- Open Access
- Article
Content Recommendation E-learning System for Personalized Learners to Enhance User Experience using SCORM
by Pasindu Udugahapattuwa 1,*
and Shantha Fernando 2
1 Department of Electrical, Electronic and Telecommunication Engineering, General Sir John Kotelawala Defence University, Sri Lanka
2 Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 4, Issue 9, Page # 30-46, 2025; DOI: 10.55708/js0409004
Keywords: E-learning, Personalized Content Recommendation, User Experience, SCORM
Received: 03 July 2025, Revised: 31 August 2025, Accepted: 03 September 2025, Published Online: 19 September 2025
(This article belongs to the Special Issue on Multidisciplinary Sciences and Advanced Technology (SI-MSAT 2025) & Section Information Systems – Computer Science (ISC))
APA Style
Udugahapattuwa, P., & Fernando, S. (2025). Content recommendation E-learning system for personalized learners to enhance user experience using SCORM. Journal of Engineering Research and Sciences, 4(9), 30–46. https://doi.org/10.55708/js0409004
Chicago/Turabian Style
Udugahapattuwa, Pasindu, and Shantha Fernando. 2025. “Content Recommendation E-learning System for Personalized Learners to Enhance User Experience using SCORM.” Journal of Engineering Research and Sciences 4, no. 9: 30–46. https://doi.org/10.55708/js0409004
IEEE Style
P. Udugahapattuwa and S. Fernando, “Content Recommendation E-learning System for Personalized Learners to Enhance User Experience using SCORM,” Journal of Engineering Research and Sciences, vol. 4, no. 9, pp. 30-46, Sep. 2025, doi: 10.55708/js0409004.
E-learning is a main field used to improve learners’ learning environment. It would be more useful if the E-learning systems were improved by getting interactions and focusing on user experience. This research suggests increasing the user experience of students towards E-learning environments by recommending content according to their preferences. This research aims to make personalized content recommendations by identifying user interactions, trends, and patterns. Finally, this research provides a model that could help to create an intelligent E-learning system. Then the student engagement towards E-learning and user performance level can be enhanced using this research. After developing the model, there is a 73.99% accuracy in initial training and 63.16% accuracy in initial testing. After retraining and retesting, there was 85.58% accuracy for retraining and 78.90% accuracy for retesting.
- Sunil, M. Doja, “An improved recommender system for e-learning environments to enhance learning capabilities of learners”, “Proceedings of ICETIT 2019: Emerging Trends in Information Technology”, pp. 604–612, Springer, 2020, doi:10.1007/978-3-030-30577-2_53.
- R. Kaur, D. Gupta, M. Madhukar, A. Singh, M. Abdelhaq, R. Alsaqour, J. Breñosa, N. Goyal, “E-learning environment based intelligent profiling system for enhancing user adaptation”, Electronics, vol. 11, no. 20, p. 3354, 2022, doi:10.3390/electronics11203354.
- S. F. Abd Hamid, N. A. Bakar, N. Hussin, et al., “Information management in e-learning education”, International Journal of Academic Research in Business and Social Sciences, vol. 7, no. 12, pp. 2222–6990, 2017, doi:10.6007/IJARBSS/v7-i12/3625.
- S. Bhaskaran, P. Swaminathan, “Intelligent adaptive e-learning model for learning management system”, Research Journal of Applied Sciences, Engineering and Technology, vol. 7, no. 16, pp. 3298–3303, 2014, doi:10.19026/rjaset.7.674.
- A. E. Amin, “An intelligent synchronous e-learning management system based on multi-agents of linked data, ontology, and semantic service”, International Journal of Intelligent Computing and Information Sciences, vol. 19, no. 1, pp. 25–37, 2019, doi:10.21608/ijicis.2019.62606.
- B. A. Buhari, A. Roko, “An improved e-learning system”, Saudi Journal of Engineering and Technology, vol. 2, no. 2, pp. 114–118, 2017, doi:10.21276/sjeat.2017.2.2.5.
- N. Partheeban, N. SankarRam, “e-learning management system using web services”, “International Conference on Information Communication and Embedded Systems (ICICES2014)”, pp. 1–7, IEEE, 2014, doi:10.1109/ICICES.2014.7033900.
- J. Zhang, F. Qiu, W. Wu, J. Wang, R. Li, M. Guan, J. Huang, “Elearning behavior categories and influencing factors of stem courses: A case study of the open university learning analysis dataset (oulad)”, Sustainability, vol. 15, no. 10, p. 8235, 2023, doi:10.3390/su15108235.
- T. D. Pham Thi, N. T. Duong, “E-learning behavioral intention among college students: A comparative study”, Education and Information Technologies, 2024, doi:10.1007/s10639-024-12592-4.
- M. M. Althobaiti, P. Mayhew, “Assessing the usability of learning management system: User experience study”, “E-Learning, E-Education, and Online Training: Second International Conference, eLEOT 2015, Novedrate, Italy, September 16-18, 2015, Revised Selected Papers 2”, pp. 9–18, Springer, 2016, doi:10.1007/978-3-319-28883-3_2.
- H. B. Santoso, M. Schrepp, R. Isal, A. Y. Utomo, B. Priyogi, “Measuring user experience of the student-centered e-learning environment”, Journal of Educators Online, vol. 13, no. 1, pp. 58–79, 2016.
- P. Zhang, “Understanding digital learning behaviors: Moderating roles of goal setting behavior and social pressure in largescale open online courses”, Frontiers in Psychology, vol. 12, 2021, doi:10.3389/fpsyg.2021.783610.
- F. Qiu, L. Zhu, G. Zhang, X. Sheng, M. Ye, Q. Xiang, P.-K. Chen, “E-learning performance prediction: Mining the feature space of effective learning behavior”, Entropy, vol. 24, no. 5, p. 722, 2022, doi:10.3390/e24050722.
- K. Abhirami, M. Devi, “Student behavior modeling for an e-learning system offering personalized learning experiences”, Computer Systems Science & Engineering, vol. 40, no. 3, 2022,
doi:10.32604/csse.2022.020013. - M. Liu, D. Yu, “Towards intelligent e-learning systems”, Education and Information Technologies, vol. 28, no. 7, pp. 7845–7876, 2023, doi:10.1007/s10639-022-11479-6.
- M. N. Hasnine, H. T. Bui, T. T. T. Tran, H. T. Nguyen, G. Akçapınar, H. Ueda, “Students’ emotion extraction and visualization for engagement detection in online learning”, Procedia Computer Science, vol. 192, pp. 3423–3431, 2021, doi:10.1016/j.procs.2021.09.115.
- N. Gao, W. Shao, M. S. Rahaman, F. D. Salim, “n-gage: Predicting inclass emotional, behavioural and cognitive engagement in the wild”, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 3, pp. 1–26, 2020, doi:10.1145/3411813.
- L. Meegahapola, W. Droz, P. Kun, A. De Götzen, C. Nutakki, S. Diwakar, S. R. Correa, D. Song, H. Xu, M. Bidoglia, et al., “Generalization and personalization of mobile sensing-based mood inference models: an analysis of college students in eight countries”, Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol. 6, no. 4, pp. 1–32, 2023, doi:10.1145/3569483.
- K. Assi, L. Meegahapola, W. Droz, P. Kun, A. De Götzen, M. Bidoglia, S. Stares, G. Gaskell, A. Chagnaa, A. Ganbold, et al., “Complex daily activities, country-level diversity, and smartphone sensing: A study in denmark, italy, mongolia, paraguay, and uk”, “Proceedings of the 2023 CHI conference on human factors in computing systems”, pp. 1–23, 2023, doi:10.1145/3544548.3581190.
- K. P. Sinaga, M.-S. Yang, “Unsupervised k-means clustering algorithm”, IEEE Access, vol. 8, pp. 80716–80727, 2020, doi:10.1109/ACCESS.2020.2988796.
- X. Chen, B. Li, R. Proietti, Z. Zhu, S. J. B. Yoo, “Self-taught anomaly detection with hybrid unsupervised/supervised machine learning in optical networks”, Journal of Lightwave Technology, vol. 37, no. 7, pp. 1742–1749, 2019, doi:10.1109/jlt.2019.2902487.
- N. Kühl, M. Goutier, L. Baier, C. Wolff, D. Martin, “Human vs. supervised machine learning: Who learns patterns faster?”, Cognitive Systems Research, vol. 76, pp. 78–92, 2022, doi:10.1016/j.cogsys.2022.09.002.
- A. Ashraf, M. G. Khan, “Effectiveness of data mining approaches to e-learning system: A survey”, NFC IEFR Journal of Engineering and Scientific Research, vol. 4, 2017.
- A. Moubayed, M. Injadat, A. Shami, H. Lutfiyya, “Student engagement level in an e-learning environment: Clustering using k-means”, American Journal of Distance Education, vol. 34, no. 2, pp. 137–156, 2020, doi:10.1080/08923647.2020.1696140.
- O. El Aissaoui, Y. El Madani El Alami, L. Oughdir, Y. El Allioui, “A hybrid machine learning approach to predict learning styles in adaptive e-learning system”, “Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) Volume 5: Advanced Intelligent Systems for Computing Sciences”, pp. 772–786, Springer, 2019, doi:10.1007/978-3-030-11928-7_70.
- S. Kausar, X. Huahu, I. Hussain, Z. Wenhao, M. Zahid, “Integration of data mining clustering approach in the personalized e-learning system”, IEEE Access, vol. 6, pp. 72724–72734, 2018, doi:10.1109/access.2018.2882240.
- S. V. Kolekar, R. M. Pai, M. P. MM, “Prediction of learner’s profile based on learning styles in adaptive e-learning system”, International Journal of Emerging Technologies in Learning, vol. 12, no. 6, 2017, doi:10.3991/ijet.v12i06.6579.
- M. M. Al-Tarabily, R. F. Abdel-Kader, G. Abdel Azeem, M. I. Marie, “Optimizing dynamic multi-agent performance in elearning environment”, IEEE Access, vol. 6, pp. 35631–35645, 2018, doi:10.1109/ACCESS.2018.2847334.
- Y. M. Tashtoush, M. Al-Soud, M. Fraihat,W. Al-Sarayrah, M. A. Alsmirat, “Adaptive e-learning web-based english tutor using data mining techniques and jackson’s learning styles”, “2017 8th International Conference on Information and Communication Systems (ICICS)”, pp. 86–91, 2017, doi:10.1109/IACS.2017.7921951.
- P. K. Udupi, N. Sharma, S. K. Jha, “Educational data mining and big data framework for e-learning environment”, “2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)”, pp. 258–261, 2016, doi:10.1109/ICRITO.2016.7784961.
- K. Grigorova, E. Malysheva, S. Bobrovskiy, “Application of data mining and process mining approaches for improving e-learning processes”, pp. 1952–1958, Information technology and nanotechnology, 2017.
- B. Al Kurdi, M. Alshurideh, S. A. Salloum, “Investigating a theoretical framework for e-learning technology acceptance”, International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, pp. 6484–6496, 2020, doi:10.11591/ijece.v10i6.pp6484-6496.
- F. Rasheed, A.Wahid, “Learning style detection in e-learning systems using machine learning techniques”, Expert Systems with Applications, vol. 174, p. 114774, 2021, doi:10.1016/j.eswa.2021.114774.
- M. El Mabrouk, S. Gaou, M. K. Rtili, “Towards an intelligent hybrid recommendation system for e-learning platforms using data mining”, International Journal of Emerging Technologies in Learning (Online), vol. 12, no. 6, p. 52, 2017, doi:10.3991/ijet.v12i06.6610.
- I. Bouchrika, N. Harrati, V. Wanick, G. Wills, “Exploring the impact of gamification on student engagement and involvement with e-learning systems”, Interactive Learning Environments, vol. 29, no. 8, pp. 1244–1257, 2021, doi:10.1080/10494820.2019.1623267.
- N. Harrati, I. Bouchrika, A. Tari, A. Ladjailia, “Exploring user satisfaction for e-learning systems via usage-based metrics and system usability scale analysis”, Computers in Human Behavior, vol. 61, pp. 463–471, 2016, doi:10.1016/j.chb.2016.03.051.
- J. Li, T. Tang, W. X. Zhao, J.-R. Wen, “Pretrained language models for text generation: A survey”, arXiv preprint arXiv:2105.10311, 2021.
- M. K. Afify, “E-learning content design standards based on interactive digital concepts maps in the light of meaningful and constructivist learning theory”, JOTSE: Journal of Technology and Science Education, vol. 8, no. 1, pp. 5–16, 2018.
- K. Premlatha, B. Dharani, T. Geetha, “Dynamic learner profiling and automatic learner classification for adaptive e-learning environment”, Interactive Learning Environments, vol. 24, no. 6, pp. 1054–1075, 2016, doi:10.1080/10494820.2014.948459.
- Y. A. Gomaa, R. AbuRaya, A. Omar, “The effects of information technology and e-learning systems on translation pedagogy and productivity of efl learners”, “2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)”, pp. 1–6, 2019, doi:10.1109/3ICT.2019.8910326.
- E. Baralis, L. Cagliero, “Learning from summaries: Supporting elearning activities by means of document summarization”, IEEE Transactions on Emerging Topics in Computing, vol. 4, no. 3, pp. 416–428, 2016, doi:10.1109/TETC.2015.2493338.
- H. P. T. M. A. U. Gunathilaka, M. S. D. Fernando, “Individual learning path personalization approach in a virtual learning environment according to the dynamically changing learning styles and knowledge levels of the learner”, International Journal of ADVANCED AND APPLIED SCIENCES, vol. 5, no. 5, pp. 10–19, 2018, doi:10.21833/ijaas.2018.05.002.
- M. J. Hazar, M. Zrigui, M. Maraoui, “Learner comments-based recommendation system”, Procedia Computer Science, vol. 207, pp. 2000–2012, 2022, doi:10.1016/j.procs.2022.09.259.
- P. Okoro, “Upholding integrity in the management of e-learning in institutions of higher learning”, EPRA International Journal of Multidisciplinary Research (IJMR), vol. 8, no. 8, pp. 301–305, 2022, doi:10.36713/epra11095.
- G. A. A. J. Alkubaisi, N. S. Al-Saifi, A. R. Al-Shidi, “Recommended improvements for online learning platforms based on users’ experience in the sultanate of oman”, Higher Education, vol. 12, no. 3, 2022.
- A. Ouatiq, K. El-Guemmat, K. Mansouri, M. Qbadou, “A design of a multi-agent recommendation system using ontologies and rule-based reasoning: pandemic context”, International Journal of Electrical & Computer Engineering (2088-8708), vol. 12, no. 1, 2022, doi:10.11591/ijece.v12i1.pp515-523.
- P. K. Balasamy, K. Athiyappagounder, “An optimized feature selection method for e-learning recommender system using deep neural network based on multilayer perceptron”, International Journal of Intelligent Engineering and System, vol. 15, no. 5, p. 461, 2022.
- R. Marappan, S. Bhaskaran, “Analysis of recent trends in e-learning personalization techniques”, The Educational Review, USA, vol. 6, no. 5, pp. 167–170, 2022, doi:10.26855/er.2022.05.003.
- Z. Shahbazi, Y.-C. Byun, “Agent-based recommendation in elearning environment using knowledge discovery and machine
learning approaches”, Mathematics, vol. 10, no. 7, p. 1192, 2022, doi:10.3390/math10071192. - W. Bagunaid, N. Chilamkurti, P. Veeraraghavan, “Aisar: Artificial intelligence-based student assessment and recommendation system for e-learning in big data”, Sustainability, vol. 14, no. 17, p. 10551, 2022, doi:10.3390/su141710551.
- S. Reddy, I. Labutov, T. Joachims, “Latent skill embedding for personalized lesson sequence recommendation”, arXiv preprint arXiv:1602.07029, 2016.
- V. Gonzalez-Barbone, L. Anido-Rifon, “From scorm to common cartridge: A step forward”, Computers & Education, vol. 54, no. 1, pp. 88–102, 2010, doi:10.1016/j.compedu.2009.07.009.
- O. Bohl, J. Scheuhase, R. Sengler, U.Winand, “The sharable content object reference model (scorm) – a critical review”, “International Conference on Computers in Education, 2002. Proceedings.”, vol. 1 of CIE-02, p. 950–951, IEEE Comput. Soc, 2003, doi:10.1109/cie.2002.1186122.
- A. Kirkova-Bogdanova, “Standards in e-learning. scorm”, KNOWLEDGE-International Journal, vol. 47, no. 3, pp. 473–477, 2021.
- B. Furht, ed., Sharable Content Object Reference Model (SCORM), pp. 816–818, Springer US, Boston, MA, 2006, doi:10.1007/0-387-30038-4_225.
- G. Casella, G. Costagliola, F. Ferrucci, G. Polese, G. Scanniello, “A scorm thin client architecture for e-learning systems based on web services”, International Journal of Distance Education Technologies, vol. 5, no. 1, p. 19–36, 2007, doi:10.4018/jdet.2007010103.
- L. Argotte, G. Arroyo, J. Noguez, “Scorm sequencing and navigation model”, Research in Computing Science, vol. 65, no. 1, p. 111–119, 2013, doi:10.13053/rcs-65-1-10.
- D. Udugahapattuwa, M. Fernando, “A model for enhancing user experience in an e-learning system: A review on student behavior and content formatting”, “2023 7th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)”, pp. 1–6, 2023, doi:10.1109/SLAAIICAI59257.2023.10365027.
- D. Udugahapattuwa, M. Fernando, “An intelligent model to enhance user experience in e-learning systems”, “2024 International Research Conference on Smart Computing and Systems Engineering (SCSE)”, vol. 7, pp. 1–6, 2024, doi:10.1109/SCSE61872.2024.10550860.
- D. Udugahapattuwa, M. Fernando, “An e-learning system model to enhance user experience with content recommendation”, “2024 Moratuwa Engineering Research Conference (MERCon)”, p. 1–6, IEEE, 2024, doi:10.1109/mercon63886.2024.10688835.