Impact of Brainwave Entrainment using VR to Improve Attentional Learning in Children with ADHD, ASD and Comorbidity
Journal of Engineering Research and Sciences, Volume 5, Issue 2, Page # 24-35, 2026; DOI: 10.55708/js0502003
Keywords: Electroencephalography, virtual reality, Independent component analysis, brainwave entrainment, photic entrainment, ADHD, Autism Spectrum Disorder, Comorbid
(This article belongs to the Special Issue on SP8 (Special Issue on Digital and Engineering Transformations in Science and Technology (SI-DETST-26)) and the Section Neurosciences (NES))
Export Citations
Cite
Mandapati, M. and Ranjan, P. (2026). Impact of Brainwave Entrainment using VR to Improve Attentional Learning in Children with ADHD, ASD and Comorbidity. Journal of Engineering Research and Sciences, 5(2), 24–35. https://doi.org/10.55708/js0502003
Manasa Mandapati and Prabhat Ranjan. "Impact of Brainwave Entrainment using VR to Improve Attentional Learning in Children with ADHD, ASD and Comorbidity." Journal of Engineering Research and Sciences 5, no. 2 (February 2026): 24–35. https://doi.org/10.55708/js0502003
M. Mandapati and P. Ranjan, "Impact of Brainwave Entrainment using VR to Improve Attentional Learning in Children with ADHD, ASD and Comorbidity," Journal of Engineering Research and Sciences, vol. 5, no. 2, pp. 24–35, Feb. 2026, doi: 10.55708/js0502003.
Various neurological disorders (NDs) across the globe are prevalent among children, affecting their quality of life. Among them are Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and comorbid conditions, which are defined by the proximity of symptoms of inattention, hyperactivity, and impulsivity that are accompanied by impairment in several functional domains. The overall aim of this research is to improve attentional learning in children with NDs using brainwave entrainment techniques with cutting-edge technology like virtual reality and artificial intelligence. For photic stimulation, pulses of light (virtual reality device) were used. For audio stimulation, binaural beats (noise-cancellation headphones) were used. We identified 40 children in the age group of 6 to 12 years, diagnosed by clinicians as ADHD or ASD, or comorbid conditions. Among 40, Audio Visual Entrainment (AVE) at 10 Hz frequency was administered to 23 subjects for 20 days, with 15 minutes daily. Electroencephalogram (EEG) signals were recorded before and after stimulation using the Emotiv Epoc X device. Initially, the data was pre-processed using the Welch method and independent component analysis (programming done in Python and MATLAB). The power spectral density and the relative band power ratios were calculated. The data was analyzed using quantitative analysis, which included comparative and statistical analysis. This analysis revealed a reduction in distraction and an improvement in cognition and attention among subjects with ADHD and comorbid conditions. No improvement was observed in ASD subjects. A positive result is observed in 72% of the ADHD subjects and 66% of the comorbidity subjects, with only 16% of ASD subjects.
- L. Ghirardi, Q. Chen, Z. Chang, R. Kuja-Halkola, C. Skoglund, P. D. Quinn, B. M. D’Onofrio, H. Larsson, “Use of medication for attentiondeficit/hyperactivity disorder and risk of unintentional injuries in children and adolescents with co-occurring neurodevelopmental disorders”, Journal of Child Psychology and Psychiatry, vol. 61, no. 2, pp. 140–147, 2020, doi:10.1111/jcpp.13136.
- A. Lolk, “Neurokognitive lidelser”, “Diagnostic and Statistical Manual of Mental Disorders”, American Psychiatric Association, 2013.
- R. G. Pila-Nemutandani, A. Meyer, “Behaviour planning and problem solving deficiencies in children with symptoms of attention deficit hyperactivity disorder from the balobedu culture, limpopo province, south africa”, Journal of Child & Adolescent Mental Health, vol. 28, no. 2, pp. 109–121, 2016, doi:10.2989/17280583.2016.1200582.
- R. N. Elisa, B. A. Parris, “The relationship between core symptoms of ADHD and the cognitive reflection test in a non-clinical sample”, Cognitive Neuropsychiatry, vol. 20, no. 5, pp. 416–423, 2015, doi:10.1080/13546805.2015.1068687.
- A. Kotte, G. Joshi, R. Fried, M. Uchida, A. Spencer, K. Y. Woodworth, J. Biederman, “Autistic traits in children with and without ADHD”, Pediatrics, vol. 132, no. 3, pp. e612–e622, 2013, doi:10.1542/peds.2012-3947.
- M. Cooper, J. Martin, K. Langley, M. Hamshere, A. Thapar, “Autistic traits in children with ADHD index clinical and cognitive problems”, European Child & Adolescent Psychiatry, vol. 23, pp. 23–34, 2014, doi:10.1007/s00787-013-0398-6.
- G. Joshi, S. V. Faraone, J. Wozniak, L. Tarko, R. Fried, M. Galdo, J. Biederman, “Symptom profile of ADHD in youth with high-functioning autism spectrum disorder: a comparative study in psychiatrically referred populations”, Journal of Attention Disorders, vol. 21, no. 10, pp. 846–855, 2017, doi:10.1177/1087054714543368.
- G. Joshi, S. V. Faraone, J. Wozniak, C. Petty, R. Fried, M. Galdo, J. Biederman, “Examining the clinical correlates of autism spectrum disorder in youth by ascertainment source”, Journal of Autism and Developmental Disorders, vol. 44, pp. 2117–2126, 2014, doi:10.1007/s10803-014-2063-4.
- F. Salazar, G. Baird, S. Chandler, E. Tseng, T. O’sullivan, P. Howlin, E. Simonoff, “Co-occurring psychiatric disorders in preschool and elementary school-aged children with autism spectrum disorder”, Journal of Autism and Developmental Disorders, vol. 45, pp. 2283–2294, 2015, doi:10.1007/s10803-015-2361-5.
- A. J. Kaat, K. D. Gadow, L. Lecavalier, “Psychiatric symptom impairment in children with autism spectrum disorders”, Journal of Abnormal Child Psychology, vol. 41, pp. 959–969, 2013, doi:10.1007/s10802-013-9739-7.
- P. Szatmari, S. E. Bryson, M. H. Boyle, D. L. Streiner, E. Duku, “Predictors of outcome among high functioning children with autism and asperger syndrome”, Journal of Child Psychology and Psychiatry, vol. 44, no. 4, pp. 520–528, 2003, doi:10.1111/1469-7610.00141.
- L. Wing, “Asperger’s syndrome: a clinical account”, Psychological Medicine, vol. 11, no. 1, pp. 115–129, 1981, doi:10.1017/S0033291700053332.
- L. Brothers, B. Ring, A. Kling, “Response of neurons in the macaque amygdala to complex social stimuli”, Behavioural Brain Research, vol. 41, no. 3, pp. 199–213, 1990, doi:10.1016/0166-4328(90)90108-Q.
- S. Tafazoli, J. O’Neill, A. Bejjani, R. Ly, N. Salamon, J. T. McCracken, J. G. Levitt, “1h MRSI of middle frontal gyrus in pediatric ADHD”, Journal of Psychiatric Research, vol. 47, no. 4, pp. 505–512, 2013, doi:10.1016/j.jpsychires.2012.11.011.
- J. Shaffer, “Neuroplasticity and clinical practice: Building brain power for health”, Frontiers in Psychology, vol. 7, p. 1118, 2016, doi:10.3389/fpsyg.2016.01118.
- V. F. da Silva, A. P. Ribeiro, V. A. Dos Santos, A. E. Nardi, A. L. King, M. R. Calomeni, “Stimulation by light and sound: Therapeutics effects in humans”, Clinical Practice & Epidemiology in Mental Health, vol. 11, pp. 150–154, 2015, doi:10.2174/1745017901511010150.
- N. Jirakittayakorn, Y. Wongsawat, “A novel insight of effects of a 3-hz binaural beat on sleep stages during sleep”, Frontiers in Human Neuroscience, vol. 12, p. 387, 2018, doi:10.3389/fnhum.2018.00387.
- D. Donker, L. Njio, W. Storm Van Leeuwen, G. Wieneke, “Interhemispheric relationships of responses to sine wave modulated light in normal subjects and patients”, EEG and Clinical Neurophysiology, vol. 44, pp. 479–489, 1978.
- D. Regan, “Some characteristics of average steady state and transient responses evoked by modulated light”, EEG and Clinical Neurophysiology, vol. 20, pp. 238–248, 1965.
- R. Townsend, “A device for generation and presentation of modulated light stimuli”, Electroencephalography and Clinical Neurophysiology, vol. 34, pp. 97–99, 1973.
- L. Van Der Tweel, H. Lunel, “Human visual responses to sinusoidally modulated light”, Encephalography and Clinical Neurophysiology, vol. 18, pp. 587–598, 1965.
- R. Phogat, P. Parmananda, A. Prasad, “Intensity dependence of sub-harmonics in cortical response to photic stimulation”, Journal of Neural Engineering, vol. 19, no. 4, p. 046026, 2022, doi:10.1088/1741-2552/ac817f.
- W. G. Walter, “Colour illusions and aberrations during stimulation by flickering light”, Nature, vol. 177, p. 710, 1956, doi:10.1038/177710A0.
- T. L. Huang, C. Charyton, “A comprehensive review of the psychological effects of brainwave entrainment”, Alternative Therapies in Health and Medicine, vol. 14, no. 5, pp. 38–50, 2008.
- T. Nomura, K. Higuchi, H. Yu, S.-i. Sasaki, S. Kimura, H. Itoh, et al., “Slow-wave photic stimulation relieves patient discomfort during esophagogastroduodenoscopy”, Journal of Gastroenterology and Hepatology, vol. 21, no. 1, pp. 54–58, 2006, doi:10.1111/j.1440-1746.2005.04204.x.
- H. C. Ossebaard, “Stress reduction by technology? an experimental study into the effects of brainmachines on burnout and state anxiety”, Applied Psychophysiology and Biofeedback, vol. 25, no. 2, pp. 93–101, 2000, doi:10.1023/A:1009514824951.
- J. Williams, D. Ramaswamy, A. Oulhaj, “10 hz flicker improves recognition memory in older people”, BMC Neuroscience, vol. 7, p. 21, 2006, doi:10.1186/1471-2202-7-21.
- J. P. Rosenfeld, A. M. Reinhart, S. Srivastava, “The effects of alpha (10-hz) and beta (22-hz) “entrainment” stimulation on the alpha and beta EEG bands: individual differences are critical to prediction of effects”, Applied Psychophysiology and Biofeedback, vol. 22, no. 1, pp. 3–20, 1997, doi:10.1023/A:1026233624772.
- J. H. Williams, “Frequency-specific effects of flicker on recognition memory”, Neuroscience, vol. 104, no. 2, pp. 283–286, 2001, doi:10.1016/S0306-4522(00)00579-0.
- J. E. Lisman, M. A. P. Idiart, “Storage of 7 +/- 2 short-term memories in oscillatory subcycles”, Science, vol. 267, no. 5203, pp. 1512–1515, 1995, doi:10.1126/science.7878473.
- P. Sauseng, W. Klimesch, K. Heise, “Brain oscillatory substrates of visual short-term memory capacity”, Current Biology, vol. 19, pp. 1846–1852, 2009, doi:10.1016/j.cub.2009.08.062.
- G. Oster, “Auditory beats in the brain”, Scientific American, vol. 229, no. 4, pp. 94–102, 1973, doi:10.1038/scientificamerican1073-94.
- M. Mandapati, P. Ranjan, “Virtual reality based audio visual brainwave entrainment to improve learning in children with attention deficit hyperactive disorder”, Applied Neuropsychology: Child, pp. 1–15, 2025, doi:10.1080/21622965.2025.2455102.
- M. Mandapati, P. Ranjan, “Re-engineering of brainwaves to increase resistance to distractions in young adults and promote optimal learning”, “2024 6th International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)”, pp. 1–7, IEEE, 2024, doi:10.1109/ICECIE63774.2024.10815674.
- P. R. Huttenlocher, “Synaptic density in human frontal cortex—developmental changes and effects of aging”, Brain Research, vol. 163, no. 2, pp. 195–205, 1979, doi:10.1016/0006-8993(79)90349-4.
- P. R. Huttenlocher, “The development of synapses in striate cortex of man”, Hum Neurobiol, vol. 6, pp. 1–9, 1987.
- B. J. Casey, J. N. Giedd, T. K. (et al.), “Structural and functional brain development and its relation to cognitive development”, Biol Psychol, vol. 54, pp. 241–257, 2000.
- M. Sur, R. J. (et al.), “Patterning and plasticity of the cerebral cortex”, Science, vol. 310, pp. 805–810, 2005.
- F. Levy, D. A. Hay, M. McStephen, C. Wood, I. Waldman, “Attention-deficit hyperactivity disorder: A category or a continuum? genetic analysis of a large-scale twin study”, Journal of the American Academy of Child & Adolescent Psychiatry, vol. 36, no. 6, pp. 737–744, 1997, doi:https://doi.org/10.1097/00004583-199706000-00009.
- S. V. Faraone, “Genetics of childhood disorders: XX. ADHD, Part 4: is ADHD genetically heterogeneous?”, J Am Acad Child Adolesc Psychiatry, vol. 39, pp. 1455–1457, 2000.
- C. A. Mann, J. F. Lubar, A. W. Zimmerman, C. A. Miller, R. A. Muenchen, “Quantitative analysis of EEG in boys with attentiondeficit-hyperactivity disorder: Controlled study with clinical implications”, Pediatric Neurology, vol. 8, pp. 30–36, 1992.
- J. F. Lubar, “Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorder”, Biofeedback and Self-Regulation, vol. 16, pp. 201–225, 1991.
- C. P. Utter, “A controlled study of the effects of neurofeedback training on IQ and EEG patterns for ADD subjects”, 1996.
- H. L. Russell, “Intellectual, auditory and photic stimulation and changes in functioning in children and adults”, Biofeedback, 25(1), 16–17, vol. 23, p. 24, 1997.
- J. F. Lubar, W. M. Deering, Behavioral Approaches to Neurology, Academic Press, New York, 1981.
- J. O. Lubar, J. F. Lubar, “Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting”, Biofeedback and Self-Regulation, vol. 9, pp. 1–23, 1984.
- J. F. Lubar, M. N. Shouse, “Use of biofeedback in the treatment of seizure disorders and hyperactivity”, in B. B. Lahey, A. E. Kazdin (eds.), “Advances in Child Clinical Psychology”, Plenum Press, New York, 1977.
- M. A. Tansey, “Righting the rhythms of reason, EEG biofeedback training as a therapeutic modality in a clinical office setting”, Medical Psychotherapy, vol. 3, pp. 57–68, 1990.
- American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, 2000.
- American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, 1994.
- L. Brookman-Frazee, N. Stadnick, C. Chlebowski, M. Baker-Ericzén, W. Ganger, “Characterizing psychiatric comorbidity in children with autism spectrum disorder receiving publicly funded mental health services”, Autism, vol. 22, no. 8, pp. 938–952, 2018, doi:10.1177/1362361317712650.
- L. Ghirardi, I. Brikell, R. Kuja-Halkola, C. M. Freitag, B. Franke, P. Asherson, H. Larsson, “The familial co-aggregation of ASD and ADHD: a register-based cohort study”, Molecular Psychiatry, vol. 23, no. 2, pp. 257–262, 2018, doi:10.1038/mp.2017.17.
- L. Ghirardi, E. Pettersson, M. J. Taylor, C. M. Freitag, B. Franke, P. Asherson, R. Kuja-Halkola, “Genetic and environmental contribution to the overlap between ADHD and ASD trait dimensions in young adults: a twin study”, Psychological Medicine, vol. 49, no. 10, pp. 1713–1721, 2019, doi:10.1017/S003329171800243X.
- E. Magallon-Neri, D. Vila, K. Santiago, P. Garcia, G. Canino, “The prevalence of psychiatric disorders and mental health services utilization by parents and relatives living with individuals with autism spectrum disorders in Puerto Rico”, The Journal of Nervous and Mental Disease, vol. 206, no. 4, pp. 226–230, 2018, doi:10.1097/NMD.0000000000000760.
- M. Septier, H. Peyre, F. Amsellem, A. Beggiato, A. Maruani, M. Poumeyreau, R. Delorme, “Increased risk of ADHD in families with ASD”, European Child & Adolescent Psychiatry, vol. 28, pp. 281–288, 2019, doi:10.1007/s00787-018-1206-0.
- E. Jokiranta-Olkoniemi, K. Cheslack-Postava, P. Joelsson, A. Suominen, A. S. Brown, A. Sourander, “Attention-deficit/hyperactivity disorder and risk for psychiatric and neurodevelopmental disorders in siblings”, Psychological Medicine, vol. 49, no. 1, pp. 84–91, 2019, doi:10.1017/S0033291718000521.
- J. Toman, “Flicker potentials and the alpha rhythm in man”, Journal of Neurophysiology, vol. 4, pp. 51–61, 1940.
- J. S. Barlow, “Rhythmic activity induced by photic stimulation in relation to intrinsic activity of the brain in man”, Electroencephalography and Clinical Neurophysiology, vol. 12, pp. 317–326, 1960.
- T. Inouye, N. Sumitsuji, K. Matsumoto, “EEG changes induced by light stimuli modulated with the subject’s alpha rhythm”, Electroencephalography and Clinical Neurophysiology, vol. 49, pp. 135–142, 1979.
- J. Kinney, C. McKay, A. Mensch, S. Luria, “Visual evoked responses elicited by rapid stimulation”, EEG and Clinical Neurophysiology, vol. 34, pp. 7–13, 1972.
- T. Nogawa, K. Katayama, Y. Tabata, T. Ohshio, T. Kawahara, “Changes in amplitude of the EEG induced by a photic stimulus”, Electroencephalography and Clinical Neurophysiology, vol. 40, pp. 78–88, 1976.
- R. P. Lesser, H. Lüders, G. Klem, D. S. Dinner, “Visual potentials evoked by light-emitting diodes mounted in goggles”, Cleveland Clinic Quarterly, vol. 52, pp. 223–228, 1986.
- J. Frederick, J. L. Lubar, H. Rasey, S. Brim, J. Blackburn, “Effects of 18.5 hz auditory and visual stimulation on EEG amplitude at the vertex”, Journal of Neurotherapy, vol. 3, no. 3, pp. 23–27, 1999.
- D. Noton, “Pms, EEG, and photic stimulation”, 1996.
- R. Meppelink, E. I. de Bruin, S. M. Bögels, “Meditation or medication? mindfulness training versus medication in the treatment of childhood ADHD: a randomized controlled trial”, BMC Psychiatry, vol. 16, pp. 1–16, 2016, doi:10.1186/s12888-016-0978-3.
- J. L. Carter, H. L. Russell, “A pilot investigation of auditory and visual entrainment of brain wave activity in learning disabled boys”, Texas Researcher, Journal of the Texas Center for Educational Research, vol. 4, pp. 65–73, 1993.
- E. Argento, G. Papagiannakis, E. Baka, “Augmented cognition via brainwave entrainment in virtual reality: An open, integrated brain augmentation in a neuroscience system approach”, Augmented Human Research, vol. 2, p. 3, 2017, doi:10.1007/s41133-017-0005-3.
- S. J. Halpin, N. K. Tang, A. J. Casson, A. K. Jones, R. J. O’Connor, M. Sivan, “User experiences of pre-sleep sensory alpha brainwave entrainment for people with chronic pain and sleep disturbance”, Pain Management, vol. 13, no. 5, pp. 259–270, 2023, doi:10.2217/pmt-2022-0083.
- R. J. Addante, M. Yousif, R. Valencia, C. Greenwood, R. Marino, “Boosting brain waves improves memory”, Frontiers for Young Minds, vol. 9, 2021, doi:10.3389/frym.2021.605677.
- H. N. Locke, J. Brooks, L. J. Arendsen, N. K. Jacob, A. Casson, A. K. Jones, M. Sivan, “Acceptability and usability of smartphone-based brainwave entrainment technology used by individuals with chronic pain in a home setting”, British Journal of Pain, vol. 14, no. 3, pp. 161–170, 2020, doi:10.1177/2049463720908798.
- N. C. Lecavalier, B. Boller, S. Belleville, “Use of immersive virtual reality to assess episodic memory: A validation study in older adults”, Neuropsychological Rehabilitation, 2018, doi:10.1080/09602011.2018.1477684.
- J. P. Rosenfeld, E. Baehr, R. Baehr, I. H. Gotlib, C. Ranganath, “Preliminary evidence that daily changes in frontal alpha asymmetry correlate with changes in affect in therapy sessions”, International Journal of Psychophysiology, vol. 23, no. 1-2, pp. 137–141, 1996.
- M. Klug, T. Berg, K. Gramann, “Optimizing EEG ICA decomposition with data cleaning in stationary and mobile experiments”, Scientific Reports, vol. 14, no. 1, p. 14119, 2024, doi:10.1038/s41598-024-64919-3.
- R. N. Vigário, “Extraction of ocular artefacts from EEG using independent component analysis”, Electroencephalography and Clinical Neurophysiology, vol. 103, no. 3, pp. 395–404, 1997, doi:10.1016/S0013-4694(97)00042-8.
- R. Vigário, J. Sarela, V. Jousmiki, M. Hamalainen, E. Oja, “Independent component approach to the analysis of EEG and MEG recordings”, IEEE Transactions on Biomedical Engineering, vol. 47, no. 5, pp. 589–593, 2000, doi:10.1109/10.841330.
- C. A. Joyce, I. F. Gorodnitsky, M. Kutas, “Automatic removal of eye movement and blink artifacts from EEG data using blind component separation”, Psychophysiology, vol. 41, no. 2, pp. 313–325, 2004, doi:10.1111/j.1469-8986.2003.00141.x.
- C. Mateo, J. A. Talavera, “Bridging the gap between the short-time fourier transform (STFT), wavelets, the constant-q transform and multi-resolution STFT”, Signal, Image and Video Processing, vol. 14, no. 8, pp. 1535–1543, 2020, doi:10.1007/s11760-020-01701-8.
- J. T. Gregg, J. H. Moore, “Star outliers: a python package that separates univariate outliers from non-normal distributions”, BioData Mining, vol. 16, no. 1, p. 25, 2023, doi:10.1186/s13040-023-00342-0.
- C. Ecker, S. Y. Bookheimer, D. G. Murphy, “Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan”, The Lancet Neurology, vol. 14, no. 11, pp. 1121–1134, 2015, doi:10.1016/S1474-4422(15)00050-2.
- J. J. Foxe, A. C. Snyder, “The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention”, Frontiers in Psychology, vol. 2, p. 154, 2011, doi:10.3389/fpsyg.2011.00154.
- P. A. Antonov, R. Chakravarthi, S. K. Andersen, “Too little, too late, and in the wrong place: Alpha band activity does not reflect an active mechanism of selective attention”, NeuroImage, vol. 219, p. 117006, 2020, doi:10.1016/j.neuroimage.2020.117006.
- B. K. Taylor, J. A. Eastman, M. R. Frenzel, C. M. Embury, Y. P. Wang, V. D. Calhoun, T. W. Wilson, “Neural oscillations underlying selective attention follow sexually divergent developmental trajectories during adolescence”, Developmental Cognitive Neuroscience, vol. 49, p. 100961, 2021, doi:10.1016/j.dcn.2021.100961.
- J. H. Lee, M. A. Whittington, N. J. Kopell, “Top-down beta rhythms support selective attention via interlaminar interaction: a model”, PLoS Computational Biology, vol. 9, no. 8, p. e1003164, 2013, doi:10.1371/journal.pcbi.1003164.
- A. R. Clarke, R. J. Barry, R. McCarthy, M. Selikowitz, C. A. Magee, S. J. Johnstone, R. J. Croft, “Quantitative EEG in low-IQ children with attention-deficit/hyperactivity disorder”, Clinical Neurophysiology, vol. 117, no. 8, pp. 1708–1714, 2006, doi:10.1016/j.clinph.2006.04.015.
- M. M. Lansbergen, M. Arns, M. van Dongen-Boomsma, D. Spronk, J. K. Buitelaar, “The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency”, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 1, pp. 47–52, 2011, doi:10.1016/j.pnpbp.2010.08.004.
- E. Shephard, C. Tye, K. L. Ashwood, B. Azadi, P. Asherson, P. F. Bolton, G. McLoughlin, “Resting-state neurophysiological activity patterns in young people with ASD, ADHD, and ASD+ADHD”, Journal of Autism and Developmental Disorders, vol. 48, pp. 110–122, 2018, doi:10.1007/s10803-017-3300-4.
- Manasa Mandapati, Prabhat Ranjan, “Computational and Bioinformatics Approaches for Identifying Comorbidities of COVID-19 Using Transcriptomic Data”, Journal of Engineering Research and Sciences, vol. 3, no. 4, pp. 32–41, 2024. doi: 10.55708/js0304004
- Manasa Mandapati, Prabhat Ranjan, “Using Interaction Geography to Explore Building Occupant Behaviors in Virtual Reality: A Pilot Study”, Journal of Engineering Research and Sciences, vol. 1, no. 11, pp. 1–7, 2022. doi: 10.55708/js0111001
