(EAIs). EAI is a research concern because of the growing 
need for data exchange and the reuse of functionality 
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among applications. Thus, SBSE can be used in different 
phases of the software development lifecycle [3]. It can 
also be used in optimization techniques. It can be used to 
modify software to make it more efficient in terms of 
speed and resource use [4]. Examples of optimization 
problems that can be formulated as a search problem are 
the Test Suite Minimization problem and the Maximum 
Independent Set (MIS) problem [5]. 

The MIS problem is a nondeterministic polynomial 
(NP)-complete problem in which there is no known 
classical 1 1 algorithm that solves the problem efficiently 
[3]. An independent set is a set of vertices in a graph is the 
one in which no two vertices are adjacent. This means that 
if there is a set S of vertices, then for every two vertices in 
S there is no edge connecting them [6].  

In [7], the author studied the maximum independent 
set with mobile myopic luminous robots on a grid network 
whose size is finite but unknown to the robots. It was 
performed under the assumption that robots are 
asynchronous, anonymous, silent, and they execute the 
same distributed algorithm. 

In [8], the authors performed experimental adiabatic 
quantum computation (AQC) of the MIS problem on the 
Rydberg-atom system. They prepare an 11-by-18 array of 
optical tweezers. This lattice is identical to the Union-jack-
like king graph experimented by [8], in which the NP 
completeness of the MIS problem has been addressed. On 
198 optical tweezer traps, atoms are stochastically loaded 
at approximately 50%, and the resulting random graphs 
are used [5].   

In [9], the researchers proposed an optimized solution 
for the k-independent set problem for a graph. It proved 
mathematically that since the number of vertices in the 
independent set of each finite graph is finite, then the 
number of vertices in the k-independent set k has a 
maximum. It explained the mathematical proof with 
neither implementation nor performance measurement. 

In [10], the authors applied automatic generation of 
algorithms to combine basic heuristics for the MIS 
problem. Then the space of generated algorithms is 
traversed by employing genetic programming. An 
algorithm is then selected depending on the 
computational performance of each generated algorithm. 

In [11], the authors studied the maximum-
independent-set problem on unit-disk graphs. They 
carried out numerical studies and assess problem 
hardness, using both exact and heuristic algorithms. They 
also showed that by relaxing the constraints on the 
classical simulated annealing algorithms considered in [8], 
their implementation became competitive with quantum 
algorithms. 

In [8], the authors used Rydberg atom arrays with up 
to 289 qubits in two spatial dimensions to solve the 
maximum-independent-set problem. Quantum 
algorithms for optimization were implemented via global 
atomic excitation using homogeneous laser pulses with a 
time-varying Rabi frequency Ω(t)eiø(t) and detuning Δ(t). 
It was concluded that grover-type algorithms have a 
quadratic speedup greater than the brute-force classical 
search. It was also observed that in the hardest graphs, 
superlinear quantum speedup exists in finding exact 
solutions in the deep-circuit regime and analyzing its 
origins. In [8], the authors investigated whether instances 
with large Hamming distances between the local and 
global optima of independent set sizes |MIS – 1| and 
|MIS| are related to the overlap gap property of the 
solution space. 

In [6], the authors published an algorithm for 
determining the maximum independent set problem 
using a combination of previous algorithms to solve the 
same problem. In this study, the minimum degree 
algorithm (MD) was conducted to solve the MIS problem. 
The MD reached results close to the target results, but 
failed to obtain the exact numbers in almost every graph. 
The density of the graph affected the results, as it 
worsened when the graph was in a higher density degree 
or it had a higher average degree per node. This study also 
implemented the controlled-MD approach, which 
achieved a better efficiency than MD. The controlled-MD 
efficiency is not affected by the graph density, but its 
results are close to the target and not exactly the same. To 
calculate the independent set size, the algorithm counts 
the number of vertices the independent set contains, while 
the maximum independent set is one of the largest 
possible sizes for a given graph. 

The aim of this study is to find an optimized solution 
for the MIS problem. It proposes a modified genetic-
inspired genetic algorithm that considers local and global 
parameters to improve the results. Crossover, mutation, 
interference, and quantum measurements are used to 
accelerate the convergence of the results. The fitness 
function calculated better results than classical GA. 
Results analysis is conducted to illustrate the algorithm 
contribution.   

The remainder of this paper is organized as follows. 
Section 2 introduces the maximum independent set 
problem and the quantum-inspired genetic algorithm, 
along with its operations. In Section 3, the proposed 
algorithm is described. This illustrates the steps and 
operation details. It also displays various operators and 
how they work. In Section 4, the proposed algorithm is 
evaluated and its experimental results are presented. A 
comparison between the results of the proposed algorithm 
and the results of the classical GA solving the MIS problem 
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is also shown in this section. Finally, Section 5 concludes 
the paper. 

2. Background 

2.1. Maximum Independent Set (MIS) Problem 

The MIS is an SBSE problem in software engineering 
and it is an optimization problem in computer science and 
graph theory [12].  Given a connected, undirected graph G 
= (V, E) as the input, where V is the list of vertices and E is 
the list of edges. The algorithm attempts to find the largest 
subset S of V, such that no two vertices in S have an edge 
connecting them.  

For example, Figure 1 shows a given maximum 
independent set problem for graph G with six vertices. 
Table 1 illustrates the representation of Figure 1 in matrix 
form with the vertices listed in the columns and repeated 
in the rows as V1, V2, V3, V4, V5, and V6, where (V1 and 
V2) represent the link between V1 and V2. If the cell value 
is 1, there is an edge connecting the two vertices that 
intersect in that cell. If the cell value is zero, then there is 
no edge between the two vertices intersecting in that cell. 
The solution is the vertex set {V2, V3, V5, V6}, which is not 
difficult to find but becomes more complicated with large 
datasets [13]. 

 
Figure 1: A maximum independent set problem example graph G with 

6 vertices 

Table 1: Example for maximum independent set problem 

Vertices V1 V2 V3 V4 V5 V6 
V1 0 1 1 0 1 1 
V2 1 0 0 1 0 0 
V3 1 0 0 1 0 0 
V4 0 1 1 0 1 1 
V5 1 0 0 1 0 0 
V6 1 0 0 1 0 0 

2.2. Quantum Inspired Genetic Algorithm (QIGA) 

2.2.1. Quantum Basics 

Classical computers perform n operations 
simultaneously using n bits, while quantum computers 

perform 2n operations in n qubits simultaneously [14]. This 
relationship is exponential. Qubits can be in the 
superposition of |0> and |1>, such that α|0> + β|1>, where 
α and β are complex numbers with 

|α2> + |β2> = 1.                       (1) 

Here are some unitary logic gates’ effects (Hadmard gate 
[15]). 

H.|0> = 1
√2
�1 1
1 −1� �

1
0� = 1

√2
�11�.    (2) 

H.|1> = 1
√2
�1 1
1 −1� �

0
1� = 1

√2
� 1
−1�.    (3) 

The X-gate, which is the NOT gate in classical 
computers, can have the following effect [15]: 

X.|0> = 1
√2
�0 1
1 0� �

1
0� = 1

√2
�01� = |1 >.    (4) 

X.|1> = 1
√2
�0 1
1 0� �

0
1� = 1

√2
�10� = |0 >.    (5) 

Basic quantum logic gates are used form quantum 
circuits. 

2.2.2. QIGA Operations 

The Quantum-Inspired Genetic Algorithm (QIGA) 
builds its operations in a qubit concept representation [16].  

2.2.3. Quantum Mutation 

It defines a mutation rate to randomly pick a mutation 
point and change the chromosome value by replacing that 
randomly picked point with another randomly chosen 
point. This is performed as follows [17]: 

P = �
α1 α2 α3…  αq
β1 β2 β3…  βq � .             (6) 

The new chromosome will become: 

P’ = �α′1 α2 α3…  αq
β′1 β2 β3…  βq � ,      (7) 

where  

|α’2> + |β’2> = 1.                     (8) 

2.2.4. Quantum Crossover 

A crossover point is chosen randomly in two different 
chromosomes according to the crossover rate, and the 
operation is applied as follows [18]:  

P1 = �
α1 α2 α3…  αq
β1 β2 β3…  βq � ,             (9) 

P2 = �α′1 α′2 α′3…  α′q
β′1 β′2 β′3…  β′q � .       (10) 

After applying the crossover, the chromosomes will be 
as the following:      

P’1 = �α1 α′2 α′3…  α′q
β1 β′2 β′3…  β′q �  ,                        (11) 

P’2 = �α′1 α2 α3…  αq
β′1 β2 β3…  βq � .                           (12) 
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2.2.5. Interference 

The interference or rotation operator can be applied as 
follows [19]: 

U(ϴ) |ψt> = |ψt+1> = �
cos (𝛳𝛳)αt − sin (𝛳𝛳)βt
sin(𝛳𝛳) αt + cos(𝛳𝛳)βt � .      (13) 

3. The Proposed Technique 

3.1. Problem Representation 

The graph of the MIS problem is composed of nodes, 
and the edges between the nodes link these nodes. If there 
is no edge, the two nodes are not connected. This problem 
is represented in the proposed technique as a table with a 
list of nodes shown in rows and the same nodes shown in 
columns. The intersection between the node in the column 
and the node in the row shows whether there is an edge 
connecting them or not. The 0 value is for the no existing 
edge between the nodes while the 1 value is for the 
existing edge connecting the nodes.  For example, if there 
is a link between two nodes V1 and V2, then the 
intersection of column V1 and row V2 takes a value of “1” 
and similarly the intersection of row V1 and column V2. 
“0” is put otherwise. An example is presented in Table 1. 
This table is then represented in a 2D matrix form. Table 1 
can be represented as follows.    

MIS matrix=  

⎣
⎢
⎢
⎢
⎢
⎡
0 1 1 0 1 1
1 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎤

 .           (14) 

As shown in Figure 2 and Algorithm 1, the algorithm 
first generates or reads the MIS matrix. For each node a 
global α a global β are calculated as using (15) and (16). 
These global α and global β are not updated later on.  Each 
matrix has various tests that use the global α and β. After 
selecting the chromosomes from the MIS matrix, local α 
and local β are calculated for each chromosome in the 
population. Local α and β are calculated using the global 
α and β. They are updated from one generation to another. 
Table 2 shows an example of the global α and global β for 
each row as calculated using (15) and (16). Table 3 gives an 
example of the local α and β for each chromosome in 
population “p” assuming a population size of 3. 

Table 2: Global α and global β example. 

Row Number Global Values 

V1 α1, β1 

V2 α2, β2 

V3 α3, β3 

V4 α4, β4 

V5 α5, β5 

V6 α6, β6 

Table 3: Local α and local β example. 

Chromosome 
Number 

Chromosome(population, 
chromosome, row) 

1 V1 
αp11, βp11 

V3 
αp13, βp13 

V5 
αp15, βp15 

2 V2 
αp22, βp22 

V4 
αp24, βp24 

V5 
αp25, βp25 

3 V3 
αp33, βp33 

V5 
αp35, βp35 

V6 
αp36, βp36 

global_β=�1.0 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝛽𝛽2.               (15) 

global_α=�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.     (16)  

The matrix values are then considered individually in 
each row to calculate sumOfZeros and sumOfAllZeros. 
sumOfZeros is calculated when the intersection is zero 
and the adjacent node is zero, as shown in (17). If the 
intersection is zero, then sumOfAllZeros is calculated, as 
shown in (18). The fitness value can then be calculated, as 
illustrated in (19). 

sumOfZeros = � ((colSize − (k))𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘=0 ∗ (𝑘𝑘 + 1)     (17) 

sumOfAllZeros = � ((colSize − (k))𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘=0                     (18)  

fitnessValue = sumOfZeros / sumofAllZeros * 100  (19) 

4. Experimental Results 

All the experiments are conducted in a laptop with 
Intel® Core™ i7 processor and 64-bit Windows 11 
operating system.   

A summary of the proposed technique is presented in 
the pseudocode of Algorithm 1. Figure 2 shows a 
flowchart for the proposed technique for visual clarity.  
The pseudocode and flowchart illustrates the QIGA 
process as it starts with the MIS matrix itself, then it 
generates the initial population and initializes the 
parameters including the local α and local β. Then a loop 
starts with applying interference operation. The fitness 
function is measured after the interference operation. 
Based on this measurement, parameters are updated and 
a population is selected.  Crossover operation is applied 
on the selected population and then mutation operation is 
performed. The fitness function and the average fitness are 
then calculated. Then it updates the loop counter to go for 
the next iteration. These steps are performed as long as the 
predetermined number of iterations is not yet reached or 
the average fitness is less than 100. When this stopping 
condition becomes false, that means the MIS is solved and 
the algorithm ends. Table 4 lists the Genetic Algorithm 
(GA) parameters used to measure the technique. The 
experiments were performed on 200 × 200 matrices to 
represent a graph of 200 nodes. The experimental results 
were applied to three different types of matrices. The 
sparse that contains 80% of zeros and 20% of ones, the 

http://www.jenrs.com/


 H. Hussein, An Optimized Algorithm for Solving 

www.jenrs.com                        Journal of Engineering Research and Sciences, 4(8): 24-30, 2025                                          28 

dense that contains 80% of ones and 20% of zeros, and the 
50-50 that contains 50% of zeros and 50% of ones. The 
matrices are formed with randomly chosen values, but 
they follow each matrix type constraint.  

 
Figure 2: Flowchart summarizing the QIGA process. 

Algorithm 1: Pseudocode for the proposed technique 

Read MIS matrix m × n. 
Calculate global α  and global β for each node. 
Calculate sumOfZeros and sumOfAllZeros as shown in 
(17) and (18). 
Choose a population size. 
Generate the initial population. 
Give initial values to the local α and local β. 
While number of iterations is not yet reached OR 
average fitness == 100 do 

Apply interference and measure the fitness results   
using the fitness function in (19). 
Update the local α and local β accordingly. 
Select from the population using Roulette wheel. 
Apply crossover with 90% . 
Apply mutation with a mutation rate 1% 
Measure the fitness results. 
Calculate the average fitness. 
Update loop counter. 
end while 
Print the MIS solution. 

The maximum independent set problem was solved 
using GA and QIGA. Both the algorithms were tested 
using the same parameters. A total of 500 iterations were 
performed ten times to measure the average of the results. 

Table 4: GA Parameters for the proposed technique 

GA Parameter Value 
Population Size 500 
Crossover Single-point 
Crossover Rate %90 
Mutation Rate %1 
Selection Roulette Wheel 
ϴinitial π 
δϴs A random number between 0 and 1 

Figure 3, 4, and 5 show that QIGA achieved faster 
convergence than classical GA in the three matrix types. In 
addition to convergence, the QIGA fitness value results 
were higher than the classical GA results. Figure 3 shows 
the faster convergence and higher fitness values of sparse 
matrices, whereas Figure 4 shows the same successful 
results for balanced matrices. Figure 5 illustrates the 
convergence and results achieved for dense matrices. 

 
Figure 3: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of 

balanced matrixes. 
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Figure 4: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of 

sparse matrixes. 

 
Figure 5: A comparison between QIGA and GA that shows the number of generations with the output fitness value for each generation, in case of 

dense matrixes. 

5. Conclusion and Future Work 

In this paper, a modified quantum-inspired genetic 
algorithm (QIGA) is proposed to solve the maximum 
independent problem, where quantum superposition has 
been used in the encoding of the chromosome to increase 
the size of the search space over approximately the same 
physical space. Quantum gates, such as crossover, 
mutation, and interference gates, have been used to 
achieve better and faster results. The experimental results 
have been shown for sparse, balanced, and dense test 
cases. The results show that QIGA performed faster and 
better than classical GA. It converges more rapidly and it 
achieved higher fitness values. This solution can be used 
in many domains such as software engineering to separate 
related requirements from unrelated requirements, time 
management, cost management, resource management, 
network design, scheduling, resource allocation, logistics, 
bioinformatics, mobile agents, and more [20]. Future work 
will be held on creating more fitness functions to give 
better results. Other problems will be considered to be 
solved using QIGA. Future application to the proposed 
technique can be performed on other domains.  
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ABSTRACT: Artificial intelligence already influences credit allocation, medical diagnosis, and staff
recruitment, yet most deployed models remain opaque to decision makers, regulators, and the citizens
they affect. A new wave of transparency mandates across multiple jurisdictions will soon require
organizations to justify automated decisions without disrupting tightly coupled production pipelines
that have evolved over the years. We advance a conceptual proposal to address this tension: the
magnetic AI agent. This external, attachable software layer learns a faithful surrogate of any target
model, delivering audience-tailored explanations on demand. The paper first synthesizes fragmented
scholarship on post-hoc explainability, sociotechnical alignment, and model governance, revealing
an unmet need for lightweight retrofits that minimize downtime. It then creates a basic framework
based on design principles, explaining methods for data collection, ongoing learning processes, and
user-friendly explanation tools. A plan for evaluation lists both numerical and descriptive measures,
including how closely a model matches reality and how much extra time it takes, as well as the mental
effort required and how well policies work, which users can adjust for different fields like credit scoring,
medical imaging, and predictive maintenance. Overall, the work contributes a roadmap for upgrading
the installed base of black-box systems while aligning with emergent regulatory frameworks and ethical
guidelines for trustworthy AI.

KEYWORDS: Magnetic AI, Explainable Artificial Intelligence, Agentic AI, Retrofit Transparency,
Design-Science Research, Policy Compliance.

1. Introduction

Artificial Intelligence (AI) systems that once resided in
research labs now power high-stakes finance, health care,
logistics, national security, and public administration de-
cisions. These models deliver unprecedented speed and
predictive accuracy, yet they rarely reveal the internal logic
that drives their outputs. This asymmetry between perfor-
mance and interpretability poses reputational, operational,
and legal risks for organizations that rely on opaque algo-
rithms. Recent incidents—such as biased credit approvals,
flawed recidivism predictions, and inconsistent medical
triage decisions—demonstrate how opacity can erode stake-
holder trust and invite regulatory scrutiny [1].

Last century, AI research surged on the back of expert
systems, decision trees, and the early "neural nets" revival.
Success was measured almost entirely by how precisely
these models could predict outcomes, whether diagnosing
disease, flagging credit risk, or recognizing handwritten
digits. Researchers fine-tuned rule bases or tweaked hidden-
layer weights to squeeze out a few extra percentage points
of accuracy, and industry adopters celebrated any gains that
outperformed human benchmarks. Yet this accuracy-first
mindset treated the models as opaque black boxes: engi-
neers rarely asked why a particular rule fired or a neuron
activated, and users seldom demanded a justification. As a
result, explainability remained an afterthought; the momen-

tum and funding of the era were channeled into sharpening
predictive performance, not into opening the "black box"
so stakeholders could trust and understand the reasoning
inside it.

Across major jurisdictions, regulation is converging on a
common requirement that AI systems be explainable: the Eu-
ropean Union’s AI Act, recent U.S. executive directives, and
China’s updated generative-AI rules all mandate that high-
impact models provide meaningful information about how
they reach their outputs. This amounts to an emerging right
for everyday users to demand clear, human-readable reasons
for automated predictions or decisions, even when those de-
cisions come from complex neural networks. Anticipating
audits, fines, and reputational risks, companies are building
explanation layers into their products—dashboards that
visualize feature contributions, surrogate models that trans-
late deep-learning logic into plain language, and customer
portals that show "what-if" scenarios—because meeting this
new transparency baseline is becoming less a nice-to-have
and more a competitive necessity.

Societal expectations for transparency have accelerated.
Policymakers on both sides of the Atlantic have enacted
or proposed frameworks that place the burden of justifica-
tion on automated decision-makers. The European Union’s
AI Act, the United Kingdom’s Algorithmic Transparency
Standard, and various U.S. proposals such as the Algo-
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rithmic Accountability Act collectively signal a shift from
self-regulation to explicit accountability. These initiatives
often focus on two intertwined requirements: the ability
to generate human-understandable explanations and the
capacity to audit models throughout their life cycle. Orga-
nizations, therefore, face the dual challenge of upgrading
legacy AI assets and operationalizing governance processes
at scale.

Despite rapid advances in post-hoc interpretability tech-
niques, most production environments cannot easily accom-
modate invasive code changes, extensive retraining cycles,
or computational overhead that might jeopardize service-
level agreements. Enterprise Machine Learning pipelines
typically integrate proprietary libraries, tightly coupled
microservices, and third-party APIs that preclude direct
intervention. A non-disruptive alternative is to attach an
explanatory agent to the outside of an existing pipeline,
much like a magnetic device that snaps onto the surface of a
machine without changing its internal workings. We label
this solution the magnetic AI agent. The magnetic analogy
underscores three salient properties: passive attachment,
minimal friction, and continuous real-time learning [2].

While the concept of attaching post-hoc interpretability
layers has precedent in techniques such as shadow models,
knowledge distillation, and wrapper-based surrogates, the
magnetic AI agent diverges in critical ways. Unlike shadow
models that mimic predictions for evaluation purposes or
distillation methods that compress complex models into
simpler ones, the magnetic agent is designed to operate
continuously alongside the original model without approxi-
mation or replacement [3]. Its emphasis is not only on in-
terpretability but also on modular deployment, governance
integration, and lifecycle adaptability in real-world produc-
tion systems. The magnetic metaphor is not a rhetorical
flourish—it reflects an architectural philosophy: to enable
passive but intelligent observability without disrupting the
core model’s functioning or retraining requirements.

The remainder of the paper deepens the conceptual
foundation, formalizes the design space, and proposes an
actionable evaluation pathway for magnetic AI. While em-
pirical results are not presented here, this absence is by
design: the work is intended as a conceptual proposal that
lays the groundwork for future implementation and exper-
imentation. Its primary aim is to contribute a structured
framework, design rationale, and deployment blueprint that
researchers and practitioners can build upon. First, Section
2 surveys the multidisciplinary literature on explainable
AI and model-agnostic wrappers, identifying persistent
gaps that motivate a new approach. Section 3 introduces
the conceptual framework that positions the retrofit agent
within sociotechnological constraints and elaborates design
principles, reference architecture, and governance interfaces.
Section 4 describes a design-science research strategy and
methodological considerations for constructing and refining
the artifact. Section 5 details an evaluation blueprint that or-
ganizations can replicate or adapt in their domains. Section
6 discusses operational, ethical, and societal implications,
mapping the proposal onto current regulatory trends. Sec-
tion 7 concludes by summarizing contributions, delineating
limitations, and articulating a future research agenda that
includes full-scale prototypes, multimodal extensions, and

integration with next-generation foundation models.

2. Related Work

Research on explainability spans multiple disciplines,
each supplying partial answers to how automated systems
should justify their outputs. Algorithmic contributions
range from ante-hoc transparent models to post-hoc attri-
bution methods such as LIME, SHAP, and integrated gra-
dients to compression techniques that create interpretable
surrogates. Human-computer interaction studies examine
the cognitive load of different explanation formats, user
mental-model accuracy, and the conditions under which
explanations raise or erode calibrated trust. Work in organi-
zational behavior documents how power dynamics, siloed
incentives, and technical debt shape whether explanations
are acted upon or ignored. Legal scholarship and policy
analyses frame transparency as a right, exploring liabil-
ity, due-process entitlements, and the evolving notion of
algorithmic accountability [4].

This review weaves the strands together, pinpointing
where they fall short and how they complement one another.
Algorithmic methods often optimize fidelity or sparsity but
rarely address maintenance overhead once a model is in
production. HCI experiments illuminate user comprehen-
sion in laboratory settings, yet evidence remains sparse on
sustained behavior change in real workflows. Organiza-
tional case studies highlight governance bottlenecks but
seldom tie them to concrete design artifacts. Legal work
identifies transparency duties but leaves practitioners with
little guidance on technical implementation. Magnetic AI
draws on the strengths of each field while addressing their
gaps: a passive attachment strategy respects intellectual-
property boundaries emphasized in law, continuous fidelity
auditing answers organizational concerns about drift and
technical debt, and explanation pluralism accommodates
the heterogeneous user needs documented in HCI research
[5].
Key takeaways that inform the design are as follows:

• Algorithmic insight: incremental surrogates balance
fidelity with latency, enabling explanations at line
speed without altering the primary model. They
learn from a sliding window of recent requests, re-
fresh continuously without full retraining, and respect
the intellectual-property boundaries of closed mod-
els, making them suitable for third-party APIs and
in-house stacks.

• HCI insight: multiple discourse formats—ranked fea-
ture tables, layered saliency maps, natural-language
counterfactual narratives, and compliance-ready au-
dit summaries—are necessary because data scientists,
end users, and regulators each privilege different
cues. Adaptive rendering lets the same evidence flow
into analyst dashboards, tooltips for consumers, or
machine-readable JSON for supervisory authorities.

• Organizational insight: modular deployment decou-
ples the four layers—interception, surrogate learning,
explanation rendering, and fidelity auditing—so firms
can adopt only the components they lack. This bolt-
on architecture avoids rewriting brittle legacy code,
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shortens change-management cycles, and reduces the
blast radius of defects to a single microservice rather
than the full model pipeline.

• Legal insight: persistent audit logs, role-based expla-
nation access, and optional differential-privacy noise
satisfy both transparency duties and data-protection
rules. The same artifacts can populate internal risk reg-
isters, respond to freedom-of-information requests, or
demonstrate compliance during external audits, align-
ing technical controls with emerging statutes such
as the EU AI Act and national consumer-protection
guidelines [6].

By fusing these lessons, magnetic AI offers a coherent
blueprint that advances beyond silo-specific approaches
toward an integrated, production-ready solution for trust-
worthy machine learning.

2.1. Post-Hoc Explainable AI

Early work on interpretability concentrated on "glass-
box" algorithms—decision trees, linear or logistic regres-
sions, and simple rule lists—whose parameters and splits
can be read like prose. As deep learning’s opaque layers
dominated predictive accuracy, researchers shifted toward
post-hoc techniques that wrap explanations around other-
wise black-box models [7].

The most influential of these are LIME and SHAP. Both
build local surrogate models that mimic the original model’s
behavior near a single instance, then report feature attribu-
tions: LIME perturbs inputs and fits a sparse linear model,
whereas SHAP samples coalitions of features to compute
Shapley values that satisfy additivity and consistency. Their
appeal lies in domain-agnostic deployment—data scientists
can drop in a few lines of code and hand users a ranked list
of "which variables mattered most"—yet the price is high
computational overhead, sensitivity to sampling noise, and
explanations that change when the same point is probed
twice [8].

Beyond LIME and SHAP, gradient-based saliency maps
track the partial derivatives of a convolutional network to
highlight the pixels that nudge an image score upward or
downward; attention visualizations in transformer mod-
els color the tokens that capture a language model’s gaze;
counterfactual methods search the input space for the most
minor tweak that flips the prediction, offering an action-
able "what would need to change?"; and prototype- or
example-based explanations surface representative cases
that anchor abstract probability scores in concrete, human-
readable examples. Each broadens the explanatory toolbox,
yet each inherits its drawbacks: saliency maps blur un-
der adversarial noise, attention plots do not always align
with causal importance, counterfactuals become infeasi-
ble in high-dimensional data, and prototype selection can
reinforce majority-class bias [9].

Across the board, explanation strength often comes at
the cost of latency, stability, or hardware resources. Empiri-
cal studies still debate whether richer explanations mean-
ingfully boost user trust or downstream decision quality,
highlighting an unsolved interpretability-accuracy-usability
triangle.

2.2. Wrapper and Surrogate Paradigms

Building a simpler model that imitates a complex one
is hardly new. In the 1980s, credit bureaus built "shadow"
logistic regressions to track the decisions of proprietary
loan scoring engines, and in the 1990s, speech-recognition
teams used teacher–student pairs to shrink large hidden-
Markov networks so they could run on low-power chips.
These ideas matured into what is now called knowledge
distillation, where an extensive teacher network produces
soft targets—probability distributions rather than hard la-
bels—that guide a smaller student network. The result is a
faster, lighter model that often matches the teacher’s top-line
accuracy but may blur fine-grained decision boundaries,
especially in rare or ambiguous cases.

Modern workflows try to close that gap by perform-
ing distillation continuously. An online student receives
a stream of teacher outputs and updates its weights on
the fly, or it joins a replay buffer that mixes new observa-
tions with old exemplars to resist catastrophic forgetting.
Continual-learning variants add regularizers that anchor
key teacher activations so the student does not drift when the
data distribution shifts. Yet experiments on non-stationary
benchmarks show that even these advanced students strug-
gle with concept drift and are highly sensitive to mislabeled
or adversarially perturbed examples [10].

A parallel line of work forgoes access to internal weights
altogether. Instead, engineers wrap the black-box service
with a data interceptor that logs inputs and outputs, then
train a surrogate, often a decision tree or gradient-boosted
ensemble, purely from those pairs. This wrapper strategy
sidesteps intellectual-property barriers and can be swapped
before any commercial API. Still, it introduces fresh privacy
challenges: synthetic or cached query data must be stored
outside the original security perimeter, and reconstruction
attacks can expose sensitive attributes if the wrapper is
breached [11].

Taken together, today’s surrogate models fall into two
camps. Static snapshots captured once during develop-
ment grow stale as the real world evolves, while dynamic
surrogates that retrain or distill online demand constant
monitoring, a computation budget, and careful privacy
safeguards. Neither camp fully resolves the tension be-
tween efficiency, fidelity, and maintainability in production
environments that change by the hour.

2.3. Regulatory and Business Context

Across regions, lawmakers and standard-setters are lock-
ing into a shared vocabulary—transparency, accountability,
fairness, and meaningful human oversight—and turning it
into binding or quasi-binding rules. In Europe, the AI Act
labels credit scoring, hiring, medical diagnosis, and other
"high-risk" applications. It forces them to generate under-
standable explanations, document data provenance, and
pass third-party conformity assessments before entering the
market.

In the United States, the Federal Trade Commission,
Consumer Financial Protection Bureau, Department of Jus-
tice, and other agencies have warned that undisclosed bias,
dark-pattern interfaces, or the sale of inscrutable models
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can trigger enforcement actions under existing consumer-
protection and civil-rights statutes. At the same time, the
White House blueprint for an AI Bill of Rights and the
NIST AI Risk-Management Framework give regulators a
benchmark for what "reasonable" governance should look
like. China’s updated Interim Measures on generative AI
require providers to watermark outputs, publish model
cards, and supply "interpretive" summaries on demand;
Canada’s forthcoming AI and Data Act mandates impact
assessments and real-time monitoring; Brazil and India are
drafting parallel bills; and the G7’s Hiroshima Process is
pressing multinationals to align with these norms wherever
they operate.

Industry bodies reinforce the trend: the Partnership
on AI, the OECD, the ISO/IEC 42001 management-system
standard, and voluntary procurement checklists now ask
vendors to show audit logs, bias tests, and plain-language
explanations as a condition of sale. Non-compliance can
mean multimillion-euro fines, exclusion from public-sector
tenders, investor divestment, and reputational damage that
stalls digital-transformation roadmaps. Yet most enterprises
run on entrenched code bases, brittle data pipelines, and
overlapping legacy models; ripping and replacing them
is rarely feasible. This clash between external pressure
and internal technical debt drives demand for retrofit so-
lutions—lightweight layers that bolt onto existing systems,
capture inputs and outputs, monitor drift, and surface user-
friendly explanations—so firms can satisfy new governance
obligations without rebuilding their entire machine-learning
stack [12].

2.4. Gap Analysis

Table 1 contrasts prevailing approaches against opera-
tional requirements and spotlights the unresolved discon-
nect between research prototypes and production realities.
While the literature offers algorithmic sophistication, it
rarely addresses day-two concerns such as deployment
pipelines, monitoring infrastructure, and heterogeneous
stakeholder needs. The magnetic AI proposal aims to bridge
this gap by integrating passive attachment, continuous fi-
delity auditing, and human-centered explanation delivery
into a unified artifact.

There seems to be a clear trade-off pattern: methods that
are easiest to bolt onto any model (LIME, SHAP, Anchors)
suffer from high inference latency or heavy sampling, while
techniques that are fast enough for production (knowledge-
distilled surrogates, ante-hoc interpretable models) often
under-fit or drift from the source model without constant
retraining. Vision-specific tools like Grad-CAM are efficient
but narrow in scope, and counterfactual or prototype-based
approaches provide the most human-friendly "what-if" sto-
ries yet demand large compute budgets and carefully cu-
rated instance libraries [13].

In short, no single technique simultaneously delivers
low latency, high fidelity, and broad stakeholder usability.
This operational gap motivates a hybrid solution, such as
the proposed magnetic AI artifact, that couples passive
attachment for real-time capture with continuous fidelity
auditing and layered explanation modes tuned to different
audiences.

Table 1: Operational gap between explainability techniques and production
requirements

Approach Strengths Limitations

LIME / SHAP Model-agnostic;
easy to add

High latency in
production;
explanations local

Knowledge
distillation

Compact, fast
surrogates

Needs labelled
outputs; surrogate
drift

Counterfactuals Actionable “what-if”
paths

Heavy compute;
plausibility issues

Magnetic AI
(proposed)

Passive attachment;
continuous learning

Concept stage;
governance pending

Integrated
Gradients

Faithful to deep
nets; low single-call
overhead

Requires
differentiable
model; noisy for
saturated neurons

Grad-CAM Intuitive heat-maps
for vision CNNs;
real-time on GPU

Vision-only; coarse
spatial resolution

Anchors Sparse,
high-precision rules;
human-readable

Sampling-intensive;
struggles with
high-dimensional
mixes

Partial
Dependence /
ICE

Global feature-effect
trends; offline
computation

Assumes feature
independence; stale
in changing data

Prototype &
Criticism

Example-based,
domain-relatable
explanations

Needs large
representative set;
weak in very sparse
spaces

Ante-hoc
interpretable
mdl.

Transparency
built-in (e.g., GAMs,
monotonic GBMs);
low latency

May under-fit
complex tasks;
restricted model
choices

3. Magnetic AI Conceptual Framework

The magnetic AI framework delineates the core con-
structs, operational boundaries, and design guidelines neces-
sary to retrofit explainability into black-box systems. Build-
ing on sociotechnical theory, the framework positions the
agent as an intermediary that negotiates between opaque
algorithms and heterogeneous human audiences [14].

3.1. Definition and Scope

A magnetic AI agent functions as a sidecar or proxy ser-
vice that eavesdrops on every request–response pair flowing
to and from a production model. As each new interaction
arrives, the agent adds it to a sliding window buffer—say
the most recent ten thousand cases—and updates an online
surrogate such as an incremental gradient-boosted tree or
a compact transformer fine-tuned with parameter-efficient
adapters. This continual refresh allows the surrogate to
track concept drift without incurring the full cost of retrain-
ing. Because the agent learns only from observable inputs
and outputs, it can attach to black-box APIs, commercial
SaaS endpoints, or legacy binaries without source code or
training data. Once the surrogate reaches a configurable
fidelity threshold, the agent can emit different explana-
tion "dialects" on demand: concise ranked feature lists for
customer-service representatives, multi-layer saliency maps
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for data scientists, counterfactual recourse suggestions for
end users, or timestamped audit reports that regulators
can archive. A governance layer encrypts the buffered data,
records model-to-surrogate agreement scores, triggers alerts
when fidelity degrades, and exposes REST or gRPC end-
points so downstream dashboards can pull explanations in
real time [15].

Deployment is lightweight—often a Docker container
or Kubernetes sidecar—so platform teams can roll it out
with minimal changes to existing pipelines. Because the
agent never touches proprietary weights or training sets,
intellectual-property boundaries remain intact, and privacy
can be reinforced with hashing or differential-privacy noise
in the captured feature vectors. This combination of passive
attachment, incremental learning, and audience-specific ex-
planation formats positions magnetic AI agents as a practical
retrofit for organizations that must meet new transparency
rules without redesigning their entire machine-learning
stack.
3.2. Design Principles

Design principles serve as invariant heuristics that guide
implementation choices across contexts:

• Plug-and-play attachment via standardized data taps that
conform to common message-queue or REST interfaces,
minimizing engineering overhead.

• Model and domain agnosticism that enables deployment
across tabular, image, NLP, time-series, and multimodal
pipelines.

• Continuous auditing that monitors surrogate fidelity over
time using drifting-window statistical tests and triggers
automatic recalibration when thresholds are breached.

• Explanation pluralism that tailors output modalities to
stakeholder expertise, regulatory requirements, and sit-
uational constraints, thereby enhancing relevance and
comprehension.

• Privacy-preserving learning that supports on-device dis-
tillation, differential privacy budgets, and federated ag-
gregation when data sovereignty is paramount.

3.3. Reference Architecture

The architecture is divided into four loosely coupled
layers. The data interception layer attaches to message bro-
kers, REST gateways, or in-process hooks to duplicate each
input–output pair with millisecond-level delay. Captured
data is written to an encrypted sliding-window buffer sized
to the latency budget. The surrogate learning layer ingests
this stream and updates an incremental model such as an
online gradient-boosted tree, streaming k-nearest neighbors,
or a partial-fit neural network.

A fading factor emphasizes recent samples so the surro-
gate can track concept drift without unbounded memory
growth. The explanation rendering layer queries the current
surrogate to extract local and global importance signals, then
converts them into human-readable artifacts by combining
a template engine with natural-language generation. Sup-
ported formats include ranked feature lists, layered saliency

maps, counterfactual recourse narratives, and compliance-
oriented audit summaries.

The fidelity auditing layer compares surrogate outputs
with the target model on a hold-back stream slice, records
agreement statistics, raises drift alerts when error thresholds
are exceeded, and exposes metrics to governance dashboards
through an HTTP endpoint. The modular design permits
selective adoption, so an organization may activate only the
components that fill existing gaps:

• Data interception choices: sidecar proxy, service-mesh
filter, or Kafka consumer

• Surrogate learning supports pluggable incremental
algorithms and optional ensembling

• Explanation rendering exports Markdown, JSON, PDF,
or SVG artefacts for integration with existing portals

• Fidelity auditing pushes metrics to Prometheus or
OpenTelemetry and routes alerts to Slack or Pager-
Duty

Figure 1 illustrates the magnetic AI agent operating
across four loosely coupled layers.

Figure 1: Magnetic AI Reference Architecture: A four-layer system that
retrofits explainability into black-box models using passive data intercep-
tion, online surrogate learning, audience-specific rendering, and continu-
ous fidelity auditing.

4. Research Design and Methodology

Table 2 summarizes the guiding questions. Rigorous
methodological scaffolding is essential to transform a design
idea into an evaluable artifact. We adopt a design-science
paradigm that iteratively synthesizes knowledge through
constructing and assessing purposeful artifacts.

4.1. Artifact Construction Strategy

The construction strategy unfolds in three stages. Stage
1 employs synthetic benchmarks such as tabular classifica-
tion tasks from the UCI repository to validate algorithmic
viability under controlled conditions. Stage 2 transitions to
semirealistic testbeds—for example, open medical-imaging
datasets—where data sensitivity approximates production
scenarios. Stage 3 involves shadow deployments within
partner organizations, embedding the agent in parallel
with live systems to observe operational impacts without
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influencing decision outcomes. Each stage employs a build-
measure-learn loop, refining data-tap APIs, surrogate hy-
perparameters, and explanation formats based on empirical
feedback.

Table 2: Guiding questions for magnetic AI research design

Research question Section

What functions must a retrofit agent perform
to satisfy transparency mandates?

Framework

How can fidelity be maintained as underlying
models drift?

Methodology

Which usability metrics best capture explana-
tion quality across domains?

Evaluation

What governance processes are necessary to
embed magnetic agents responsibly?

Discussion

4.2. Proposed Evaluation Metrics

Comprehensive evaluation encompasses technical fi-
delity, human factors, and organizational fit.

• Surrogate fidelity quantified by macro-averaged agree-
ment, calibration error, and local explanation stability
across perturbed inputs.

• Latency overhead measured as the delta between base-
line prediction response time and pipeline response time
with the agent attached, segmented by cold-start and
steady-state conditions [16].

• Cognitive burden assessed via the NASA-TLX workload
instrument and validated comprehension quizzes admin-
istered to diverse user cohorts.

• Policy sufficiency mapped to ISO-based checklists and
jurisdiction-specific compliance rubrics, with binary
pass/fail indicators and narrative justifications.

• Maintenance complexity captured through engineer-
reported setup time, mean time to detection, and time to
repair when drift alarms are triggered.

5. Evaluation Blueprint

A structured evaluation helps an organization transition
from proof of concept to full roll-out without losing sight
of risk, cost, or stakeholder value. Below, we will break the
adoption into four incremental phases, each with its entry
criteria, success indicators, and decision gates. Escalation
to the next phase occurs only when the previous one meets
predefined thresholds, reducing the likelihood of expen-
sive rework later in the project. As shown in Figure 2, the
evaluation progresses through four structured phases.

5.1. Phase 1: Feasibility Scoping

The objective is to decide whether a magnetic agent can
attach to existing systems with acceptable effort and risk.
A cross-functional team—product owners, data engineers,
legal counsel, and compliance officers—maps the technical
and organizational landscape before a single line of code is
written.

Figure 2: Evaluation Blueprint: A four-phase process guiding the deploy-
ment of magnetic AI agents from feasibility scoping to governance sign-off.

• Catalog candidate models, including version numbers,
input modalities, and traffic volumes.

• Identify data-tap points such as message queues, mi-
croservice gateways, or in-process hooks.

• Segment explanation audiences: internal analysts,
external customers, and regulators.

• Run a one-week pilot that captures a small sample of
input–output pairs to confirm data visibility, latency
overhead, and encryption requirements.

• Document legal constraints on data copying, retention,
and cross-border transfer.

A green light to Phase 2 requires evidence that data
taps are technically feasible, that no show-stopper legal
barriers exist, and that the surrogate can be trained within
the latency budget on a representative sample.

5.2. Phase 2: Shadow Deployment

The magnetic agent now runs parallel with the produc-
tion model but remains invisible to end users. The aim is to
measure technical fidelity and operational impact without
altering business outcomes.

• Stream live input–output pairs to the surrogate and
store them in a ring buffer sized to the retention policy.

• Generate explanations, drift graphs, confusion matri-
ces, and saliency heat maps; push them to a read-only
dashboard.

• Track surrogate-to-model agreement, memory growth,
and compute cost hourly.

• Stress-test the agent under peak traffic loads to verify
scaling rules and auto-healing scripts [17].

• Perform red-team exercises to probe for model inver-
sion and data leakage vectors.
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Promotion to Phase 3 requires that fidelity metrics reach
a predefined threshold, that resource consumption stay
within budget, and that no critical security vulnerabilities
remain open.

5.3. Phase 3: Human-Centered Assessment

With technical soundness established, the focus shifts to
human interpretability and decision quality. Explanations
are shown to real users in a sandbox or pilot workflow.

• Recruit subject-matter experts—credit underwriters,
fraud analysts, radiologists—for structured review
sessions.

• Present a stratified sample of explanations, including
edge-case and adversarial examples.

• Collect quantitative scores using metrics from Section
4 and qualitative feedback on clarity, usefulness, and
domain language.

• Run A/B trials where some users receive explanations
and others do not, measuring changes in decision time,
error rate, and confidence calibration.

• Iterate on templates, terminology, and granularity
until user-acceptance criteria are met.

Advancement to Phase 4 depends on demonstrable gains
in user understanding or workflow efficiency and the ab-
sence of new cognitive or fairness concerns.

5.4. Phase 4: Governance Sign-off

The final checkpoint aligns the deployment with corpo-
rate risk appetite and external regulatory obligations. A
multidisciplinary committee reviews evidence accumulated
in earlier phases.

• Audit logs: fidelity trends, drift alerts, red-team find-
ings, and remediation actions.

• Human-factor reports: focus-group transcripts, A/B
test statistics, and user-acceptance sign-offs.

• Compliance dossier: data-protection impact assess-
ment, model card, explanation samples mapped to
regulatory articles.

• Operational playbook: on-call rotation, retraining
schedule, rollback triggers, and key performance indi-
cators.

Once approved, the magnetic agent’s explanation end-
points are activated in consumer portals, internal tools, or
regulator-facing audit trails. Post-deployment, a quarterly
review loop checks for concept drift, escalating to retraining
or policy revision when thresholds are breached.

6. Discussion

The empirical and design insights above converge on a
central theme: explainability is no longer a research luxury
but an operational requirement that influences competitive

advantage, regulatory posture, and societal trust. Deploy-
ing a magnetic agent transforms transparency from an
expensive, one-off retrofit into a continuous service layer
that scales with business growth [18]. This shift prompts
decision makers to treat explainability as a cross-cutting ca-
pability, like security or observability, rather than a bolt-on
feature. It carries strategic implications at three levels.

First, at the enterprise level, magnetic AI offers a
cost–benefit inflection point. Faster compliance approvals,
reduced litigation risk, and new value propositions, such as
premium data-lineage services for high-stakes customers,
offset the marginal expense of streaming surrogates and
auditing dashboards. Firms adopting early may shape in-
dustry standards and lock in reputational capital that late
movers struggle to match.

Second, at the ecosystem level, widespread passive-
attachment architectures could generate large, anonymized
corpora of model–surrogate disagreement events. These
data could be shared under federated learning or secure
multiparty protocols, catalyzing sector-wide benchmarks
for robustness and enabling collaborative defense against
adversarial attacks and systemic bias.

Third, granular yet comprehensible explanations at the
societal level recalibrate the power balance between insti-
tutions and individuals. Users gain procedural recourse,
auditors gain verifiable artifacts, and policymakers gain a
practical blueprint for enforcement. The trade-off, however,
is a thicker layer of governance overhead and an expanded
attack surface that demands ongoing vigilance [19].

Against this backdrop, executive sponsors should treat
magnetic AI deployment as a phased capability-maturity
journey. Early milestones include establishing a data-tap
inventory, codifying explanation-quality metrics, and fund-
ing interdisciplinary training programs so that engineers,
risk officers, and product managers share a common vocab-
ulary. Later stages focus on automating drift remediation,
integrating feedback loops into agile release cycles, and
participating in cross-industry consortia that set open stan-
dards for explanation fidelity and fairness. Organizations
can navigate tightening regulations and rising public expec-
tations by internalizing these priorities without sacrificing
innovation velocity [20].

6.1. Prototype Model Demonstration

To illustrate the feasibility and behavior of the magnetic
AI agent in a controlled environment, we implemented a toy
model scenario. This lightweight empirical demonstration,
while not intended as a comprehensive validation, serves to
ground the concept in observable mechanics and provide
an early proof of plausibility.

We used the classic Iris dataset and trained a black-
box model using a random forest classifier. The magnetic
agent was simulated as a proxy service that intercepted
each input–output interaction and updated an online lo-
gistic regression model as its surrogate. The surrogate
was constrained to observe only the request–response pairs,
without access to feature importances, decision paths, or
model internals.

Explanations were then generated by querying the lo-
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gistic surrogate for each prediction and mapping the co-
efficients to ranked features. A fidelity audit compared
surrogate predictions to the random forest decisions over
a sliding window of 150 samples. Surrogate agreement
stabilized at approximately 92%, and drift detection flagged
one period where surrogate performance dropped due to
a change in the class distribution, prompting automatic
retraining.

Latency benchmarks were also recorded. On a commod-
ity laptop (2.4 GHz, 8 GB RAM), average inference time per
sample for the surrogate was under 3 milliseconds, includ-
ing update and explanation rendering. This suggests that
passive learning and auditing are feasible in near-real-time
scenarios with moderate throughput. The latency–fidelity
trade-off was observed to be tunable: larger sliding windows
and ensemble surrogates marginally improved fidelity (up
to 95%) but increased inference latency to 7–9 milliseconds
per sample.

Input and output interfaces were defined as JSON over
HTTP, simulating a REST-based production API. The sur-
rogate processed flattened tabular features of fixed-length
float vectors (4 dimensions for Iris), and the agent oper-
ated asynchronously in a sidecar thread. All components
were implemented in Python using scikit-learn, Flask, and
asyncio.

Figure 3: Toy Model Setup: The magnetic AI agent observes request–
response pairs from a black-box random forest classifier trained on the
Iris dataset. It trains a surrogate logistic regression model in real time,
generates explanations, and audits fidelity in a sliding window.

6.2. Operational Considerations

Deploying a magnetic-AI layer replaces the usual pain
of rewriting core models with the more manageable task of
tapping live data streams. In companies that route traffic
through Kafka, Kinesis, or a service-mesh sidecar, engineers
can expose the request and response topics, spin up an agent
container, and reach baseline fidelity in a morning.

By contrast, firms that still rely on tightly coupled mid-
dleware or batch ETL pipelines have to interpose a shim:
a wrapper script that logs function calls or a lightweight
message broker that mirrors production payloads without
breaking the original code path. Once the tap is in place, the
dominant cost moves from development time to compute
cycles. Surrogate training scales almost linearly with input
volume, so high-traffic applications—think personalized

advertising or fraud detection at the millisecond level—can
drive up cloud bills. Most teams blunt the cost curve by
batching updates, down-sampling low-value events, or let-
ting the agent burst to spot GPUs only during load spikes.
Role clarity is essential to keep the system maintainable.

Data engineers own the interception code and service
orchestration; data scientists tune the surrogate’s learning
rate, curate explanation templates, and validate fidelity
thresholds; and compliance officers monitor the audit met-
rics, approve threshold changes, and archive drift reports
for regulators. Without that three-way handshake, incre-
mental tweaks in one area can silently break obligations in
another, turning a retrofit to reduce risk into a new source
of operational debt [21].

6.3. Ethical and Societal Dimensions

Agentic explainability shifts control from the system to
the individual: a user can probe why their loan applica-
tion was declined, inspect which pixels persuaded a vision
model to flag an X-ray as malignant, or test what-if scenarios
to see how a recommendation would change if inputs were
different. This new transparency fosters autonomy and
contestability and cracks open fresh attack surfaces.

Detailed feature-importance scores can reveal sensitive
correlations that a company regards as trade secrets; if
queried repeatedly, counterfactual examples let adversaries
approximate the decision boundary and reconstruct pri-
vate training data. To balance empowerment with protec-
tion, platform teams typically combine three defenses: rate-
limiting caps the number of explanation calls per user or ses-
sion, and throttling brute-force inversion attempts. Second,
tiered access gates fine-grained explanation modes—local
SHAP values, raw probability vectors, and full counter-
factual paths—behind roles, entitlements, or paywalls, so
casual consumers see only high-level summaries.

At the same time, regulators or auditors can request
deeper details under non-disclosure constraints. Third,
an adversarial-testing regime injects synthetic queries that
mimic hostile behavior and flags the agent if leakage thresh-
olds are exceeded.

Technical safeguards alone are insufficient because the
audience’s ability to parse explanatory artifacts is uneven. A
compliance officer versed in statistics might understand the
caveats of partial-dependence plots, whereas a consumer
reading a heat map could misinterpret bright red pixels
as causal rather than correlative. Organizations supple-
ment the raw output with plain-language tooltips, short
videos, or interactive walk-throughs that coach users on
what the colors or numbers mean and, equally important,
what they do not guarantee. Regulators are starting to codify
such practices, requiring that explanations be available and
comprehensible to a layperson in the decision context [22].

Lastly, equity audits need to extend beyond prediction
fairness to explanation parity. A system may produce iden-
tical acceptance rates for two demographic groups, yet still
describe its reasoning in more detailed or actionable ways
for one group than the other. Auditors should measure the
consistency of feature rankings, saliency intensities, and
counterfactual suggestions across protected attributes. They
should verify that any differences can be justified by legit-
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imate factors rather than reflecting hidden bias. Without
such checks, well-intentioned transparency can entrench
inequities by giving some users a more straightforward path
to recourse while leaving others in the dark.

7. Conclusions

This paper positions magnetic AI as a practical, scalable
strategy for injecting explainability into the countless black-
box models influencing credit decisions, hiring, medical
triage, and other facets of economic and social life. Rather
than requiring expensive retraining or code rewrites, the
magnetic approach attaches passively to existing data flows,
learns a lightweight surrogate in real time, and delivers
multiple explanation formats that can satisfy data scientists,
end users, auditors, and regulators alike. We first synthesize
decades of research on interpretability, model compression,
and drift detection to ground the proposal in established
theory. We then distill that literature into concrete design
principles: non-intrusiveness, continual fidelity auditing,
modular deployment, and explanation pluralism tailored
to stakeholder needs.

Building on these principles, we outline an evaluation
blueprint that cuts across three dimensions. The techni-
cal track measures surrogate accuracy, latency overhead,
and drift-detection sensitivity. The human track uses con-
trolled studies and field pilots to gauge whether different
user groups understand and act on the explanations. The
regulatory track maps the agent’s outputs to statutory re-
quirements such as the EU AI Act’s transparency duty, U.S.
consumer protection guidelines, and industry standards
like ISO 42001. By integrating these perspectives, the paper
provides a holistic roadmap for retrofitting trustworthy AI
capabilities into existing machine-learning stacks without
disrupting production workflows. Ultimately, magnetic
AI extends the idea of surrogate modeling from a one-off
snapshot to a living, continuously audited companion, po-
sitioning organizations to meet emerging policy mandates
and rising public expectations for transparency and account-
ability.

7.1. Limitations

The magnetic-AI framework is, at present, a theoretical
blueprint. It has not yet been stress-tested on production
traffic in banking, retail, health care, or public-sector settings,
where data rates, latency budgets, and privacy constraints
differ sharply. Field trials are needed to reveal whether
the surrogate can keep pace with high-volume streams,
whether passive interception introduces unacceptable delay,
and which sectors face unique regulatory or contractual
hurdles.

These deployments will also expose weak security points,
such as opportunities for adversaries to infer proprietary
decision logic or poison the surrogate’s sliding-window
buffer. In addition, the current design assumes a supervised
task with stable labels—credit approval, fraud detection, or
image classification—leaving open how a magnetic agent
would operate in unsupervised anomaly detection, con-
tinuous exploratory reinforcement learning, or free-form
generative applications where outputs are text, images, or
code snippets rather than class scores. Each paradigm raises

new questions about what counts as a faithful surrogate,
how to define drift or fidelity, and which explanation for-
mats are meaningful to users. Therefore, comprehensive
empirical studies across these settings are essential before
the approach can be considered production-ready.

7.2. Future Work

Future research must move the magnetic-AI con-
cept from controlled prototypes into live production
pipelines. Pilot deployments in banking, e-commerce,
and telemedicine sectors would reveal practical limits on
throughput, latency, and privacy while showing how easily
the agent can be co-containerized, versioned, and rolled
back under real traffic. Once embedded, the surrogate-
learning engine should evolve from periodic mini-batch
updates to accurate streaming operation, digesting continu-
ous flows of tabular events, log sequences, sensor signals,
and even raw audiovisual frames without halting for re-
training. Handling these multimodal inputs will require
hybrid learners that combine gradient-boosted trees for
structured features, lightweight convolutional backbones
for images, and adapter-based mini-transformers for text,
all coordinated by a reservoir buffer that prioritizes the most
recent or conceptually novel samples.

A second avenue involves deeper integration with large
foundation models that have chain-of-thought capabilities.
Instead of treating the surrogate purely as a predictive
mimic, an agent could query a frozen language model
for self-rationalizing traces, then cross-check those traces
against feature-importance scores to generate richer, more
coherent explanations. This hybrid could also let users
ask follow-up questions in natural language—Why did
age matter more than income?—and receive conversational
clarifications grounded in statistical evidence and domain
policy.

Finally, the community needs shared benchmarks that
evaluate explanation quality across domains rather than
in narrow, single-task silos. A standard suite might pair
representative workloads—credit risk, dermatology imag-
ing, autonomous-vehicle perception—with crowdsourced
judgment tests, cognitive-load surveys, and perturbation-
based robustness checks. Metrics would cover fidelity,
sparsity, stability under re-queries, resistance to inversion at-
tacks, and user comprehension measured through decision-
making tasks. Establishing such benchmarks would allow
researchers to compare methods rigorously, accelerate regu-
latory acceptance, and guide practitioners toward solutions
whose benefits generalize beyond any industry.
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ABSTRACT: Resilient and compliant supply chains, while essential to the Life Sciences, depend heavily
upon SAP systems to manage the complexities involved. The standard Purchase Order (PO) approval
process in SAP is an important upstream control point in the supply chain, but seldom has the required
intelligence needed to manage endorsed compliance (e.g., GxP) or to be proactive in supply chain risk
mitigation. This paper offers an introduction to a proof of concept that demonstrates how an AI enabled,
decision support solution that embeds into SAP processes and workflows can provide opportunities to
transform this critical process and improve overall performance within the supply chain. Beginning
with the evolution of SAP’s approval workflows, the paper updates the concepts around AI/ML
applications for improving various supply chain functions, and situates intelligent automation as part
of the strategic digital transformation landscape for Life Sciences. The paper establishes constructs to
improve PO approvals through the embedding of AI contextually based insight to build in performance
trend analysis of suppliers (e.g., delivery, quality) and contextually relevant compliance checks as part
of the decision process. These and other safeguards can move the PO approval process from being
predominately procedural to a more strategic control point, increasing supply chain visibility, resilience,
compliance assurance, and operational performance relevant to the Life Sciences. .

KEYWORDS: SAP, S/4 HANA, Artificial Intelligence (AI), Purchase Order Approval, Procurement
Controls, Supply Chain Management (SCM), Life Sciences, Trend Analysis, GxP Compliance, Regulatory
Compliance, Supply Chain Resilience, Supply Chain Optimization, Digital Transformation

1. Introduction
In today’s unpredictable global markets, especially under

regulatory requirements (GxP) in the Life Sciences sector,
where patient safety, regulation, and product efficacy are
responsibilities we cannot overlook [1], to enable resilient,
compliant, and efficient supply chain operations is not only
necessary. The critical upstream supply chain processes
of procurement and the subsequent approval of purchase
orders (POs) are crucial control points that have a significant
impact on downstream performance. The performance of
such downstream processes could extend to manufacturing
continuity, inventory levels, quality of finished product, and
most importantly, on-time delivery of finished product [2],
all of which involves approval of purchase orders (POs).
We rely increasingly on Enterprise Resource Planning sys-
tems (predominantly SAP S/4HANA) and often embedded
with specialized systems such as those offers for Integrated
Business Planning (IBP), Quality Management and Business
Network, most of which are interconnected by the same
database, to manage the flow of such processes throughout
the supply chain. Nevertheless, the traditional PO approval
mechanisms in SAP, despite efforts to enhance flexibility, tra-
ditionally remain procedure-focused [3]. They usually lack
the situational intelligence to determine where suppliers
might present a supply chain risk— such as reliability de-

clines, quality declines— or the ability to rigorously enforce
compliance with any stringent Life Sciences quality agree-
ment or GxP requirements [4, 5]. This analytical gap at an
upstream control point can introduce risks throughout the
supply chain and open the door to costly disruptions, seri-
ous quality failures that impact patient safety, or compliance
failures.

To tackle many supply chain issues harnessing the trans-
formative potential of Business Process Automation (BPA),
Digital Transformation and advanced technologies (Artifi-
cial Intelligence (AI) and Machine Learning (ML)), across
the end-to-end value chain must be a key part of the solution
[2, 6]. This paper will examine these trends, in the context
of SAP purchase order (PO) approvals. More specifically,
this paper will:

• Track the historical evolution of SAP PO approval
workflows, identifying their historical weakness in
enabling dynamic supply chain risk assessment.

• Review prevalent applications of AI/ML now impact-
ing supply chain activities that are managed through
SAP and set the context for advanced analytics.

• Consider the use cases of AI/ML techniques in the
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context of supply chain digitalization and a BPA strat-
egy.

• Provide an aspirational two future states, embed-
ding advanced analytics (specifically supplier per-
formance trend analysis and context relevant qual-
ity/compliance analytics) in the PO approval decision
process, to strengthen upstream controls, for improved
supply chain effectiveness.

The aim is to shine a light on the continuum from basic
workflow automation to real intelligent decision support,
then find examples of how we can take an essential admin-
istrative action and conceptualize it as a control point that
is more informed, efficient, and strategic in the world of
contemporary procurement, particularly the Life Sciences
supply chain.

2. Literature Review

2.1. Evolution of SAP Purchase Order Approval Workflow

The approval of purchase orders (POs) in SAP’s Materials
Management (MM) module is a significant control within
the overall supply chain’s Procure-to-Pay cycle. Over the
years, SAP systems have leveraged configurable, however,
inflexible, rule-based methods called ’Release Strategies’
(ME28/ME29N) to route POs for approval based on prede-
termined criteria like value, material group or plant. As
summarized in Figure 1, while helpful for basic policy en-
forcement, these strategies are limited in authority and focus
on authorizations limited to factual invariant conditions.
More recently, SAP has the ’Flexible Workflow’ architecture
in S/4HANA, which has greater flexibility in specifying
multi-step approval processes, dynamic approval authori-
ties (based on roles or logic specified through BAdIs) and
time frames [3, 7]. Yet even with more flexible frameworks,
the standard decision-making functions of these workflows
still rely heavily on procedural notification to approvers
whose documents are routed according to configured rules,
rather than providing contextual analysis, or data-driven
insights to support the approvers’ decision-making process
[3].

Figure 1: Standard Rule-Based SAP Purchase Order Approval Workflow
(As-Is Process)

2.2. Leveraging AI and Machine Learning in SAP-Driven Life
Sciences Supply Chains

Organizations are not only taking advantage of typical
workflow capabilities, but also increasingly utilizing Artifi-
cial Intelligence (AI) and Machine Learning (ML) to build
efficiency and predictive capabilities across critical supply
chain processes handled in SAP systems, which is important
in a stressful Life Sciences environment. One critical area is
improving supplier management, where AI/ML can go well,
beyond simple financial checks into evaluating historical
delivery performance (e.g. OTIF rates), quality records (e.g.
batch acceptance rates, audit outcomes), GxP standards,
regulatory compliance certifications, and accepted historical
rates to establish dynamic risk scores related to possible
impacts on supply chain performance or compliance failures
[2, 8].

In addition, AI/ML applications are being adopted
throughout the wider Life Sciences supply chain: increasing
the accuracy of demand forecasting in platforms like SAP
IBP in order to assure product availability [2]; optimizing
inventory levels, especially for materials requiring special
storage conditions (e.g., temperature) or products with short
shelf-life [2]; enabling predictive quality analytics by com-
bining data from manufacturing, quality management (QM)
and laboratory information management system (LIMS)
in order to proactively predict future batch deviations [9];
improving logistics agility, including route optimization,
or the prediction of transport delays and risks [4, 10]; and
AI/ML can address substantial compliance requirements
including analyzing traceability data (e.g., serialization) or
the automation of some aspects of regulatory documenta-
tion management . Many academic surveys report on AI
applications used in supply chain management, but usu-
ally focus on using resilience for creating risk management
strategies that are important in Life Sciences sector [4].

AI/ML provides supply chain efficiency across the
Procure-to-Pay (P2P) cycle by automating functions like
invoice matching [11] and utilizing complex multi-way
matching rules (PO, Goods Receipt, Quality Inspection) [11]
to identify anomalies related to errors or fraud [11]. Typi-
cally used in conjunction with these intelligent applications,
Robotic Process Automation (RPA) technology provides
solutions for repetitive, high-volume, rule-based functions
[10]. RPA sometimes blends into AI technologies, enabling
Intelligent Process Automation (IPA) [10]. Although AI/ML
applications enhance visibility, efficiency, and predictive
capabilities in the supply chain, many are limited to spe-
cific functional areas and largely rely on structured data
[12]. Integration of these outputs without displacing them,
expanding AI logic capabilities to support complex, cross-
functional supply chain decisions, such as the PO approval
situation described later, is still work in progress and oppor-
tunity.

2.3. The Strategic Role of Digital Transformation in Life Sciences
Supply Chains

The journey on established workflows within SAP (which
are discussed in "Evolution of SAP Purchase Order Approval
Workflows") and the usage of specific AI/ML applications
(which are discussed in "Leveraging AI and Machine Learn-
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ing in SAP-Driven Life Sciences Supply Chains") are impor-
tant building blocks on a larger strategic objective: Business
Process Automation (BPA) and Digital Transformation fun-
damentally changing Life Sciences supply chain operations.
This transformational ambition is beyond just incremen-
tal improvements, but redesigning supply chain processes
from end-to-end - planning, sourcing, manufacturing, qual-
ity, and logistics - to support better operational efficiency,
maintain strong GxP compliance, foster greater end-to-end
visibility and traceability, enhance supply chain resilience
from disruptions, better manage costs, and to optimize the
overall function of the supply chain to generate strategic
value, all while preserving product quality and patient
safety [1, 4, 5].

In this context of supply chain transformation, technolo-
gies marketed by vendors like SAP, such as their ’Flexible
Workflow’, are designed to offer flexible infrastructures to en-
able coordination of complex processes with many internal
or external participants. Robotic Process Automation (RPA)
tackles high-volume, rule-based tasks in various activities
[10]; specific AI/ML solutions (described above) provide
predictive when the use of pattern recognition is needed to
better manage supply chain risk with forecasting accuracy,
quality control, or logistics [2, 4, 9]. The overall aim is
increased integrated, intelligent, data-driven supply chain
workflows to remove manual bottlenHosseinOrdibazar2025,
ecks, secure the same data accuracy necessary for regulation
oversight, and exploit real-time-analytics to quickly inform
decisions across the supply chain life-cycle [13].

However, in order for the full promise of digital transfor-
mation in the complex and highly regulated Life Sciences
value chain to be realized, a number of considerable barriers
must be addressed, such as orchestrating together the many
disparate systems (e.g., ERP, MES, QMS, LIMS, logistics
interface), ensuring consistent, governed data quality across
the value chain, executing organizational change manage-
ment across siloed functions, and scaling from incremental
improvements demonstrated during pilot projects to com-
prehensive, end-to-end intelligent supply chain automation
that embodies advanced levels of reasoning and adaptive
management [14, 15, 16].

It is essential to recognize that there are many commer-
cial offerings, such as SAP’s own Ariba and Spend Control
Tower, that are now including AI as part of providing high-
level spend analytics and supplier risk scorecards. These
are effective solutions for purposes like strategic spend cat-
egorization, and identifying high-level supplier risks. But
the framework which is put forward in this paper has an
advantage: it puts highly contextual, real-time trend anal-
ysis directly into the transactional PO approval workflow.
Unlike high-level dashboards that analytics providers have
developed, we provide not just situational or landscape
awareness, but micro intelligence (e.g., "Is the quality of this
specific material from this supplier trending down in the
last month?") , and most importantly, we provide it to the
decision-maker exactly at the moment that they use it at a
GxP-relevant control point. Operationalizing intelligence
for front-line decision making and not just strategic decision
making is a key feature identifying our contribution.

Operationalizing intelligence for key decisions at the

frontline, and not exclusively at the strategic level, is propri-
etary to our offering. This distinction mirrors the character
of Procurement 4.0, moving from the procurement of duel
to procuring in a more intelligent way and ultimately for
the transformative process. [17].

3. A Proposed Framework: AI-Powered Contextual Intel-
ligence for Strategic PO Approvals

The purpose of the strategic supply chain transforma-
tion previously outlined is to more than simply provide a
procedural checkpoint with respect to the SAP purchase
order approval process (PO). The intention is to create a
knowledgeable, data-driven point of decision that enables ef-
fective management of Life Sciences supply chain resilience,
compliance, and performance [18]. This means inserting
capabilities that use advanced analytics — AI/ML based
— into the workflow so that approvers receive actionable
intelligence related to the PO, and the supply chain context
surrounding it.

Figure 2: Proposed AI-Powered Purchase Order Approval Workflow with
Event-Driven Architecture (To-Be Process)

Advanced decision support should provide performance
data in context and trends [13, 19]. For example, if the sys-
tem examines the historical delivery data of the items on the
current PO, it could highlight if, while recently restrictions
on single items were only recent, the delays appear to be
a sign of a generally worsening trend that has ingress to
disruption of timelines in critical production or supplies of
clinical trials. Just as the system should examine trends in
product quality, what tends are we seeing in rejection rates,
returns and notifications/CAPAs associated with Quality
Management (QM) for these specific materials? Are the
trends arising from a concerned review of data about even
possible lapses in GxP compliance or risks to the integrity
of a batch, based on the recent performance of this supplier?
Most critically, the System will recognize and track initial
quality issues to specific products/batches that appear on
this PO, as well as determining if this supplier and material
combinations are consistent with current validation sta-
tuses and if quality agreements are indicated where this is
particularly essential in Life Sciences [5, 9]. This type of dy-
namic trend analysis will provide intelligence not typically
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achieved from scorecards of static supplier performance in
places.

3.1. Conceptual Technical Architecture and Implementation Ap-
proach (Event-Driven)

In order to appropriately deliver the AI-powered PO
approvals insights in a decoupled and resilient architecture,
an event-based solution that uses SAP S/4HANA and the
SAP Business Technology Platform (BTP) is a fundamentally
sound approach aligned to clean core principles [20]. The
example ’To-Be’ process flow is presented in Figure 2. The
process would initiate from within the SAP S/4HANA Pur-
chase Order approval workflow (e.g., Flexible Workflow).
At some determinate step (e.g., at the approval step being
ready to send assignment, or just prior to triggering a notifi-
cation), we would implement a Business Add-In (BAdI) or
enhancement spot within the workflow. This ABAP logic
would be responsible for:

• Event Publication: An example for discussion is pub-
lishing a business event (e.g., "POApprovalInsightsRe-
quired") using any topic on SAP Event Mesh (running
on BTP) or other enterprise messaging queue. The
event payload would include some critical identifiable
information for the Purchase Order (e.g. PO number,
company code, etc.). Thus, the S/4HANA core pro-
cess remains standard, with the extension point being
unambiguous and upgrade safe.

A microservice, built and hosted on SAP BTP (or any
other cloud platform of your choosing), would subscribe to
the "POApprovalInsightsRequired" event. On encountering
the event, this BTP service would first conduct the following
steps:

• Contextual Data Retrieval: The BTP service would
call secure APIs (e.g., OData services backed by
pre-built Core Data Services (CDS) views) back to
S/4HANA to retrieve the full breadth of data for
context. The BTP service would retrieve historical
supplier performance, quality management data (QM
notifications, CAPA summaries), compliance status,
batch info, and relevant document info for the PO
items and supplier.

• Prompt Development & AI Engagement: The service
would develop an optimized prompt for the desig-
nated AI engine (ideally a company-native or private
instance of an LLM for data security). This prompt
would combine the retrieved contextual data and
instruct the AI to conduct risk assessments, trend anal-
ysis and generate the score, sub-metrics and rationale.
A significant item in design consideration is the se-
lection of the AI model. While traditional machine
learning models (e.g. regression or time-series) could
be very powerful and computationally efficient for
performing analysis of structured performance data,
the proposed framework is based on a Large Lan-
guage Model (LLM) for a specific purpose: synthesis
& explanation. The goal is to have a hybrid approach
whereby a LLM acts as the reasoning engine using &
interpreting many data types, including structured

outputs of the traditional machine learning models,
unstructured text in Quality Notification long-text
fields, & codified GxP compliance rules [5, 21]. The
uniqueness of LLM models comes from their ability to
synthesize these data types into a cohesive narrative
(that is human-readable) and actionable recommenda-
tion, and solve the "black box" question by providing
clarity into why it provided the risk score.

• Asynchronous Contextual Insight Update: After
receiving the AI analysis, the BTP service would
then asynchronously update the relevant context in
S/4HANA. This could happen by hitting a custom
API exposed by S/4HANA (to update custom fields
on the PO, custom tables or append to workflow at-
tachments) or by saving those insights in a data store
on BTP, which could be queried by S/4HANA or Fiori
apps when the approval task was presented.

The PO approval notification (email or Fiori ’My Inbox’
item) would then be customized to retrieve and visualize
AI-based insights, which could include a minor conditional
branch in the notification generation or Fiori UI to check for
existing insights before rendering, or perhaps a secondary
notification/update if the insights are received after the
original task is created.

For the risk analysis report, a similar event-driven, or
direct API call, could be established. A user action (i.e.,
clicking a link in Fiori app) may create a new event for the
BTP service, or directly call it to request the full report from
the AI engine, which will ultimately be passed back to the
user (i.e., email, Fiori UI, etc.).

To make the information consumable and actionable,
the vision is to present insights directly in the approver’s
standard interface (i.e., SAP Fiori app, notification email,
etc.). This could be a summary "PO Risk/Confidence Score"
[4], along with some key contributing sub-metrics (i.e., ’Re-
cent On-Time Delivery Trend’, ’Quality/Compliance Flags
(PO Items)’). For transparency, and to allow for exploratory
dives, approvers would be able to quickly drill-down to a
detailed report that explains how the score was derived,
visualizes performance trends, and cites specific supporting
data points or events (e.g., recent delivery delays affecting
key production lines, specific QM notifications against PO
items) [4, 13].

With such capabilities, the approval task could be quan-
titatively transformed from primarily an administrative
check, to an informed risk-based decision. It would allow
approvers to make decisions in more-informed, fast, and
confident manners, while allowing the explicate identifica-
tion of upcoming supply chain interruptions or compliance
failures, and complete an important contribution to overall
Life Sciences supply chain integrity, agility, and perfor-
mance, and in doing so, the appropriate safeguarding of
patient safety, and continuity of care [1, 5, 19].

3.2. Key Considerations for this Event-Driven Architecture

• Asynchronous Nature: Despite promoting decou-
pling and resilience, this architecture may contribute
to latent time to insights. A formal Service Level
Agreement (SLA) for insights needs to be defined
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(e.g., 95% of insights are received in 60 seconds of
PO submission), in order to mitigate delays/models
that may stall the approval process. The UI, e.g., the
Fiori "My Inbox" application, needs to anticipate this
and provide a status such as "AI insights are being
generated..." to establish user expectations effectively.

• Complexity: The complexities of managing dis-
tributed transactions, ensuring you have eventual
consistency, and monitoring event flows can be more
complicated than using a synchronous model.

• Resilience & Scalability: This architecture is typically
more resilient to failures in individual components
and can scale components in the solution indepen-
dently.

• Clean Core: With the use of BAdIs publishing events
from S/4HANA, and using BTP for extensions, you
are staying true to SAP’s clean core.

4. Simulated Case Study: AI-Powered Decision Support
at ’Innovida Life Sciences’

To demonstrate the applied impact of the proposed
framework and what it means in practice, this section
presents a fictitious case study of a fictitious company, "In-
novida Life Sciences".

Scenario: Innovida Life Sciences is a mid-sized biophar-
maceutical company that has a leading product, "Gerocept,"
a temperature-sensitive biologic drug used in critical patient
therapies. Innovida’s manufacturing process of Gerocept
is based on the availability and quality of a critical raw
material, in this case, "Stabilizer-7", and associated tight
quality and delivery processes as a GxP compliant product.
Unfortunately, there have been sporadic delays in manufac-
ture and delivery of Gerocept-linked to the performance of
the company’s primary supplier of Stabilizer-7, "Global Bio-
Reagents Inc" [4]. Such challenges are common in complex
pharmaceutical supply chains, where AI and big data ana-
lytics are increasingly being leveraged for greater efficiency
and risk mitigation [22].

4.1. The ’As-Is’ Process: A High-Risk PO Approval

A new Purchase Order (PO #4500012345) is generated
in SAP S/4HANA for a transactional shipment of 1000L
of Stabilizer-7. The PO now enters the standard flexible
workflow for approval, as shown in general terms in Figure
1. The approver who is a procurement manager will review
the PO using the standard criteria: right material, right
quantity, right price, and right cost center; and will see that
the vendor, Global Bio-Reagents Inc., is on the approved
vendor list. At this stage it looks pretty normal.

But there are important risk signals buried in separate
SAP data modules. In the next section, we provide a table
(Table 1) of the risk signals, which and in the ’As-Is’ situ-
ation are not presented to the approver in a consolidated,
contextual way.

Table 1: Supplier Performance Data: Global Bio-Reagents Inc.

Metric Data Point Observation/ Trend
Supplier De-
livery Perfor-
mance

On-Time-In-Full
(OTIF) rate has
fallen from 95%
to 70% over the
last 6 months.

A consistent and
sharp negative
trend, indicating
deteriorating relia-
bility.

Quality Man-
agement
Data

3 new Quality No-
tifications (QNs
#80012, #80015,
#80019) in the last
quarter.

A recurring GxP
compliance issue
specifically related
to temperature
deviations for
"Stabilizer-7."

Goods Re-
ceipt Data

Batch acceptance
rate at goods re-
ceipt has dropped
from 100% to 92%
in the last 2
months.

Increasing number
of shipments fail-
ing initial quality
checks, suggesting a
potential systemic is-
sue.

Outcome of the ’As-Is’ Process: Missing a unified, con-
textual view of these deteriorating trends, the procurement
manager approves the PO. The shipment from Global Bio-
Reagents arrives two days late. More critically, it arrives with
another temperature excursion. This requires a mandatory
quality investigation and corrective and preventive action
(CAPA) plan, which takes time. The two-week delay and
the investigation delayed and complicated the production
of a vital Gerocept batch. This had an estimated opportu-
nity cost of lost sales of US $1.2 million, plus an estimated
$50,000 in internal costs to manage the CAPA. This event
also created a high compliance risk that may be flagged in a
global regulatory audit in the future.

4.2. The ’To-Be’ Process: AI-Powered Risk Mitigation

Now, think about the same PO #4500012345 being pro-
cessed with the proposed AI-enabled framework which is
intended to inject contextual intelligence into the approval
workflow.

1. PO Submission & Event Trigger: The PO is sent for
approval in SAP S/4HANA. A Business Add-In (BAdI)
developed in the Flexible Workflow sends a "POAp-
provalInsightsRequired" event to the SAP Event Mesh.
The event-driven model supports sidecar architecture
and enables independence of the core SAP process.

2. AI Insight Generation: A microservice on the SAP
Business Technology Platform (BTP) listens for the
event. When the assistant receives this notification, it
collects all historical delivery, quality, and goods re-
ceipt information from S/4HANA using pre-defined
Core Data Services (CDS) views. This context is then
forwarded to a secure AI engine for a risk assessment
and trend analysis to be carried out

3. Actionable Insights Provided: The approver opens
SAP Fiori’s ’My Inbox’ and selects the PO approval
task. The approver sees more than just the basic PO
data, they can engage with the AI generated summary
located on the approval screen (as shown in Table 2).
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Now the approval screen is being used as an active
decision point.

Table 2: Simulated AI Insights in Fiori App

Insight Com-
ponent

Details & Justification

Overall Con-
fidence Score

35% (High Risk)

Key Risk Fac-
tor: Delivery
Trend

Supplier’s on-time delivery for this ma-
terial has degraded by 25% over the
last six months, indicating a high prob-
ability of a schedule-impacting delay.

Key Risk Fac-
tor: Quality
Lapses

Recurring GxP compliance issues (3
QNs) for this specific material due to
temperature deviations. High risk of
repeat quality failure.

AI Recom-
mendation

Action: Reject PO. The combination
of worsening delivery and repeated
quality failures presents a significant
and immediate risk to manufacturing
continuity and compliance.

Suggested
Next Steps

Initiate an expedited order with the
qualified secondary supplier and trig-
ger a formal performance review for
Global Bio-Reagents Inc.

Quantified Benefits: The AI-based intervention has trans-
formed approval from a procedural task to a strategic risk-
reduced approval stage. By preventing the high-risk pur-
chase order (PO), Innovida Life Sciences:

• Avoids $1.2 million in lost revenue as the Gerocept
batch is able to be on time for production and avoid
disruption to existing production operations.

• Avoids the $50,000 cost of the CAPA investigation.

• Obtain improved supply chain resiliency by correcting
a weak-link in its supply chain which will generate
systemic improvements in performance and patient
safety.

This pseudo case study has indicated that as a result
of integrating contextual relevant AI-based intelligence, di-
rectly into the approving users workflow in the SAP PO
module to transform reactive problem solving into proactive
risk management, organizations have created value, both
meaningfully and quantifiably.

4.3. Implementation Considerations: Cost-Benefit Analysis and
ROI

While an accurate return on investment (ROI) is reliant
on organization-specific elements, we can estimate a direc-
tional cost-benefit analysis that is rooted in the real-world
application of the "Innovida Life Sciences" case study. This
is also critical to make a business case for the upfront invest-
ment necessary for this kind of strategic implementation
[2, 14].

Estimated Costs The implementation costs are a compos-
ite of technology, development, and ongoing maintenance.

• Technology & Infrastructure Costs:

– SAP BTP Services: The subscription costs asso-
ciated with the main BTP services (SAP Event
Mesh for the event-driven architecture, Cloud
Foundry, or Kyma runtime environment for the
microservice, SAP AI Core to manage the AI/ML
model life cycle).

– AI/LLM Services: A large window for opera-
tional costs. Organizations can either use the
Commercial pay-per-use Large Language Model
(LLM) API and incur usage costs each time the
LLM is used, or take the hit on the upfront in-
vestment to host a private company-native LLM
that is similar to a LLM API but provides data
security and privacy.

• Development & Implementation Costs:

– Personnel: One-time project cost of engaging
a number of skilled people, including SAP
BTP/ABAP developers to create and plan the
integration, AI/ML engineering resources to de-
velop prompt engineering, and model tuning.

– Data Integration: A substantial amount of work-
ing to develop and validate the Core Data Ser-
vices (CDS) views to extract clean, reliable data
from source systems (ERP, QMS, LIMS).

• Ongoing Maintenance & Governance:

– Model Monitoring: Considerable ongoing effort
is required to monitor the performance of the
LLM-enabled AI model to ensure the model is not
drifting or ’hallucinating’, and to help maintain
accuracy.

– Change Management & Training: The upfront
costs associated with training end users as well
as the ongoing costs associated with managing
the organizational shift to AI-assisted decision
making are of considerable size, and in consid-
eration of the importance of actually adopting
the systems, have program affect changes in the
organization too.

Projected Benefits & Value Proposition The benefits that
are offered by the proposed solution go beyond straightfor-
ward automation and will provide considerable financial
and strategic value too.

• Quantifiable (Direct) Benefits:

– Avoidance of Disruption Costs: As we illus-
trated in the case study, proactively avoiding just
one high-risk PO can avoid major losses. The
$1.2 million in lost revenue was avoided by stop-
ping one production from stopping; this is a
compelling rationale.

– Reduction in Compliance & Quality Costs: The
framework will allow organizations to avoid di-
rect costs due to quality failures, similar to the
estimated $50,000 to investigate a CAPA, cited
in the case study. As well, the level of manual
work necessary for quality reviews will also be
decreased.
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– Increased Operational Efficiency: By automat-
ing the data gathering and analysis that an expert
approver would do manually, the workflow sys-
tem could shorten approval cycle time and release
procurement professionals to spend more time
on negotiations and on managing and developing
suppliers.

• Qualitative (Strategic) Benefits:

– Enhanced Supply Chain Resilience: The value
in moving from a reactive risk management ap-
proach to a proactive approach, will ultimately
drive a more resilient and agile supply chain.

– Strengthened GxP Compliance: The system pro-
vides an automated, auditable control point in
order to enforce GxP upstream in the procure-
ment process, to protect product quality and
patient safety.

5. Limitations of the Model Proposed

This model has considerable promise for improving
supply chain management across the Life Sciences Value
Chain, but it is also important to highlight the limitations
and challenges of implementation.

5.1. Dependency on Data

The effectiveness of the AI analysis is dependent not
only on the volume and granularity of data from potentially
many data sources in SAP S/4HANA and other systems,
but also on the availability, accessibility and quality of that
data. Achieving a holistic view of a product’s lifecycle
often challenges data silos and the need for quality data
(which must be done with data integrity because of GxP)
and data governance. In particular, the approach requires
the integration of diverse systems such as the ERP, Qual-
ity Management Systems (QMS), Laboratory Information
Management Systems (LIMS) and Manufacturing Execution
Systems (MES), with effective data pipelines and validated
data lineage that allows for an audit trail for everything the
AI model ingests. Establishing this level of data integrity
is substantial governance and technical challenge in and of
itself.

5.2. AI Model Limitations

• Explainability and Trust: The "black box" aspect of
some complex AI models can be a serious obstacle.
To realize the complete transparency and auditabil-
ity required for AI-generated risk scores within a
GxP-regulated framework will need additional en-
hancements in the development and incorporation of
Explainable AI (XAI) techniques.

• Bias and Accuracy: AI models can perpetuate biases
in their training data, which, if not carefully addressed,
can result in an unintentional and unfair supplier eval-
uation. In addition to addressing the uncertainty of
the AI’s output, and preventing model drift, or "hal-
lucinations", will require continuous monitoring, and
validation processes.

5.3. Implementation and Governance Risks

• Data Privacy within a Proprietary Context: Manag-
ing sensitive supplier data happens within proprietary
contexts. The use of public AI services inevitably ex-
poses this sensitive data to some risk. Therefore, this
architecture proposes a strong recommendation for a
proprietary or company-native LLM hosted in a secure
setting to keep data confidential. All data transmis-
sions must be encrypted, and access to the underlying
data sources must be strictly governed based on roles
[23].

• Regulatory Validation with a GxP Context: Within
the Life Sciences industry, any system that can im-
pact/affect quality decisions must undergo Computer
Systems Validation (CSV) as part of any framework
such as GAMP 5. This will require comprehensive
documentation and auditability of the AI Model and
decision-making logic [24]. For the AI recommen-
dations to be validated, it will be crucial to be able
to trace recommendations back to the physical data
points that affect each recommendation because of the
requirement for data lineage and integrity to prove
GxP compliance. Changing the model would require
a change control process.

• Complexity of Change Management: Implementing
this system involves more than a technology change;
it will involve changing core business processes, and
possibly causing a change in the roles of people work-
ing with the system. Within the highly regulated,
risk-averse atmosphere of the pharmaceutical sector,
dealing with user adoption will be a significant road-
block. Apart from user adoption, one of the greatest
risks faced, will be user resistance to AI recommen-
dations. Resistance needs to be considered in the
context that trust must be established between the
user and the AI System. To construct this level of trust,
a change management strategy must promote the AI
technology as a decision support system instead of a
substitute for the decision being made [3, 16].

5.4. Technical Challenge and Cost

The implementation of this proposed event-based ar-
chitecture, which will require technical use development,
deployment, and ongoing stewardship, involves many tech-
nical challenges and associated expenses. Additionally,
to ensure there is no excessive delay introduced into the
time-sensitive PO approval process, the performance of the
system must be managed carefully.

6. Future Opportunities

Can AI-based approaches to PO approval evolve and
this framework for PO approval enhanced? The answer is
yes with many possibilities for development and research to
further build intelligent automation in Life Sciences SCLs.
Short-Term: Prototyping and Pilot Testing The next step
in this project is the development of a prototype or pilot
program in a controlled Life Sciences environment. In this
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environment, it will be possible to assess technical feasibility,
refine the AI models and prompt, assess the usability of the
interface, and collect empirical data on the systemic impacts
the framework has on approval times, risk mitigation, and
compliance adherence. Establishing robust methods and
KPI’s to quantify and measure the ROI, and other tangible
benefits gained using the intelligent approval system is also
an important task. This aligns with the broader academic
push to move from conceptual frameworks for AI in the
pharmaceutical supply chain towards validated, real-world
applications [25].
Mid-Term: Building on The AI Core and Explainability
In future versions it would be possible to have access to
a wider range of internal and external data sources (i.e.
broader market intelligence, feeds on geopolitical risk, sus-
tainability data, even more detailed IoT sensor data based
on logistics/manufacturing) that would lend themselves
to richer contextual analysis [4]. Additional investment in
Explainable AI (XAI) methods inside the decision support
interface, will be important for user buy-in and to facilitate
regulatory audit requirements [26, 27]. There are many
developing robust XAI capabilities, as an ongoing area of
research, and which can make decision-making more effec-
tive in complex contexts such as SCL [13]. Indeed, there
are views from other scientific disciplines regarding the
challenges associated with the process of delivering trust in
XAI methods in relation to dealing with complexity [13, 28].
Furthermore, designing into the AI system, the ability for
the AI to learn from the outcomes associated with approved
POs and any feedback from users on its recommendations,
will enhance its predictive accuracy over time.
Long-Term: Strategic Deployment and Governance With
the fundamental principles of AI contextual intelligence,
it would be possible to expand and apply the concepts to
other high-importance decision points with the SCM area
of the SAP ecosystem, (e.g. supplier qualification and on-
boarding, contract life cycle management, proactive quality
event management). In deploying these concepts it will
be important to have in mind the ongoing development
and implementation of strong ethical guidelines, oversight
frameworks, and management processes for AI execution
in high-importance decisions in SCL, underpinned by the
concepts of fairness, accountability, transparency, and bias
mitigation [23, 24, 29].

7. Conclusion

The development of Purchase Order approval processes
in SAP systems, moving from typical rule-based decisions
to the more advanced, intelligent, contextually aware deci-
sion support systems discussed in this paper represents an
important technological and strategic change that is neces-
sary for modern Life Sciences supply chains. By combining
the principles of Business Process Automation with the ad-
vanced analytical capabilities of AI and Machine Learning,
especially when we can use this technology to embed con-
textual intelligence and trend analysis into critical upstream
controls like Purchase Order approvals, we can advance
supply chain standards well beyond that of daily operational
execution.

This shift in thinking represents more than just automat-
ing processes—it is about giving supply chain professionals

advanced insight to gain insight into timely actionable in-
formation at critical decision points in order to make better
strategic decisions, to proactively address supply chain risks
in relation to supply chain performance and quality, to
adequately demonstrate GxP compliance, and ultimately
to develop more robust and flexible Life Sciences supply
chains. As intelligent technologies continue to evolve and
be integrated across the SAP landscape (connecting the ERP
with QM, IBP, MES, and outside partner data sources on
networks), we can imagine a world where adaptive, pre-
dictive, and intelligent supply chain operations exist. This
revolutionizes the way in which Life Sciences organizations
can navigate the complexities of their global supply chain
networks to manage reliable, compliant, and efficient mate-
rial flows that are most critical for patient safety, regulatory
compliance and sustainability in innovation.
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