Results (1)
Search Parameters:
Author/Affiliation: Idris BabalolaModel Uncertainty Quantification: A Post Hoc Calibration Approach for Heart Disease Prediction
by Peter Adebayo Odesola, Adewale Alex Adegoke and Idris Babalola
Journal of Engineering Research and Sciences, Volume 4, Issue 12, Page # 25-54, 2025; DOI: 10.55708/js0412003
Abstract: We investigated whether post-hoc calibration improves the trustworthiness of heart-disease risk predictions beyond discrimination metrics. Using a Kaggle heart-disease dataset (n = 1,025), we created a stratified 70/30 train-test split and evaluated six classifiers, Logistic Regression, Support Vector Machine, k-Nearest Neighbors, Naive Bayes, Random Forest, and XGBoost. Discrimination was quantified by stratified 5-fold cross-validation with… Read More
(This article belongs to the Section Artificial Intelligence – Computer Science (AIC))